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Abstract—We propose a simple and efficient method to obtain
unweighted deterministic samples of the multivariate Gaussian
density. It allows to place a large number of homogeneously
placed samples even in high-dimensional spaces. There is a de-
mand for large high-quality sample sets in many nonlinear filters.
The Smart Sampling Kalman Filter (S2KF), for example, uses
many samples and is an extension of the Unscented Kalman Filter
(UKF) that is limited due to its small sample set. Generalized
Fibonacci grids have the property that if stretched or compressed
along certain directions, the grid points keep approximately
equal distances to all their neighbors. This can be exploited to
easily obtain deterministic samples of arbitrary Gaussians. As
the computational effort to generate these anisotropically scalable
point sets is low, generalized Fibonacci grid sampling appears to
be a great new source of large sample sets in high-quality state
estimation.

Index Terms—Deterministic sampling, Dirac densities, gener-
alized Fibonacci grids, nonlinear filtering, multivariate Gaussian
densities.

I. INTRODUCTION

A. Context

We target deterministic sampling as an important building
block for high-quality nonlinear state estimation and control
methods.

B. Considered Problem

The focus lies on computing Fibonacci grids with arbitrary
numbers of unweighted samples that approximate i) uniform
densities and ii) Gaussian densities in the multivariate setting.

C. State-of-the-art

While the Kalman Filter provides exact state estimation
in the linear case at low cost [1], nonlinear Gaussian filters
obtain approximate Gaussian state estimations, i.e., mean and
covariance, to the intractable problem of nonlinear inference.
Some of them, the Linear Regression Kalman filters (LRKFs),
make a second Gaussian assumption and estimate the covari-
ance between state and measurement via sample sets. Most
LRKFs and also truly nonlinear Gaussian filters [2], [3] need
high-quality Gaussian samples as a basic building block.

The unscented transform exploits i) that it is easy to
transform a single point by a nonlinear function, ii) it is easy
to find a point cloud where mean and covariance match the
moments of a given density, and iii) it is easy to obtain mean
and variance of a point cloud [4]. The popular Unscented

Fig. 1: Fibonacci grids can be rescaled arbitrarily along the
coordinate axes without losing their “nearly-optimal sphere
packing” property. Therefore, they can be transformed into
stochastically independent densities particularly easily: separate
the joint density into its marginals, find their inverse cumu-
latives, and rescale the coordinates accordingly. This figure
shows 7000 samples, where the marginal densities along the x
and y axis are sinusoidal and exponential, respectively.

Kalman Filter (UKF) [5], [6] takes 1 + 2D samples for a
D-dimensional state. These “sigma points” are chosen such
that mean and covariance match the desired Gaussian. Said
fixed number of samples is rather small. Hence, calculation is
very fast, but results are often inaccurate and also inconsistent,
i.e., the uncertainty is underestimated. If the function has a
high degree of nonlinearity, it may be desirable to increase the
number of samples and thereby accuracy and consistency.

Since is easy to obtain univariate deterministic Gaussian
samples, one idea is to put more samples on the main axes
only [7], see Fig. 2e. This is a first step, but it would be
better to distribute samples in the entire space, according to the



(a) Random (b) Halton (c) Sobol (d) RUKF (e) Main Axes

(f) PCD (g) Conditional LCD (h) S2KF LCD (i) Cartesian Fibonacci (j) Polar Fibonacci

Fig. 2: Comparison of various sampling methods with L = 125 Gaussian samples in two dimensions. Standard normal (upper
parts) and scaled to 20% along the vertical direction (lower parts). Note that the polar Fibonacci grid (j) exhibiting the
conspicuous spiral pattern like a sunflower head, should be rescaled only along radial or angular direction, because scaling
along y axes as shown here results in bad point discrepancy, quite different from the proposed Cartesian Fibonacci grid (i). The
1σ and 5σ bounds of the Gaussian density are indicated with yellow circles and ellipses. Note that the RUKF samples (d) are
weighted as indicated by point size, all others are unweighted.

probability mass of the underlying density function, and not
concentrated just on the main axes. The Randomized Unscented
Kalman Filter (RUKF) exploits a degree of freedom in the UKF
sampling method and creates multiple sets of sigma points,
resulting in a total of 1 + 2Dq (q ∈ N) weighted samples [8],
see Fig. 2d. However, unweighted samples are preferred in order
to use the available samples as efficiently as possible, especially
for proposal samples or importance samples in particle filters,
to avoid sample degeneracy. The Gauss-Hermite quadrature
produces Dq (q ∈ N, q ≥ 2) weighted samples that can also
be used for filtering [9]. The cubature Kalman filters of fifth
degree uses a minimum of 1 + 2D2 quadrature points, i.e.,
weighted samples [10]. All of these filters can be turned into
iterative versions, where the statistical linearization is better
adapted to the true posterior [11].

For obtaining an arbitrary number of unweighted samples,
optimization-based methods are available that, however, re-
quire a high computational effort. The Localized Cumulative
Distribution (LCD) [12] provides a distance measure that
is able to compare Dirac mixture densities with continuous
density functions. By minimizing this distance measure, an
optimal placement of the samples is achieved, see Fig. 2h, but
the numerical optimization is quite expensive, especially for
higher numbers of samples. Offline calculation of standard
normal samples stored in a sample cache allows for real-
time application of LCD-based Gaussian filtering called the
Smart Sampling Kalman Filter (S2KF) [13], [14]. However,
the required anisotropic linear transformation from standard to

arbitrary Gaussians, by using the Cholesky decomposition of
the desired covariance matrix, impedes optimality. Conditional
LCD sampling can partially resolve this problem [15], see
Fig. 2g.

As an alternative to the LCD, the projected cumulative
distribution (PCD) yields a different and more efficient way to
optimize sample locations in order to reflect a given continuous
density function, see Fig. 2f. It has been demonstrated with
Gaussian mixtures in the Euclidean domain RD [16].

D. Challenges

So far, there is no optimization-free method for optimal or
semi-optimal deterministic sampling with high (thousands) or
very high (millions) numbers of samples in multi-dimensional
spaces. If the system functions exhibit strong nonlinearities
but are easy to evaluate, filtering quality can and should be
increased by using a large number of evaluation points.

E. Fibonacci Grids

Probably the best known Fibonacci grid is the eye-catching
spiral packing in polar coordinates in sunflower heads.
It provides nearly equal-area packing with relatively high
packing efficiency – about 70% of that of a hexagonal
close packing [17]. Arrangements of organs on plant stems
or flower heads show striking spiral patterns, called phyl-
lotaxis. Detailed studies targeting these arrangements date
back more than 100 years [18]. The behavior can even be
reproduced experimentally using a “magnetic cactus” [19].



The ubiquitous appearance of spi-
ral phyllotaxis and its resilience
to internal, environmental, and ge-
netic variations, suggests a connec-
tion to mathematics [20]. And this
in turn suggests that the underlying
abstract concept may be general-
ized to higher dimensions.

Several models have been pro-
posed that try to explain the biolog-
ical processes in the meristem that create the spiral phyllotaxis,
e.g., the Hofmeister hypothesis and Snow hypothesis [21].
Investigations on a molecular level in plants showed the
plant hormone auxin is triggering the organ initiation. This
activator is then consumed by the growing organ, effectively
inhibiting the initiation of an adjacent organ [20]. In summary,
opportunistic organ initiation constitutes an entirely local
mechanism and explains phyllotaxis, just as stated in the
Hofmeister hypothesis [20]. The occurrence of spirals and
the golden angle as divergence angle is therefore probably an
emergent by-product rather than the mechanistic principle of
the morphogenetic process [20].

The Fibonacci grid is presented as cubature point set with low
discrepancy for quasi-Monte Carlo (QMC) integration in R2,
generated via a lattice rule, in [22], [23]. A two-dimensional
“golden set” that is a slightly irregular variant of the Fibonacci
grid is introduced in [24]. The irregularity avoids aliasing in
Monte Carlo integrations for ray tracing. The authors also
demonstrate the flexibility of the golden set by transforming it
into Cartesian coordinates. They also warp it into a bivariate
Gaussian mixture. There is also a broad literature about irregular
but low-discrepancy point sets like the Halton, Hammersley, and
Sobol sequence [25], [26], or based on Fibonacci polynomials
[27].

Some interesting and fundamental aspects regarding Fi-
bonacci grids have been researched by meteorologists, in order
to obtain spherical grids for global weather prediction [28].
The “sunflower Fibonacci grid” in polar coordinates can be
represented in a Cartesian, cylindrical, or spherical coordinate
system with suitable projections such as the Lambert equal-area
cylindrical projection of the globe. In Cartesian notation, it is
possible to introduce basis vectors that span the grid points and
this way investigate the properties of the grid. Formal proofs
regarding bounds of the minimum point distance and Voronoi
cell properties of two-dimensional Fibonacci lattices and grids
are given in [29]. It also shows how existing Fibonacci grids
can be subsequently refined while keeping the original points.

The main reference this work is based on is Purser’s
generalization of the well-known two-dimensional Fibonacci
grid to higher dimensions [30]. It states that the “orthogonal
orientations of the eigenvectors of the Fibonacci matrix provide
the optimal choice for principal component directions of pure
deformations when it is required that the action of arbitrary
deformations of this kind lead to no close collisions of the
deformed lattice points” [30, p. 2]. It then focuses mainly on the
construction of a three-dimensional generalized Fibonacci grid

and the properties of the corresponding system of generalized
Fibonacci numbers.

F. Key Idea

We propose to generate uniform Fibonacci grids in higher
dimensions on the (0, 1)D domain, and from there transform
them to arbitrary Gaussian densities. By doing so, we take
care to rescale the grid only along the “allowed directions”.
Hence, the points maintain a homogeneous distribution. This
is an inherent property of Fibonacci grids, see Fig. 1 for a
visual example. Therefore, we can treat the samples individually
and do not need to consider any neighborhood relations or
to calculate distances between adjacent samples. This is the
reason for our method being extremely efficient.

II. PROBLEM FORMULATION

A Dirac mixture

fDM (x) =
1

L

L∑
i=1

xi

with sample locations

xi =
[
x
(1)
i x

(2)
i . . . x

(D)
i

]>
∈ RD

should be found such that it approximates a given Gaussian
reference density

f̃ (x) = N
(
x;µ,C

)
=

1√
|2πC|

exp

(
−1

2

(
x− µ

)>
C−1

(
x− µ

))
with arbitrary mean vector µ ∈ RD and symmetric positive
semidefinite covariance matrix C ∈ RD×D.

Input and Output

Our method provides deterministic samples of normal
densities in real time. Required inputs are

I1 the number L of wanted samples,
I2 the dimension D, with (2D + 1) prime [30]
I3 optionally, covariance matrix C ,
I4 optionally, mean vector µ .

From these, we compute a deterministic set of particles
that approximates the Gaussian density with the specified
parameters.

III. METHOD DERIVATION

In this section, we show how the Fibonacci grid can be
generalized to dimensions larger than two, yielding a uniformly
distributed, anisotropically scalable sample set. In a second
step, a suitable transformation then turns that point set into a
deterministic approximation of any Gaussian density.



(a) Regular Lattice
→ Rotate

(b) Rotated
→ Crop dimension 2, 3, . . .

(c) Removed points (part one)
→ Sort along x and crop to L

(d) Fibonacci Grid on (0, 1)2

→ Gauss along x direction

(e) Gaussian along x direction
→ Gauss along y direction

(f) Standard Normal
→ Anisotropic Rescale

(g) Uncorrelated Gaussian
→ Rotate

(h) Arbitrary Gaussian
→ Use in filter

Fig. 3: Step by step procedure to generate arbitrary Gaussian sample sets using Fibonacci grids. Refer to Alg. 1 and the source
code for more details. Red and blue point duplicates in (d, f) denote a slight rescaling by a diagonal matrix for correction
purposes. A vertically compressed version is plotted under each figure purely to demonstrate the effects of anisotropic rescaling.
Note the difference when applying this rescaling along an “allowed” direction (lower part of: b, c, d, e, f, g), versus some
different direction (lower part of: a, h).

A. Fibonacci Matrix

The D-dimensional Fibonacci matrix MD is defined as

[MD]i,j =

{
1, i+ j ≤ D + 1

0, i+ j > D + 1 ,

for example,

M2 =

[
1 1
1 0

]
, M3 =

1 1 1
1 1 0
1 0 0

 .

The eigenvalue decomposition

MD = VDDDV
>
D ,

splits MD into unitary VD and diagonal DD. The eigenvectors
VD can be obtained by properly normalizing the unnormalized
eigenvector matrix Vu

D which is given by [30]

[Vu
D]i,j = cos

(
(2i− 1) (2j − 1)π

4D + 2

)
. (1)

B. Generalized Fibonacci Grid

We start with generating a generalized Fibonacci grid that
resembles a uniform density with L grid points on the domain
(0, 1)D. A regular grid in the Euclidean domain can be
anisotropically compressed or stretched along the eigenvectors
of the Fibonacci matrix with no close collisions [30]. Therefore,
one conceptually easy way generating a generalized Fibonacci
grid is to create a regular grid and rotate it such that said
“allowed” deformation axes are aligned with the standard basis.



Let Xreg ∈ RD×Lreg be a matrix containing points xi ∈ RD
of a regular grid

Xreg =
[
x1 x2 . . . xLreg

]
,

xi =

D∑
d=1

bd,i α ed , bd,i ∈ Z , α ∈ R+ ,

where α denotes the spacing of the grid, and bd,i are all the
indices where the grid is in the desired region, see Fig. 3a for
an example. A suitable rotation matrix that aligns the allowed
rotation directions with the standard basis is V>D (1). We obtain
Xrot ∈ RD×Lreg

Xrot = V>DXreg ,

a “Fibonacci template” that still has to be cut to the wanted
size. Anisotropic scaling is now “allowed” along the standard
basis, i.e., Xrot can be transformed using any diagonal matrix
while keeping its good sphere packing properties. It is easy to
find a combination of such scaling and removing some samples
until we obtain exactly L samples XFib ∈ RD×L

XFib =
[
x1 x2 . . . xL

]
that uniformly cover the domain (0, 1)D. Refer to Alg. 1, the
source code, and also Fig. 3 (b, c, d) for more details.

C. Standard Normal Gaussian

Scaling along the “allowed” directions in a Fibonacci grid
can be performed not only with constant factors, but also with
functions that vary along those directions. This is demonstrated
in Fig. 1. We exploit this to transform the uniformly distributed
samples XFib into standard normally distributed samples.

The one-dimensional standard normal density f(x), its
cumulative density function (CDF) F (x), and the inverse CDF
F−1(p) are given by

f(x) =
1√
2π

exp

(
−1

2
x2
)

,

F (x) =
1

2

(
1 + erf

(
x√
2

))
,

F−1(p) =
√
2 · erf−1(2p− 1) , (2)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0

exp
(
− t2

)
dt .

Therefore, uniform samples in (0, 1)
D can be transformed to

standard normally distributed samples in RD by propagating
them through the inverse CDF (2)

[XStd]d,i =
√
2 · erf−1(2 · [XFib]d,i − 1) . (3)

This transformation is also used to create standard normally
distributed random numbers from uniform random numbers.

It is beneficial to perform a moment correction at this point.
We are “allowed” to compress or stretch the now Gaussian
particle cloud along the standard basis vectors, and we can
use this to match the diagonal components of the covariance

Algorithm 1: Uniform Fibonacci grid sampling. See Fig. 3
for visualizations of the intermediate steps.

Function
{
xFib,i

}L
i=1
← fibonacci_grid(D, L)

Input: D: dimension,
L: number of samples

Output: {xi}
L
i=1: unweighted samples

// Fibonacci matrix eigenvectors (1)
VD ← fib_eigen(D)
// Smallest hyperrectangle

s←
{∑D

j=1

∣∣∣[VD]d,j

∣∣∣}D
d=1

// Smallest hypercube
sHC ← max

d

{∣∣s(d)∣∣}
// Create sampling vector r

L0 ←
⌈

D
√
L
⌉

δ ← 1/L0

L1 ← dsHC/δe
L1 ← L1 + 2 // some extra border
if mod (L, 2) 6= mod (L1, 2) then

L1 ← L1 + 1 // point in origin?

r ← {j · δ}L1

j=1 // 1D sampling vector
r ← r − 1

L1
· r> · 1 // centering

// Create grid with LD1 points
Xreg ← ndgrid(D, r) // (D × LD1 ) reg. grid
Xrot ← V>D ·Xreg // rotate
// Remove unwanted points, 1st round{
xFib,i

}L2

i=1
←
{
xrot,i

∣∣∣ D⋂
d=2

x
(d)
rot,i ∈

[
− 1

2 ,
1
2

]}
// Sort by 1st coordinate

π ← sort_ind(
{
x
(1)
Fib,i

}L2

i=1
){

xFib,i
}L2

i=1
←
{
xFib,π(i)

}L2

i=1
// Remove points, 2nd round (simplified)
u← (L2 − L) / 2{
xFib,i

}L
i=1
←
{
xFib,i

}L2−u
i=u+1

// Rescaling for wanted border
b← 1

2 −
1
2L // wanted border

m←
{
max
i

{
x
(d)
Fib,i

}}D
d=1

// current border{
xFib,i

}L
i=1
←
{
xFib,i �m · b

}L
i=1

// equalize

// From
(
− 1

2 ,
1
2

)D
to (0, 1)D{

xFib,i
}L
i=1
←
{
xFib,i + 1 · 12

}L
i=1

matrix, i.e., the sample variances along the coordinate axes,
exactly to unity. First, we determine said diagonal components

νd =
1

L

L∑
i=1

[XStd]
2
d,i

and rescale the Gaussian samples slightly to be more accurate

[XStdMM]d,i =
[XStd]d,i√

νd
.



L = 4 L = 5 L = 6 L = 7 L = 8 L = 9

L = 10 L = 11 L = 16 L = 25 L = 40 L = 63

L = 100 L = 158 L = 251 L = 398 L = 631 L = 1000

Fig. 4: Examples of deterministic sample approximations of the two-dimensional standard normal distribution, with anisotropic
scaling below (factor 0.2 along y direction). One-σ-bounds and five-σ-bounds are marked as yellow circles and ellipses. Planar
examples are shown for easier visualization. The method however works also in higher dimensions where 2D + 1 is prime.

Note that the mean of the samples is already 0 if we place
them in a symmetric manner.

In this section, we described how to obtain standard normal
samples from uniform Fibonacci samples using Gaussian
inverse CDF transform sampling. See Fig. 3e, where the
transform is applied only along the x axis, for d = 1
in (3). Fig. 3f shows the standard normal Gaussians XStd

and XStdMM in red and blue, respectively. Fig. 4 visualizes
XStdMM for many different numbers of samples L ∈ [4, 1000].

D. Arbitrary Gaussians
The set of samples XStdMM that approximates a standard

normal density can now easily be transformed into an arbitrary
Gaussian density, e.g., a Gaussian density with an arbitrary sam-
ple variance along each dimension and an arbitrary correlation
coefficient for each pair of dimensions. Thereby the sample set
retains its optimality regarding the homogeneous distribution of
points. Although the Cholesky decomposition L of a covariance
matrix C = LL> is often used to transform standard normally
distributed samples into arbitrary Gaussian densities, we must
again make sure that any anisotropic scaling takes effect
along the “allowed” directions only. Therefore, we need the
eigenvalue and eigenvector decomposition VDV> = C, with
V unitary and D diagonal. The final sample set XGauss is
then given by

XGauss = VDXStd + µ . (4)

If C is not positive definite but positive semidefinite and thus
singular with rank DR = D −DS, then first generate a DR-
dimensional standard normal template XStd,R, insert rows of
arbitrary values, e.g., zeros, where D has zeros on its diagonal,
and use the resulting point set as XStd in (4).

IV. EVALUATION

For evaluation, we estimate the expectation value of

y = g(x) = ‖x‖2 =

√(
x(1)

)2
+
(
x(2)

)2
+
(
x(3)

)2
,

where x is a three-dimensional zero-mean Gaussian vector
with standard deviations 5, 1, and 2 along the main axes,
tilted by a random direction in SO(3). Sample sets XGauss ∈
R3×L of different size L and from various sampling methods
are propagated through g(·) and the statistics of the resulting
estimate are calculated. Estimation results and computation
times are shown in Fig. 5.

Random Gaussian samples are the easiest and fastest to
obtain as they are produced independently. However, in our
example, comparable results can be achieved with less than
one hundredth of the samples using deterministic sampling.

The deterministic sampling method used in the S2KF obtains
symmetric samples by minimizing a distance measure that is
based on the LCD, thereby minimizing the distance between
the sample set and the standard normal density function [13]. It
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Fig. 5: Evaluation of sampling methods by nonlinear moment estimation in a three-dimensional setting. In (a), the minimum
and maximum value and in (b), the best and worst result out of 200 trials is indicated by the shaded area. Solid lines show the
mean of all trials. Note that the S2KF and conditional samples are usually generated offline and stored in a library. Calculation
times in (c, d) denote the effort to generate the samples for the library.

then uses the Cholesky decomposition to transform the standard
Gaussian samples into arbitrary Gaussian ones, therefore there
is an undefined rotational component. The resulting range of
possible results is indicated in Fig. 5 (a, b).

Conditional sampling is a variant of S2KF sampling. When
generating the standard normal samples, it already takes into
account the subsequent compression along certain directions
that is required to obtain arbitrary Gaussians [15]. The transfor-
mation is uniquely defined by the eigenvalues and eigenvectors
of the covariance matrix. However, repeated sample calculation
of the samples (without using sample cache) leads to different
local minima and thus to a range of possible results that is again
shown in Fig. 5. The results vary vastly which indicates that

multiple optimization attempts should be done when creating
the offline library in order to avoid local optima.

For Fibonacci sampling as proposed in this work, the trans-
formation (4) from standard normal (3) to arbitrary Gaussian
samples, visualized in Fig. 3 (f, g, h), is defined uniquely up
to a permutation of the eigenvectors and eigenvalues of the
desired covariance matrix. The range of possible results is
again indicated as shaded area in Fig. 5 (a, b).

V. CONCLUSIONS

A new method for generating large sample sets for approx-
imating Gaussian densities in high-dimensional spaces has
been developed. The samples are equally weighted, placed
homogeneously, and have nice statistical properties. A huge



advantage over other deterministic sampling schemes is that
the samples can be arbitrarily and anisotropically scaled.
In addition, in two dimensions, the results are aesthetically
pleasing.

The sampling method is easy to implement with the recipe
given in this paper. As no optimization is required, the method is
fast and can easily generate millions of samples. It is especially
well suited for large sample sets as appropriate methods for
small and medium size sets are readily available. Hence, the
method is especially useful when a high sample resolution is
required and the evaluation of samples is inexpensive.

Matlab source code of the presented uniform and Gaussian
sampling is provided in IEEE Xplore alongside this paper. State
of the art sampling methods like RUKF and S2KF have been
produced using the nonlinear estimation toolbox [31].

VI. FUTURE WORK

The next step is to generalize the method for sampling
Gaussian densities as described in this paper to more complex
densities such as Gaussian mixture densities. This is possible
with generalizing the nonlinear scaling from subsection III-C.

Generating uniform Fibonacci grids via the proposed rotation
of an extended regular grid and subsequent rejection is
conceptually simple and easy to implement. However, it entails
discarding the unused points outside the unit cube, which is
wasting memory or computation time, especially in higher
dimensions. Therefore, we will develop an implementation
that directly places the points inside the unit square at the
appropriate locations. Furthermore, we will improve moment
matching: in the present work, only the diagonal entries of the
covariance matrix XStdMM are matched, while the correlation
coefficients are slightly non-zero.

In analogy to the sunflower pattern in polar coordinates,
which is periodic in the angular component, a generalization
to sample approximations of hyperspherical densities will be
performed similar to the generalization performed in this paper.
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