
Cooperative Unscented Kalman Filter with Bank
of Scaling Parameter Values

J. Dunı́k, O. Straka
Deparment of Cybernetics

University of West Bohemia
Univerzitnı́ 8, 306 14 Pilsen, Czech Republic

E-mails: {dunikj, straka30}@kky.zcu.cz

U. D. Hanebeck
Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology
Adenauerring 2, 76131 Karlsruhe, Germany

E-mail: uwe.hanebeck@kit.edu

Abstract—This paper is devoted to the Bayesian state
estimation of the nonlinear stochastic dynamic systems. The
stress is laid on Gaussian unscented Kalman filter (UKF) and,
in particular, on a setting of its scaling parameter, which sig-
nificantly affects the UKF estimation performance. Compared
to the standard UKF design, where one scaling parameter
per a time instant is selected, the proposed cooperative UKF
combines estimates of the set of UKFs each designed with
different value of the scaling parameter. The cooperative UKF
reformulates the UKF scaling parameter selection task as
the multiple model approach, which allows to extract more
information from the measurement to provide estimates of
better quality as indicated by the numerical simulations.
Keywords: Nonlinear filtering; Gaussian estimators;
Bayesian relations.

I. INTRODUCTION

State estimation of discrete-time stochastic dynamic sys-
tems from noisy or incomplete measurements has been
a subject of considerable research interest for the last
decades. The topic plays an important role in various fields
such as navigation, speech and image processing, fault
detection, and adaptive or optimal control.

Following the Bayesian approach, a general solution
to the state estimation problem is given by the Bayesian
recursive relations (BRRs) for computing the probabil-
ity density functions (PDFs) of the state conditioned on
the measurements. The conditional PDFs provide a full
description of the immeasurable state. The relations are,
however, analytically tractable for a limited set of models
only for which the linearity is usually a common factor.
This class of exact Bayesian estimators is represented, e.g.,
by the Kalman filter (KF). In other cases, an approximate
solution to the BRRs has to be employed. These approxi-
mate filtering methods can be divided with respect to the
validity of the estimates into global and local filters [1],
[2].

Global filters, such as the particle or the point-mass filter,
provide estimates in the form of conditional PDFs without
any assumption on the conditional distribution family.
These global filters are capable of estimating the state of a
strongly nonlinear or non-Gaussian system but usually at
the cost of higher computational demands. As opposed to
global filters, local, or alternatively Gaussian, filters (GF)
provide computationally efficient estimates predominantly

in the form of the conditional mean and covariance matrix1

with potentially limited performance due to inherent under-
lying Gaussian assumption2. This paper focuses on a class
of GFs that rely on the specification of a scaling parameter.
This class includes many modern widely-used derivative-
free GFs, e.g., the unscented Kalman filter (UKF) with
the scaling parameter κ affecting the σ-points spreading
or divided-difference filter with the scaling parameter h
affecting the interval, where the differences are computed
[3]–[7].

The considered scaling parameter significantly affects
the GF performance and its selection is a challenging
task [6], [8]–[12]. In literature, various recommendations
and algorithms for scaling parameter selection have been
proposed. Unfortunately, they often result in contradictory
scaling parameter setting, require some input from the filter
user (or designer), and are designed for the GF filtering
step only (i.e., for the measurement update). The scaling
parameter can be selected according to

• fixed schemes and
• adaptive schemes.

Fixed schemes include “standard” scaling parameter set-
tings based on the state dimension [3], [13], which is
constant for all time instants, or the off-line tuned scaling
parameter, which leads to a (time-varying) sequence of
the scaling parameter setting found prior to the estimation
experiment by a numerical analysis [8], [9], [11]. Although,
such setting does not affect GF computational complexity,
it cannot reflect the GF actual working conditions. On the
other hand, adaptive schemes set scaling parameter on-
line with respect to the current working conditions, but
at the cost of higher computational complexity [6], [12].
Moreover, as adaptive schemes are based on a numerical
solution, the user is required to chose a criterion and
a scaling parameter range for which the optimization is
performed. Often, the numerical optimization evaluates the
criterion (and typically also a part of the GF filtering
step) for multiple choices of the scaling parameter and

1The first two moments usually do not represent a full description of
the immeasurable state.

2This assumption is not always realistic especially for strongly nonlin-
ear systems.



then, select the most suitable one only. All intermediate
results are forgotten. Thus, this concept of scaling param-
eter adaptation can be seen as competitive winner-takes-all
scheme.

The goal of this paper is to propose a conceptually novel
cooperative approach to on-line determination of the GF
scaling parameter. Its basic idea lies in combination of
multiple estimates provided by a set of the GFs configured
for the same estimation task, but differing in the scaling
parameter setting. The cooperative approach adopts the
methodology of the generalized pseudo-Bayesian estimator
design with the stress on a minimization of the user
interaction.

The paper is organized as follows. In Section II, system
description and a brief introduction to the Bayesian state
estimation is presented. Section III focuses on introduction
of the UKF, standard scaling parameter selection, and
motivational example. Then, in Section IV, the concept
of the cooperative scaling parameter selection is proposed
and the cooperative UKF is designed. Sections V and
VI provide numerical simulations and concluding remarks,
respectively.

II. SYSTEM DESCRIPTION AND STATE ESTIMATION

A discrete-time nonlinear stochastic dynamic system,
described by the state-space model

M : xk+1 = fk(xk) + wk , (1)
zk = hk(xk) + vk , (2)

is considered for k = 0, 1, 2, . . . , T , where the vectors xk ∈
Rnx and zk ∈ Rnz represent the state of the system and
the measurement at time instant k, respectively. The state
and measurement functions fk : Rnx → Rnx and hk :
Rnx → Rnz are supposed to be known. The state noise
wk ∈ Rnx , the measurement noise vk ∈ Rnz , and the
initial state x0 ∈ Rnx are supposed to be independent of
each other.

The noises and the initial state are assumed to be
normally distributed, i.e.,

p(wk) = N{wk;0nx×1,Qk} , (3)
p(vk) = N{vk;0nz×1,Rk} , (4)
p(x0) = N{x0; x̄0,P0} , (5)

where 0nx×1 is the zero matrix of indicated dimension and
the notation N{x; x̄,P} stands for the Gaussian PDF of a
random variable x with the mean x̄ and covariance matrix
P. The first two moments of the random variables (3)–(5)
are supposed to be known.

A. Bayesian Approach to State Estimation

The BRRs are given by [14]

p(xk|zk−1) =

∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1 , (6)

p(xk|zk) =
p(xk|zk−1)p(zk|xk)

p(zk|zk−1)
, (7)

where p(xk|zk−1) is the one-step predictive PDF computed
by the Chapman-Kolmogorov equation (6) and p(xk|zk)
is the filtering PDF computed by the Bayes’ rule (7).
The PDFs p(xk|xk−1) and p(zk|xk) are the state tran-
sition PDF obtained from (1) and the measurement PDF
obtained from (2), respectively. The PDF p(zk|zk−1) =∫
p(xk|zk−1)p(zk|xk)dxk is the one-step predictive PDF

of the measurement. The symbol zk represents the set
of all measurements up to the time instant k, i.e., zk =
[z0, z1, . . . zk]. The estimate of the state is given by the
filtering and the predictive PDFs. The recursion (6), (7) can
be started from the initial PDF p(x0|z0) stemming from
p(x0).

B. Gaussian Filter Design

Considering the system description (1)–(5), the BRRs are
not exactly solvable. GFs assume the predictive conditional
joint PDF [13], i.e.,

p(xk+1, zk+1|zk) , N{
[ xk+1
zk+1

]
;
[
x̂k+1|k
ẑk+1|k

]
,
[
Pxxk+1|kP

xz
k+1|k

Pzxk+1|kP
zz
k+1|k

]
},

(8)

to be Gaussian, which allows analytical (but inherently
approximate) solution to the BRRs leading to the following
recursive GF estimation algorithm3:

Step 1: Set the time instant k = 0 and define an initial
condition p(x0|z0) = N{x0; x̂0|0,P

xx
0|0}.

Step 2: The predictive mean and covariance matrix

x̂k+1|k =

∫
fk(xk)N{xk; x̂k|k,P

xx
k|k}dxk , (9)

Pxxk+1|k =

∫
(fk(xk)− x̂k+1|k)(fk(xk)− x̂k+1|k)T

×N{xk; x̂k|k,P
xx
k|k}dxk + Qk , (10)

are assumed to form the Gaussian PDF p(xk+1|zk) ,
N{xk; x̂k+1|k,P

xx
k+1|k}.

Step 3: The moments of the filtering estimate
p(xk+1|zk+1) , N{xk+1; x̂k+1|k+1,P

xx
k+1|k+1} are

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k) , (11)

Pxxk+1|k+1 = Pxxk+1|k −Kk+1P
zz
k+1|kK

T
k+1 , (12)

where Kk+1 = Pxzk+1|k(Pzzk+1|k)−1 is the filter gain,

ẑk+1|k=

∫
hk+1(xk+1)N{xk+1; x̂k+1|k,P

xx
k+1|k}dxk+1,

(13)

Pzzk+1|k =

∫
(hk+1(xk+1)− ẑk+1|k)(hk+1(xk+1)− ẑk+1|k)T

×N{xk+1; x̂k+1|k,P
xx
k+1|k}dxk+1+Rk+1, (14)

Pxzk+1|k =

∫
(xk+1 − x̂k+1|k)(hk+1(xk+1)− ẑk+1|k)T

×N{xk+1; x̂k+1|k,P
xx
k+1|k}dxk+1 . (15)

3All GFs are linear algorithms with respect to the actual measurement
and have the same structure as the KF. However, contrary to the KF, the
GF estimate is “only” assumed to be Gaussian.



Let k = k + 1. The algorithm then continues to Step 2.

III. SCALING PARAMETER IN UNSCENTED KALMAN
FILTER AND GOAL OF THE PAPER

Evaluation of the Gaussian PDF weighted integrals (9),
(10) and (13)–(15) is based on various linearization tech-
niques or numerical integration rules [3]–[7], [15]–[17].
Except for a few special cases (e.g., linear or polynomial
functions fk and hk in (1), (2)) their evaluation is ap-
proximate and, typically, the integration result significantly
depends on a scaling parameter selection.

The setting and impact of the scaling parameter is
discussed and illustrated using the UKF, which solves the
integrals using the unscented transform (UT) [3], [10].
Note, however, that analogous conclusions can be drawn
for any GF of the considered class.

A. Unscented Transform

The UT computes the predictive moments as weighted
sample means of nonlinearly transformed sets of deter-
ministically chosen points (so called σ-points). In partic-
ular, the UT based approximate measurement predictive
moments (13)–(15) are computed4 as

ẑUKF
k+1|k=

2nx∑
i=0

Wi
k+1|kZ

i
k+1|k ≈ ẑk+1|k , (16)

Pzz,UKF
k+1|k =

2nx∑
i=0

Wi
k+1|k(Zik+1|k− ẑk+1|k)(·)T + Rk+1

≈ Pzzk+1|k , (17)

Pxz,UKF
k+1|k =

2nx∑
i=0

Wi
k+1|k(X ik+1|k−x̂k+1|k)(Zik+1|k−ẑk+1|k)T

≈ Pxzk+1|k , (18)

where the transformed σ-points {Zik+1|k}
2nx
i=0 are

Zik+1|k = hk+1(X ik+1|k) ,∀i ,

and the σ-points {X ik+1|k}
2nx
i=0 and respective weights

{Wi
k+1|k}

2nx
i=0 are

X 0:2nx
k+1|k= x̂k+1|k11×b+c

[
0nx×1,S

xx
k+1|k,−S

xx
k+1|k

]
, (19)

W0:2nx
k+1|k = 1

nx+κ [κ, 1
2 , . . . ,

1
2 ] . (20)

In (16)–(20), 1a×b and 0a×b represent matrices of ones
and zeros of indicated dimension, respectively. Sxxk+1|k
is a factor of the covariance matrix Pxxk+1|k satisfying
Pxxk+1|k = Sxxk+1|k(Sxxk+1|k)T , b = 2nx + 1 is the number
of σ-points, c =

√
nx + κ, and κ ∈ R+ is the scaling

parameter typically determined by the user.

4State predictive moments (9), (10) are computed analogously.

B. Scaling Parameter Setting and Adaptation

In literature, various recommendations can be found. The
recommendations result in either fixed time-invariant or
adaptive time-variant scaling parameter κ. For fixed param-
eters, two recommendations can be found, i.e., κ = 3−nx
(if nx ≤ 3) minimizing the error of the fourth order term
of the Taylor expansion of (16) [3] and κ = 0 leading
to the cubature integration rule and the cubature KF [13].
Time-varying scaling parameters can be found either off-
line [8], [9], [11] or on-line [6], [12]. The on-line identified
parameter can be computed, for example, to maximize the
likelihood function5

κML
k = arg max

κ
N{zk; ẑUKF

k|k−1,P
zz,UKF
k|k−1 } , (21)

which results in the scaling parameter value typically
different from the fixed choices. With this short review, it
is possible to see that there are multiple (and contradictory)
choices of the scaling parameter. Each recommendation is,
moreover, related to different criteria used for parameter
selection. In addition, the criteria are only superficially
related to the quantities, which are usually used for the filter
performance evaluation (e.g., in terms of estimate accuracy
and consistency).

C. Motivating Example

The performance of the UKF with three choices of
the scaling parameter, namely two fixed values κ = 2,
κ = 0, and one adaptive setting of κk according to (21), is
illustrated using the univariate non-stationary model [18]

xk+1 = 0.5xk + 25 xk
1+x2

k
+ 20 sin(0.05k) + wk , (22)

zk =
x2
k

20 + vk , (23)

where k = 0, 1, . . . , T, T = 40, Q = 2, R = 0.1,
and p(x0) = N{x0;−200, 1}. State estimation of the
considered model state is a challenging task for any GF,
including the UKF, especially if the true state is close to
zero. In that region of the state space, the UKF may provide
“inaccurate” estimates for a shorter or longer period of
time, depending on the selected parameter κ.

In Figure 1, the filtering estimate error

x̃k|k = xk − x̂k|k (24)

and the filtering standard deviation (STD)

Sk|k =
√
Pk|k (25)

are plotted for one realization for three UKFs with two
fixed scaling parameters and one adaptively set parameter.
The figure illustrates enormous influence of the scaling
parameter of the UKF performance and also a tendency
of the UKF to provide inconsistent estimates in this case
independently of the scaling parameter selection.

One of the possible explanations of the inconsistent
behavior of the UKFs is that the considered state-of-the-art

5Other criteria can be found in [6].
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Figure 1. UKF performance depending on the scaling parameter setting.

scaling parameter selection techniques utilize just one (in
some sense best) value of the scaling parameter at one time
instant (either selected prior or adaptively during the the
filter run). Thus, the filters are able to exploit a portion of
the available information from the measurement. Moreover,
as the adaptive strategies, such as in (21), are based
on numerical optimization, there are many evaluations of
the optimization criterion and the measurement prediction
moments available, but only the one selected is used (and
the remaining ones are simply disregarded).

D. Goal of the Paper

The goal of this paper is to propose a cooperative
scaling parameter determination technique for the UKF that
combines multiple UKF estimates differing by the scaling
parameter choice. Such combination allows to exploit more
information from the available measurement at each time
instant. The cooperative determination is inspired by the
recent techniques for UKF consistency monitoring [18],
[19] and a theory of the generalized pseudo-Bayesian
estimation [20], and, thus, benefits from a well-developed
theoretical background.

IV. COOPERATIVE SCALING PARAMETER
DETERMINATION

The UKF with cooperative scaling parameter determi-
nation is based on the idea of combination of a set of
UKF estimates, where each UKF is configured to perform
the same estimation task, but uses a different scaling
parameter. As a consequence, each filter provide an unique,
but inherently sub-optimal, estimate that extracts just a
portion of information from the conditioning data. Analysis
and combination of such estimates result in such a scaling

parameter selection, which may result in a higher quality
state estimate in terms of accuracy and consistency.

A. Concept Illustration

The concept of the cooperative scaling parameter deter-
mination is introduced using the UKF (9)–(15), (16)–(20)
with the initial condition

p(x0|z0) = N{x0; x̂0|0,P0|0} (26)

and a set of allowed scaling parameters K = {κ(i)}nκi=1.
The prediction (time-update) step of the UKF with

cooperative scaling parameter determination (CUKF) is
based on evaluation of nκ UKF prediction steps, each with
different scaling parameter κ(i)

k+1|k ∈ K used in evaluation
of (9), (10). This leads to a set of predictive state estimates,
in the form of the filtering mean and covariance matrix
defined as

Pk+1|k ,
{
N (i)
k+1|k

}nκ
i=1

, (27)

where the notation N (i)
k+1|k = N{xk+1; x̂

(i)
k+1|k,P

xx,(i)
k+1|k} is

used for convenience and the predictive moments are

x̂
(i)
k+1|k = x̂k+1|k(κ

(i)
k+1|k) , (28)

P
xx,(i)
k+1|k = Pxxk+1|k(κ

(i)
k+1|k) . (29)

The filtering (measurement update) step of the CUKF
based on evaluation of n2

κ UKF filtering steps, each
with different predictive PDF (27) and scaling parameter
κ

(j)
k+1|k+1 ∈ K used in (11)–(15), leads to the set of the

filtering estimates

Pk+1|k+1 ,
{
N (i,j)
k+1|k+1

}nκ,nκ
i=1,j=1

, (30)

where the filtering moments

x̂
(i,j)
k+1|k+1 = x̂k+1|k+1(κ

(i)
k+1|k, κ

(j)
k+1|k+1) , (31)

P
xx,(i,j)
k+1|k+1 = Pxxk+1|k+1(κ

(i)
k+1|k, κ

(j)
k+1|k+1) (32)

depends on both scaling parameters κ(i)
k+1|k, κ(j)

k+1|k+1.
Standard approaches to scaling parameter selection eval-

uate all the predictive and filtering state estimates (27),
(30), and select just one estimate N (i,j)

k+1|k+1 according to
some criterion, e.g., according to (21) [6]. It means, that
all remaining estimates and the contained information is
not exploited and a significant part of the calculations is
wasted.

B. Formulation in Generalized Pseudo-Bayesian Estimator
Design Framework

The proposed CUKF aims at utilization of all informa-
tion the various UKFs estimates can capture due to different
scaling parameter selection. The main question is how to
fuse the estimates together to exploit maximum of available
information being captured in (30)–(32). The chosen ap-
proach is based on a reformulation of the considered prob-
lem in the multiple model (MM) approach, namely using



the approximate first order generalized pseudo-Bayesian
(GPB1) estimator design framework [20].

Because of the Bayesian approach to the GF design, the
set of the UKFs can be, broadly speaking, thought of as a
set of KF each designed for differently linearized6 model
M given by (1), (2), further denoted as

L , {L(i,j)(κ
(i)
k+1|k, κ

(j)
k+1|k+1)}nκ,nκi=1,j=1 , (33)

where the linearized model L(i,j) =
L(i,j)(κ

(i)
k+1|k, κ

(j)
k+1|k+1) depends on the nonlinear

model M and scaling parameters κ(i)
k+1|k, κ(j)

k+1|k+1 used
by the UT in prediction and filtering step, respectively.
Such interpretation of the set of the UKFs allows to create
a set of n2

κ hypotheses H(i,j),∀i, j, that the considered
linearized model L(i,j) results in the approximate Gaussian
posterior PDF N (i,j)

k+1|k+1, which is (in some sense) closest
to the true (but unknown) posterior p(xk|zk). The PDF
N (i,j)
k+1|k+1 is, therefore, conditioned by the model L(i,j),

thus, by κ(i)
k+1|k, κ(j)

k+1|k+1.
Having the set of models, it is necessary to determine

their weights. Following the GPB1, the predictive weights
can be equal as we do not have any prior knowledge, i.e.,

α
(i)
k+1|k = 1/nκ . (34)

Then, the weight of the model L(i,j) and of the filtering
estimate N (i,j)

k+1|k+1, w.r.t. the last measurement zk+1, reads

α
(i,j)
k+1|k+1 = α

(i)
k+1|kN{zk+1; ẑ

(i,j)
k+1|k,P

zz,(i,j)
k+1|k }/ck, (35)

where ck =
∑nκ
i=1

∑nκ
j=1 α

(i)
k|k−1N{zk; ẑ

(i,j)
k|k−1,P

zz,(i,j)
k|k−1 } is

the normalization and the measurement predictive moments
are computed within the filtering step.

Having the filtering PDFs (30) and the weights (35), the
combined state estimate, which take into account UKFs
with all admissible combinations of κ(i)

k+1|k, κ(j)
k+1|k+1, is

[20]

pC(xk+1|zk+1) =

nκ∑
i=1

nκ∑
j=1

α
(i,j)
k+1|k+1N

(i,j)
k+1|k+1 , (36)

with mean

x̂C
k+1|k+1 =

nκ∑
i=1

nκ∑
j=1

α
(i,j)
k+1|k+1x̂

(i,j)
k+1|k+1 (37)

and covariance matrix

Pxx,Ck+1|k+1 =

nκ∑
i=1

nκ∑
j=1

α
(i,j)
k+1|k+1 (38)

×
(
P
xx,(i,j)
k+1|k+1 + (x̂

(i,j)
k+1|k+1 − x̂C

k+1|k+1)(·)T
)
.

To keep the computational complexity constant ∀k, it is
necessary to approximate the combined PDF (36) with the
Gaussian PDF, such as

pC,N (xk+1|zk+1) = N{xk+1; x̂C
k+1|k+1,P

xx,C
k+1|k+1} ,

(39)

6The UT can be interpreted as a statistical (linear) regression [2], [16].

which is then used as an initial PDF for the CUKF
prediction (27). Note that the Gaussian approximation (39)
is optimal according to the Kullback-Leibler distance.

C. CUKF Algorithm Illustration

The CUKF algorithm is illustrated by the diagram in
Figure 2.

D. Notes and Extensions

1) User Defined Parameter and Computational Com-
plexity: The only input required from the user, is related
to the specification of the allowed scaling parameter set
K . The cardinality of the set is driven by the available
computational power. In particular, the CUKF evaluates
nκ prediction and n2

κ filtering steps of the UKF plus n2
κ

likelihood functions.
Regarding the particular values of the set and assuming

an ordered set K , i.e., κ(1) < κ(2) < . . . < κ(nκ), the
lower bound can be κ0 = 0, as for this value the covariance
matrix of the transformed random variable is guaranteed
to be positive definite. The upper bound κ(nκ) can be
determined so that the random variable xk lies with a
required probability P ∗ within a hyper-ellipsoid determined
by the σ-points. The upper bound, them, satisfies the
condition [6], [21]

P ∗ = 21−nx/2

Γ(nx/2)

∫ √nx+κ(nκ)

0

e−r
2/2rnx−1dr , (40)

where Γ(·) is the Gamma function. The closed-form so-
lution to (40) for κ(nκ) exists for some state dimensions
nx only, for other cases a numerical solution can be used
instead.

2) Comparison with Standard Competitive Adaptations
and Criteria: The standard on-line “competitive” scaling
parameter adaptation techniques for the UKF (or derivative-
free filters in general) [6], [8], [11] select the scaling
parameter to minimize/maximize some criterion, e.g., (21),
which is only loosely (or indirectly) related to the state esti-
mate accuracy or consistency. This means, that the selected
scaling parameter need not necessarily result in the most
accurate estimate. On the other hand, the multi-model based
interpretation used in the CUKF design allows to interpret
the resulting estimates in the Bayesian context [20]. The
resulting estimate is, thus, a weighted mixture of all partial
estimates based on all allowed scaling parameters.

3) Information Extraction: Each UKF can be viewed as
a KF designed for a linearized model, i.e., as a sub-optimal
filter with some (unique) gain parametrized by the scaling
parameter. As such, each filter is able to extract a portion of
information about the desired state from the measurement.
By the combination of the sub-optimal estimates, thus, it
could be possible to extract much more information about
the true state. An analysis and comparison of in literature
available combinations of the two GF estimates based on
different linearization can be found in [22].
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Figure 2. CUKF information flow.

4) Adaptation in Smoothing: As the CUKF is based on
the GPB1 framework, the cooperative scaling parameter
adaptation concept can be straightforwardly extended to
smoothing.

5) Cooperative Approach in GF Performance Monitor-
ing: In [18], [19], consistency (or integrity) of the filter
output was monitored by statistical testing of estimate
properties of the set of filters configured for the same
estimation task, but differing in the scaling parameter.
In these tests, the particular local filters were interpreted
also as the set of KFs designed for a set of differently
linearized models and, roughly saying, the filter output was
considered to be consistent if all KFs provided “similar”
results. If not, the user was notified and such estimates
were treated with care.

6) Extensions: The CUKF should be still understood
as an initial concept with some open questions remaining.
For example, utilization of other estimate fusion techniques
such as the second-order generalized pseudo-Bayesian es-
timator design should be treated. Also, the focus should
be laid on the selection of the initial (possibly non-equal)
weights (34).

V. NUMERICAL ILLUSTRATION

Let the system definition from the motivational example
(22), (23) be recalled and the following evaluation criteria
for the M = 103 Monte-Carlo simulations be defined
• Root mean square error (RMSE) of the filtering esti-

mate

RMSEk =

√√√√ 1
M

M∑
m=1

(x̃k|k,m)2 , (41)

• Averaged standard deviation (ASTD) of the filtering
estimate

ASTDk =

√√√√ 1
M

M∑
m=1

Pk|k,m , (42)

where x̃k|k,m = xk,m−x̂k|k,m is the estimate error at m-th
MC simulation with xk,m being the true state, x̂k|k,m its

Table I
RMSE OF UKFS ESTIMATE.

UKFfix(0) UKFfix(2) UKFML CUKF

RMSE(K0:4) 12.4 6.2 5.2 2.8
RMSE(K0:20) 3.4 1.9

estimate, and Pk|k,m the respective variance at m-th MC
simulation.

Four implementations of the UKF are considered,
namely
• UKF with fixed κ = 0, denoted as UKFfix(0), (algo-

rithm also known as the cubature KF [13]),
• UKF with fixed κ = 2, denoted as UKFfix(2), (ac-

cording to [3]),
• UKF with adaptive κk computed according to (21),

denoted as UKFML, [6],
• proposed UKF with the cooperative scaling parameter

adaptation, denoted as CUKF.
The UKFs with adaptation are designed for two sets
K0:4 = {0, 1, 2, 3, 4} and K0:20 = {0, 1, . . . , 20}.

The results in the form of the averaged RMSE over all
time instants

RMSE = 1
T+1

T∑
k=0

RMSEk , (43)

are given in Table I, where the UKFs with adaptive
selection of κ are evaluated for both sets K0:4 and K0:20.
It can be seen, that the impact of the scaling parameter
selection is significant and the proposed cooperative CUKF
outperforms not only the UKFs with fixed parameters but
also the standard competitive UKFML. Also, the UKFs
with scaling parameter adaptation improve their accuracy
with increasing cardinality of K .

The RMSE assesses the quality of the estimated mean.
The GF, however, provides also the conditional variance
(or the standard deviation), which should be consistent with
the state estimate error. To compare consistency of the state
estimates, the criteria (41), (42) are plotted in Figure 3 (the
UKFs with adaptive settings are plotted for K0:20). It can
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Figure 3. RMSE and ASTD time behavior of UKFs estimates.

be seen that the proposed CUKF provides not only the most
accurate but also almost consistent estimates. On the other
hand, the UKFs with fixed scaling parameters provide very
optimistic estimates. This may be a problem especially in
safety-critical scenarios [18].

VI. CONCLUDING REMARKS

The paper dealt with the state estimation of the nonlinear
stochastic dynamic systems by the Gaussian unscented
Kalman filter. The stress was laid on the setting of the
scaling parameter, which is typically left on the user
although it significantly affects the estimation performance.
Contrary to the standard scaling parameter selection strate-
gies choosing one particular parameter value according to
a criterion, the proposed cooperative unscented Kalman
filter fuses a set of estimates provided by the set of the
unscented Kalman filters, which are all configured for the
same estimation task, but with different scaling parameter
value. The estimate fusion is based in the well-developed
multiple-model approach, which requires minimal user
interaction and offers interpretation of the results in the
Bayesian context. The improved performance of the coop-
erative unscented Kalman filter in terms of accuracy and
consistency was illustrated in a numerical example.
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