
Refined Pose Estimation for Square Markers
Using Shape Fitting

Antonio Zea and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

antonio.zea@kit.edu, uwe.hanebeck@ieee.org

Abstract—We introduce an algorithm to refine the estimation
of corners and pose of square fiducial markers, such as Arucos,
with focus on mobile augmented reality applications. The idea is
to reduce pixel jitter, which causes distracting artifacts such as
“vibrating” objects, by exploiting information from the contour
pixels of the detected markers. To achieve this, we develop a
nonlinear least squares estimator that models a marker explicitly
as a polygon and employs ideas from shape fitting. This provides
not only a best-fitting estimate of the corners, but also a
covariance matrix that can be used during further processing.
We also implement a pose estimator that incorporates these
covariance matrices and show how the effect of pixel jitter is
greatly reduced in our approach, without increasing resource
usage substantially in mobile devices.

I. INTRODUCTION

Markers, or more accurately fiducial markers [1], are
artificial landmarks that facilitate correspondences between
image points and reference points in the world. The key idea
of these markers is that they are easy to find in a captured
(usually color) image, with relatively low false positives, and
based on prior information we can know the three-dimensional
positions that corresponds to the image points. Localizing these
markers, and its dual problem, localizing the camera based
on these markers, are very common challenges in augmented
reality (AR) applications [2], [3]. Recently, platforms that
allow for reliable markerless tracking [4] have reached wide
acceptance, especially after the entrance of technological giants
such as Apple ARKit [5], Google ARCore [6], or Microsoft
Hololens [7]. Nonetheless, tracking artificial markers is still
highly relevant in many applications, for example in scenarios
where it is necessary to track known objects in the environment
accurately, or when it is needed to provide an absolute starting
position of the device. Given that AR generally runs on
mobile devices, marker detection and localization have resource
constraints that are not present in other hardware. On the one
hand, the CPU load of the tracking algorithms is an important
concern, not only because of these devices have lower CPU
performance to begin with, but also to reduce battery drain.
On the other hand, the image stream usually has a lower
resolution, and the aperture is increased to reduce motion
blur, both of which have a negative effect on pixel noise,
particularly in conditions with low lighting. On the bright side,
image streams from the Hololens and ARKit/ARCore platforms
employ automatic preprocessing such as correction for lens
distortion, and the intrinsic parameters are provided by the
hardware.

Many forms of fiducial markers have been presented in
literature. Square planar markers [8]–[12] are particularly

attractive given that they are easy to print on paper their corner
positions can be used for localization. The marker interior
contains some sort of bit pattern that encodes an identifier and
can be used for error detection and correction. Probably one
of the best known marker types are Aruco markers [13], [14],
which provide relatively fast detection with low false positives.
However, the localization of square markers is generally not
as robust as other artificial landmarks such as chess boards,
as their corner positions tend to suffer more strongly from
pixel jitter, i.e., noise between frames. This produces a strong
negative effect on AR immersion, in drastic cases causing
the impression that some objects or even the entire scene is
“vibrating”.

In order to introduce our contribution to this topic, we will
first present an abridged sketch of how square markers such as
Arucos are detected from a grayscale image [13]–[15]:

1) First, an adaptive thresholding step is applied.
2) From the resulting binary image, a list of contours is

detected [16]. Each contour is represented as an array
of integer pixel positions.

3) Contours deemed inappropriate, based on criteria
such as an implausible perimeter or dissimilarity to a
polygon [17], are discarded.

4) The interior of the contour is divided into cells from
which a sequence of bits is extracted, used for error
detection and marker identification [13], [14].

5) Finally, the contour corners, together with the marker
ID, are returned to the application.

The obtained contour corners, being integer pixel positions, are
too unreliable for marker localization. Examples of obtained
contours can be seen in Fig. 1, which shows how their accuracy
strongly degrades with distance. A common approach to address
this is to apply corner refinement based on gradients [13], [15],
or for higher accuracy, to apply a linear regression for each
contour edge and calculate the intersections [11], [12], [14].

In this paper, we present an alternative approach for corner
refinement based on contour data, which employs ideas from
shape fitting [18] and least squares shape estimation [19]–[21].
The idea is to model the observed marker explicitly as a tetragon
(four-sided polygon) and then develop a nonlinear estimator
that minimizes the distance between contour points to the shape.
This batch estimator produces not only a best-fitting estimate,
but also a covariance matrix that naturally describes how much
each corner should be weighted. These terms can then be
used to refine the localization step, yielding a pose estimate
and covariance matrix that can be employed in (nonlinear)

u in pixels

v
in

p
ix
el
s

250 300 350 400 450 500

150

200

250

300

350

400

(a) Markers at 1 meter.

u in pixels

v
in

p
ix
el
s

450 500 550 600

120

140

160

180

200

220

240

260

280

(b) Markers at 2 meters.

u in pixels

v
in

p
ix
el
s

420 440 460

230

240

250

260

270

280

290

300

310

(c) Markers at 4 meters.

Figure 1: Detected contours at different distances.

Kalman filters [22], [23]. Our approach does not impose further
requirements than the information already gathered during
detection and the overhead it requires is relatively insignificant,
allowing its use in mobile AR applications. We will also
show how our contribution improves upon gradient refinement
and linear regression techniques. Note that this paper does
not introduce new approaches for fiducial marker design or
detection, we simply focus on corner and pose refinement from
existing data.

The paper is structured as follows. First, we give a brief
review of the nonlinear least squares method in Sec. II. Then,
we introduce our corner refinement technique in Sec. III, and
develop a pose refinement estimator capable to use these results
in Sec. IV. Finally, we present our evaluation in V, and the
conclusions in Sec. VI.

II. NONLINEAR LEAST SQUARES

In this section we will present a short description of
the nonlinear least squares (NLSQ) estimation technique. We
assume that we have a given set of measurements y ∈ Rm,
related to the state parameters x ∈ Rn through the measurement
function h : Rn → Rm with m ≥ n, i.e.,

y = h(x) + v ,

where v is zero-mean noise with known covariance matrix Cy .
The idea behind NLSQ estimation is to find the “best” fitting
state for those measurements, i.e., the state that minimizes the
squared residuals weighted by W = C−1y . However, if h is
nonlinear, finding a general solution is not straightforward. We
can address this by linearizing h around a given point x0 ∈ Rn,
yielding the approximation

y − h(x0) ≈ J(x− x0) + v , (1)

where J ∈ Rm×n is the Jacobian of h evaluated in x0. The
optimal x̂ for this linear approximation (but not necessarily for
h) is determined in closed form by

x̂ = x0 +
(
JTC−1y J

)−1 · JTC−1y · (y − h(x0)) .

The covariance matrix of this estimate is determined by

Cx̂ := cov(x)

=
[(
JTC−1y J

)−1 · JTC−1y]Cy

[
C−1y J ·

(
JTC−1y J

)−1]
=
(
JTC−1y J

)−1 · JTC−1y J ·
(
JTC−1y J

)−1
=
(
JTC−1y J

)−1
.

If there are multiple measurements {y
1
, ..., y

η
} with correspond-

ing measurement functions {h1, ...,hη}, they can be fused into
a single measurement equation by stacking them vertically.
However, if the measurements are known to be independent
from each other, the calculations can be strongly simplified,
yielding

x̂ = x0 +Cx̂ ·

(
η∑
i=1

JTi C
−1
yi ·

(
yi − hi(x0)

))
,

with covariance matrix

Cx̂ =

(
η∑
i=1

JTi C
−1
yi Ji

)−1
. (2)

The usefulness of x̂ is determined by how well (1)
approximates h, making the selection of x0 critical. By taking
an initial guess for x0, and then refining it iteratively by using
the estimated xopt as the next x0, we obtain the Gauss-Newton
method. A common refinement to this technique, in case that
convergence is difficult, is to add a dampening parameter
λ · diag(JTi C−1yi Ji) to (2), with a carefully chosen λ. This
is the basis of the Levenberg-Marquardt method [25].

We observe that to derive a NLSQ estimator we only need
to calculate for each measurement i) a measurement function
hi(yi), and ii) its Jacobian Ji. In the following sections, we
will use this idea to derive nonlinear estimators for corner and
pose refinement.

III. CORNER REFINEMENT

In this section, we will develop an NLSQ estimator to find
the tetragon that best fits a given contour. The state is defined

by the tetragon corners c1, c2, c3, and c4 stacked vertically in
clockwise order, i.e.,

xτ =

c1c2c3
c4

 ∈ R8 .

The contour is assumed to be a list of points Y = {y
1
, ...y

η
}.

For the sake of simplicity, we assume that the corners and
the contour are represented in “world coordinates”, i.e., after
multiplying with the inverse of intrinsic matrix according to
the pinhole model. For instance, if a point ypx with covariance
matrix Cpx

y is given in pixels, and the intrinsic parameters have
the form

K =

[
fx s
0 fy

]
, and o =

[
ox

oy

]
,

with focal lengths fx, fy, skew s, and offset o, the world
coordinates follow as

y = K−1
(
ypx − o

)
,

Cy = K−1Cpx
y

(
K−1

)T
.

We will now derive a measurement function
hτ (xτ) : R8 → R2 and the Jacobian Jτ ∈ R2×8 of
each y ∈ Y . In order to do this, we will employ ideas from
shape fitting, where the idea is to minimize the distance
between a given set of points and a shape, or more concretely,
between the points and the corresponding closest points on the
shape boundary.

For the tetragon determined by xτ , the closest point
can be found by checking each of the four sides and then
choosing the point with the minimum Euclidean distance.
Let us, at first, consider only the segment determined by
the corners cj and ck, with the indices {j, k} taken from
I := {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. The closest point to y in
that segment is determined by

πj,k(y) = cj + clamp(tj,k)
(
ck − cj

)
, (3)

where tj,k is a helper term defined as

tj,k :=

:=tuj,k︷ ︸︸ ︷(
y − cj

)T (
ck − cj

)
|ck − cj |2︸ ︷︷ ︸

:=tlj,k

(4)

and clamp(tj,k) := max(min(tj,k, 1), 0). Then, we determine
the closest segment by

{j∗, k∗} = argmin
{j,k}∈I

∣∣πj,k(y)− y∣∣ (5)

and from that we obtain the measurement function as

hτ (xτ) = πj∗,k∗(y) .

If two sides are equally close, then any of them can be chosen.
The Jacobian can be calculated using similar ideas by first
considering a segment {j, k}. However, the clamp(·) function
will be ignored, given that it is not derivable at the corners and
it is equal to the identity for the vast majority of points. For

the sake of convenience, we will first consider a reduced state
that contains only two corners, i.e.,

xτj,k =

[
cj
ck

]
∈ R4 ,

First, we calculate the derivative of tj,k w.r.t. xτj,k in (4). For
the upper term, the derivative is(

tuj,k
)′

=

[
−y − ck + 2cj

y − cj

]T
∈ R1×4 .

Similarly, for the lower term we obtain(
tlj,k
)′

= 2

[
−
(
ck − cj

)
ck − cj

]T
∈ R1×4 .

We combine both terms using the quotient rule to obtain

(tj,k)
′
=

1

tlj,k
·
(
tuj,k
)′ − tj,k

tlj,k
·
(
tlj,k
)′ ∈ R1×4 .

Then, we calculate the derivative of (3) by employing the
product rule, yielding

Jτj,k = (ck − cj) · [(tj,k)
′
]T + [(1− tj,k)I2 tj,kI2] ,

where Jτj,k ∈ R2×4. Finally, we split Jτj,k into a left part and
a right part, i.e.,

Jτj,k =
[
Jτj Jτk

]
,

where Jτj ∈ R2×2 and Jτk ∈ R2×2 represent the partial
derivatives for cj and ck respectively.

Taking the minimum indices {j∗, k∗} from (5), we now
construct the derivative of the entire state Jτ ∈ R2×8 as a block
of four 2 × 2 matrices, where the block for j∗ is occupied
by Jτj , the block for k∗ is taken by Jτk, and all other blocks
are zero. For example, let us assume that the closest segment
corresponds to j∗ = 2 and k∗ = 3. Then, Jτ takes the form

Jτ = [02×2 Jτ2 Jτ3 02×2] ∈ R2×8 .

IV. POSE REFINEMENT

Obtaining a pose from measured image points is usually
known as perspective-n-point (PnP). Informally speaking, the
idea of PnP is that, given a set of measured image points in R2

and a set of reference points in R3 known a priori, we need
to find a pose so that, by transforming the reference points,
and then projecting them onto the screen, the resulting points
are as close as possible to the image points. In literature, this
problem has been explored for a long time [26], with several
solutions depending on the amount of information [27]–[29]
or the hardware being used [30], [31]. However, incorporating
covariance matrices as weights in these approaches is not
straightforward. For the sake of completeness, in this subsection
we will introduce a simple NLSQ estimator that solves PnP
and can incorporate the estimates from Sec. III.

More concretely, we obtain as measurements four image
points which represent the corners of a tetragon

yτ =

c1c2c3
c4

 ∈ R8 ,

with associated covariance matrix Cτ
y . In general, these values

are taken from the corners estimated in Sec. III and the
corresponding covariance matrix, i.e.,

yτ = x̂τ

Cτ
y = Cτ

x̂ .

We also have a set of known reference points cr1, cr2, cr3,
and cr4 in R3 that correspond to each tetragon corner, and
are independent from xp and yτ . The pose transformation is
determined by the parameters

xp :=

[
xpr

xpt

]
∈ R6 ,

where xpr ∈ R3 represents the rotation and xpt ∈ R3 the trans-
lation. For this paper, we choose the Rodrigues representation
for the rotation, which encodes a rotation with angle θr around
a unitary axis vector ur as xpr = θr · ur. Analogously, given a
xpr we can regain both parameters from

θr = |xpr |

ur =
1

θr
xpr .

The rotation matrix R(xpr) ∈ R3×3 results from the Rodrigues
formula

R(xpr) = cos(θr) I3 + sin(θr) [ur]× + (1− cos(θr))uru
T
r

employing the cross-product matrix representation [·]× defined
as

[a]× =
[
[a1, a2, a3]

T
]
×
:=

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
.

For the special case of xpr = 0, we obtain R(xpr) = I3.

We can now use these terms to derive a measurement
function hp(xp) : R6 → R8 and the corresponding Jacobian
Jp ∈ R8×6. First, the transformation of a single reference point
cri for i ∈ {1, 2, 3, 4} is determined by transi(x

p) : R3 → R3

where

transi(x
p) := R(xpr) · cri + xpt . (6)

Second, we define the projection function proj : R3 → R2 as

proj(a) := proj([a1, a2, a3]
T
)

=
1

a3

[
a1
a2

]
Finally, the measurement function is given by

hpi (x
p) := proj(transi(x

p)) ∈ R2 , (7)

and by incorporating all four reference points,

hp(xp) =


hp1(x

p)

hp2(x
p)

hp3(x
p)

hp4(x
p)

 ∈ R8 .

The task is now to derive a Jacobian for this expression. First,
we define the helper function roti : R

3 → R3 as

roti(x
p
r) := R(xpr) · cri ,

with derivative [32]

rot′i(x
p
r) = −R(xpr) [c

r
i]×

xpr · (xpr)T +
(
R(xpr)

T − I3
)
[xpr]×

|xpr |2
,

and for the special case of xpr = 0

rot′i(x
p
r) = − [cri]× .

It follows from (6) that

trans′i(x
p) = [rot′i(x

p
r) I3] ∈ R3×6 .

Now, we introduce the following helper terms, defined infor-
mally as:

• zi ∈ R is the third component of transi(xp),

• Tu
i ∈ R2×6 is the first two rows of trans′i(x

p), and

• Td
i ∈ R1×6 is the last row of trans′i(x

p).

Using the quotient rule in (7), we finally obtain

Jpi :=
Tu
i − h

p
i (x

p) ·Td
i

zi
,

with Jpi ∈ R2×6, and with all four reference points together,

Jp =


Jp1
Jp2
Jp3
Jp4

 ∈ R8×6 .

In applications of extrinsic camera calibration, it is a
common approach to find the camera pose by first finding
the pose of the markers in relation to the camera, and then
calculating the inverse of that pose. Given the parameters xp,
the inverse pose can be obtained easily as

xp,inv :=

[
xp,invr

xp,invt

]
=

[
−xpr

R(−xpr) · −x
p
t

]
. (8)

V. EVALUATION

In this section, we will evaluate our proposed approach
and compare it to similar state-of-the-art techniques. First, we
evaluate the effect of pixel jitter in the the corner estimate, and
then we proceed to evaluate how this noise affects the pose
estimate. We will also present a brief discussion of the results.

A. Corner Refinement

We start by evaluating the corner refinement step. The
images were captured by the RGB camera of a Microsoft
Hololens device, with a resolution of 896 × 504 pixels, as
recommended by the manufacturer for image processing tasks.
As mentioned before, the Hololens applies image preprocessing
to remove distortions, but this introduces some blur into the
marker edges. The intrinsic calibration matrix was automatically
provided by the hardware. While we employed Aruco markers,
we emphasize that the approaches discussed here can be used
with any similar square marker. The marker size was 8× 8 cm2.
For the contour and Aruco detection, the library OpenCV
version 3.4.5 was employed, compiled from source for the
UWP Hololens platform.

u in pixels

v
in

p
ix
el
s

278 280 282 284 286 288 290

137

138

139

140

141

142

143

144

145

146

147

(a) Results for top-left corner at 1 meter.

u in pixels

v
in

p
ix
el
s

412 414 416 418 420 422 424 426

228

230

232

234

236

238

(b) Results for top-left corner at 4 meters.

u in pixels

v
in

p
ix
el
s

200 300 400 500 600

50

100

150

200

250

300

350

400

450

(c) LSQ estimates with covariance matrices.

Figure 2: Results and covariance matrices for different setups. The covariance matrices have been upscaled for legibility.

Three techniques were considered:

• the direct contour corners provided by the OpenCV
detector (‘Contour’),

• the LSQ estimate from our proposed approach (‘LSQ’),

• the results of the OpenCV cornerSubPix function
(‘CornerSubPix’), which refines a corner by exploiting
image gradient information from a small neighborhood
around it,

• and the edge linear regression approach used in [11],
[12], [14] (‘Edge Intersection’).

For the LSQ approach, a measurement covariance matrix of
Cpix
y = 4 · I2 was employed. The starting state was the four

corners provided by OpenCV. For the cornerSubPix function,
default parameters were used. For the line regression approach
in Edge Intersection, each contour point was associated with
the closest edge, and then total least squares regression was
employed to estimate the parameters of each edge line. The
corners result as the intersection of these lines.

Fig. 2 shows a visual representation of the results. Note that
contrast has been increased strongly for legibility (see Fig. 1 for
the originals), which makes the marker exteriors look cleaner
than in reality. In Fig. 2a we see the results for the top-left
corner of the top-left marker, taken at a distance of 1 meter. We
observe that Edge Intersection and LSQ provide very similar
results, which is not surprising given that both are the result
of edge distance minimization. The CornerSubPix approach,
which only employs local information instead of the contour,
is closer to the LSQ estimate than to the contour corner.

In Fig. 2b, we see the results that correspond to the same
marker in Fig. 1c, this time taken at a distance of 4 meters.
Image quality has degraded considerably, and we can even
see parts of the marker interior. Once more, LSQ and Edge
Intersection are almost identical, with CornerSubPix coming
close. The covariance matrix of LSQ, however, is now twice
as large. As a reminder, the weight of each measurement is
the inverse of its covariance matrix, meaning that this marker
would be weighted half as much as the one in Fig. 2a. Also,
as an aside, we want to point out that the corner covariance
matrices do not need to be isotropic, or even identical within
the same marker. For example, in Fig. 2c, we observe another

s
in

p
ix
el
s

Contour LSQ SubPix Inters

0

0.5

1

1.5

(a) Deviations at 1 meter.

s
in

p
ix
el
s

LSQ SubPix Inters

0

2

4

6

(b) Deviations at 3 meters.

Figure 3: Distance deviations from the mean at different
distances. The red line denotes the median, the blue box
represents the range between 25th and 75th percentiles. Red
dots are assumed outliers.

marker being captured from a skewed angle, with each corner
having an individual covariance matrix (and weight).

In the context of corner refinement, an important criterion
is the amount of pixel jitter, i.e., the change in the corner
position between frames caused by pixel noise. In Fig. 3, pixel
jitter was measured by taking 60 frames and calculating the
Euclidean distance from the mean. As there are 6 markers with
4 corners, we obtained 1440 measurements. Fig. 3 shows the
results taken at different distances.

First, in the results for 1 meter shown in Fig. 3a we see a
somewhat paradoxical result: the contour corners (’Contour’)
have the lowest mean but the highest amount of outliers. This
is an artifact from the fact that the contour corners are always
on the exact pixel center, and thus, the coordinates are always
integers. In turn, most distances are going to be clamped down
to 0, making the mean and variance unrepresentatively small.
From the remaining approaches, LSQ and Edge Intersection
have similar values. Unexpectedly, CornerSubPix has the
smallest spread, even if it only uses local information. This
is a consequence from the fact that, at 1 meter, the corner
neighborhood has relatively high contrast, meaning that the
corner will not move much between frames.

However, the SubPix spread changes strongly in Fig. 3b,
taken at 3 meters where pixel noise dominates more. While

u in pixels

v
in

p
ix
el
s

0 200 400 600 800 1000 1200

100

200

300

400

500

600

700

(a) Example image showing setup.

u in pixels

v
in

p
ix
el
s

0 200 400 600 800 1000 1200

100

200

300

400

500

600

700

(b) Corner covariance matrices for the example image.

Figure 4: Evaluation setup showing the four used markers. The covariance matrices have been upscaled for legibility.

the variance remains low, the number of outliers is much
higher, reaching up to 6 pixels. The spread of LSQ and Edge
Intersection remain low, because they use information from
multiple contour points instead. This shows that, in the general
case, either LSQ or Edge Intersection should be preferred.

B. Pose Refinement

In this subsection, we evaluate the quality of the pose
estimates that result from the corner refinement in the previous
section. Fig. 4 shows the experiment setup, with four prominent
Aruco markers (Fig. 4a) denoted as ‘far’, ‘close’, ‘left’ and
‘right’. The far marker was about 3 meters from the camera,
and the close marker about 1.5 meters. The chess board in
the middle was used to calculate the starting pose for the
estimates. The image resolution was 1280 × 720 pixels, to
ensure that the far marker was always detectable. Once more,
60 images were used. For CornerSubPix and Edge Intersection,
the OpenCV function solvePnP was used, while LSQ employed
the approach introduced in Sec. IV with the estimated corners
and their covariance matrices reinterpreted as measurements.
For reference, Fig. 4b shows the resulting covariance matrices,
illustrating how the marker next to the camera has the highest
weight and the farthest the lowest weight.

Four setup variants were employed: i) only the far marker,
ii) only the close marker, iii) the left and right markers together,
and iv) all markers together. In order to quantify the results,
we will employ the translation of the inverse pose shown in
(8). The reasons are as follows. On the one hand, given that it
is calculated from the rotations and translations of the markers,
it illustrates the noise of both estimates. On the other hand,
the inverse pose corresponds to the pose of the camera, which
is in turn indicative of the results one would expect in AR
applications. The values were processed a similar way as Fig. 3,
i.e., by taking the Euclidean distances to the mean. The results
are shown in Fig. 5.

For the first variant, by using only the far marker, the pose
estimates were highly unreliable (Fig. 5a). Because of the low
contrast, CornerSubPix had results with a high spread, spanning
a range of up to 25 centimeters. LSQ and Edge Intersection,

s
in

cm

LSQ SubPix Inters

0

5

10

15

20

25

(a) Deviations with far marker.

s
in

cm

LSQ SubPix Inters

0

0.5

1

1.5

2

2.5

(b) Deviations with close marker.

s
in

cm

LSQ SubPix Inters

0

0.5

1

1.5

(c) Deviations with left+right markers.

s
in

m
m

LSQ SubPix Inters

0.2

0.4

0.6

0.8

1

1.2

1.4

(d) Deviations with all markers.

Figure 5: Distance deviations from the mean for the different
setups. The red line denotes the median, the blue box represents
the range between 25th and 75th percentiles. Red dots are
assumed outliers.

however, had a much lower variance. Still, the variance of
LSQ was about half as large. The spread of CornerSubPix was
reversed in Fig. 5b for the second variant, for a similar reason as
Fig. 3a. Here, the marker was close to the camera, meaning that
contrast was high and pixel noise was low. In turn, this means
that the refined corner estimate did not change much between
frames. The LSQ and Edge Intersection approaches did not
produce bad results, however, with jitter of about 1 centimeter.
For the third variant using the left and right markers, LSQ
and Edge Intersection had once more the lower variances. Still,
LSQ had a slightly lower spread. For the fourth variant using

all markers, the spread was much lower with all approaches,
with all estimates falling within a range of 1.5 millimeters.
Once more, the LSQ spread is the lowest by about 30%.

In the context of the evaluation, we will briefly discuss two
relevant topics. On the one hand, for the sake of conciseness,
we omitted an analysis of pose accuracy in this work. For
the Edge Intersection proposed in [11], [12], [14], there are
multiple analyses of this topic in literature such as [9], [33].
Given the closeness of the results between Edge Intersection
and LSQ, it is very likely that those works also apply to our
introduced approach. Nonetheless, it is important to evaluate the
effects of the weighting mechanism in different circumstances,
such as lightning and distance, and for this reason this analysis
is part of our immediate future work. On the other hand, given
our focus in mobile AR applications, it is necessary to find
whether our minimization approach can be reliably used in low-
resource devices. Based on experiments used on the Microsoft
Hololens, the Apple iPhone SE, and the Samsung Galaxy
Tab A (all considered dated in 2018), we noticed that our
approach consistently remained below 1 millisecond, and still
far lower than the marker detection itself, which varied between
5 and 20 milliseconds. All other approaches were also below
1 millisecond.

VI. CONCLUSIONS

For this paper, we introduced a new approach for corner and
pose refinement for square fiducial markers, with focus on AR
applications. The idea was to reduce the effect of pixel jitter by
exploiting information from marker contours, which are part
of standard marker detection techniques. First, we developed a
NLSQ estimator for corner refinement that provided us with
a tetragon, together with a covariance matrix that showed us
how much weight each marker corner in the image should
have. Then, we derived a second estimator for pose refinement
that exploits this information. Evaluations showed that the
proposed corner refinement approach produced similar results
to the edge intersection techniques used in multiple off-the-
shelf libraries. However, when incorporating the weights into
the pose refinement step, results showed that poses calculated
with our approach were more robust to the effect of pixel jitter.
Future work will focus on comparing the pose accuracy of our
approach compared with related state-of-the-art techniques.

REFERENCES

[1] M. Fiala, “Designing highly reliable fiducial markers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1317–
1324, jul 2010.

[2] M. Billinghurst, A. Clark, G. Lee et al., “A survey of augmented reality,”
Foundations and Trends R© in Human–Computer Interaction, vol. 8, no.
2-3, pp. 73–272, 2015.

[3] B. H. Thomas, “A survey of visual, mixed, and augmented reality
gaming,” Comput. Entertain., vol. 10, no. 1, pp. 3:1–3:33, Dec. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2381876.2381879

[4] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for aug-
mented reality: a hands-on survey,” IEEE transactions on visualization
and computer graphics, vol. 22, no. 12, pp. 2633–2651, 2016.

[5] Apple Inc., “ARKit,” 2017. [Online]. Available:
https://developer.apple.com/arkit/

[6] Google LLC, “ARCore,” 2018. [Online]. Available:
https://developers.google.com/ar/

[7] Microsoft Corp., “Hololens,” 2016. [Online]. Available:
https://www.microsoft.com/de-de/hololens

[8] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011
IEEE International Conference on Robotics and Automation. IEEE,
2011, pp. 3400–3407.

[9] R. Munoz-Salinas, M. J. Marin-Jimenez, E. Yeguas-Bolivar, and
R. Medina-Carnicer, “Mapping and localization from planar markers,”
Pattern Recognition, vol. 73, pp. 158–171, 2018.

[10] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system,” in Proceedings
2nd IEEE and ACM International Workshop on Augmented Reality
(IWAR’99). IEEE, 1999, pp. 85–94.

[11] D. Wagner and D. Schmalstieg, Artoolkitplus for pose tracking on mobile
devices. na, 2007.

[12] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2. IEEE, 2005, pp. 590–596.

[13] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

[14] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and Vision
Computing, vol. 76, pp. 38–47, 2018.

[15] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[16] S. Suzuki et al., “Topological structural analysis of digitized binary
images by border following,” Computer vision, graphics, and image
processing, vol. 30, no. 1, pp. 32–46, 1985.

[17] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: the international journal for geographic information
and geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[18] P. Lancaster and K. Salkauskas, “Curve and surface fitting. an introduc-
tion,” London: Academic Press, 1986, vol. 1, 1986.

[19] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square fitting of
ellipses,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 21, no. 5, pp. 476–480, 1999.

[20] W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles
and ellipses,” Bulletin of the Belgian Mathematical Society Simon Stevin,
vol. 3, no. 5, pp. 63–84, 1996.

[21] M. Werman and D. Keren, “A Bayesian method for fitting parametric
and nonparametric models to noisy data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 23, no. 5, pp. 528–534, 2001.

[22] G. Welch, G. Bishop et al., “An introduction to the kalman filter,” 1995.
[23] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear

estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, Mar.
2004.

[24] M. J. Powell, “On search directions for minimization algorithms,”
Mathematical programming, vol. 4, no. 1, pp. 193–201, 1973.

[25] J. J. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis. Springer, 1978, pp. 105–116.

[26] J. A. Grunert., “Das Pothenotische Problem in erweiterter Gestalt nebst
ber seine Anwendungen in der Geodsie,” Archiv der Mathematik und
Physik, Volume 1, 1841.

[27] L. Quan and Z. Lan, “Linear n-point camera pose determination,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 21, no. 8,
pp. 774–780, 1999.

[28] B. Triggs, “Camera pose and calibration from 4 or 5 known 3d points,” in
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 1. IEEE, 1999, pp. 278–284.

[29] L. Zhi and J. Tang, “A complete linear 4-point algorithm for camera
pose determination,” AMSS, Academia Sinica, vol. 21, pp. 239–249,
2002.

[30] C. Albl, Z. Kukelova, and T. Pajdla, “Rolling shutter absolute pose
problem with known vertical direction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
3355–3363.

[31] G. Hee Lee, M. Pollefeys, and F. Fraundorfer, “Relative pose estimation
for a multi-camera system with known vertical direction,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 540–547.

[32] G. Gallego and A. Yezzi, “A compact formula for the derivative of a 3-d
rotation in exponential coordinates,” Journal of Mathematical Imaging

and Vision, vol. 51, no. 3, pp. 378–384, 2015.
[33] V. Agnus, S. Nicolau, and L. Soler, “Illumination independent and

accurate marker tracking using cross-ratio invariance,” IEEE computer
graphics and applications, vol. 35, no. 5, pp. 22–33, 2015.

