
Deep Likelihood Learning for 2-D
Orientation Estimation Using a Fourier Filter

Florian Pfaff, Kailai Li, and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

florian.pfaff@kit.edu, kailai.li@kit.edu, uwe.hanebeck@kit.edu

Abstract—Filters for circular manifolds are well suited to
estimate the orientation of 2-D objects over time. However,
manually deriving measurement models for camera data is
generally infeasible. Therefore, we propose loss terms that
help train neural networks to output Fourier coefficients for
a trigonometric polynomial. The square of the trigonometric
polynomial then constitutes the likelihood function used in
the filter. Particular focus is put on ensuring that rotational
symmetries are properly considered in the likelihood. In an
evaluation, we train a network with one of the loss terms on
artificial data. The filter shows good estimation quality. While the
uncertainty of the filter does not perfectly align with the actual
errors, the expected and actual errors are clearly correlated.

Index Terms—Deep learning, likelihood learning, trigonometric
polynomial

I. INTRODUCTION

Orientation estimation is a widespread estimation problem
in biology and robotics, with applications including speaker
tracking [1] and phase demodulation [2]. Tracking problems
may involve image data, such as when estimating the orientation
of a robot on the floor or the orientation of vehicles or planes
on satellite images. While recursive Bayesian estimators can be
used to solve this problem, likelihood functions are required,
which are hard to provide for image data. Deep learning is well
suited to deriving orientations from image data, but current
approaches [3] generally lack the consideration of uncertainties.

For estimating the 2-D orientation of an object, we propose
to extract likelihoods instead of only specific values from image
data, as illustrated in Fig. 1. We also show that symmetries
can result in ambiguities of the object’s orientation. Based on
the likelihoods, we are able to run a filter and thus provide
both estimates and corresponding uncertainties. Furthermore,
we can fuse information over multiple time steps even when
the orientation of the object changes.

In this paper, the likelihoods are derived in a parametric form
suitable for the update step of the Fourier square root filter [4]
(SqFF). The prediction steps of the SqFF are executed according
to a suitable system model. The SqFF is inherently suited to
multimodal estimation problems, unlike the filters proposed
in [1] and [5], which are based on wrapped normal or von
Mises distributions [6, Sec. 2.2]. Allowing for multimodalities
helps to handle ambiguities in the image data.

A state-of-the-art approach to provide uncertainties is to
learn and output variances [7], which is not a promising option
for circular domains due to the nonlinearity of the manifold.
However, there are existing works considering other periodic

Values Likelihood

0 π2 0 π2

Fig. 1. Image of a triangle and possible orientations or likelihoods that may
be derived from the image.

domains. In [8], a loss based on the Bingham distribution
is presented for providing uncertainties in the space of unit
quaternions for 3-D orientation estimation. While the Bingham
distribution allows for high probability mass along entire lines
or rings on the unit hypersphere, it is not inherently capable of
modeling densities with high probability mass in specific areas.
An approach involving Bingham mixtures that can consider this
case was proposed in [9]. In contrast to these approaches, we
consider a family of densities that can be inherently multimodal
without the requirement to involve any mixtures.

A work related to ours is [10], in which a neural network
is used to process image data to provide inputs to a UKF.
Instead of a UKF, we use the SqFF as a filter that is perfectly
tailored to the considered domain. To provide likelihoods that
are compatible with our filter, the network is designed to yield
the coefficients of a trigonometric polynomial [11] (a Fourier
series with a finite number of non-zero coefficients) describing
the square root of the density.

The remainder of the paper is structured as follows. In Sec. II,
we provide the basics about trigonometric polynomials, the
SqFF, and parameterizations for trigonometric polynomials that
are non-redundant. Knowledge of these topics is required for
understanding the loss terms proposed in Sec. III. In Sec. IV,
we explain how we trained a network based on one of the loss
terms. We further describe a tracking scenario and evaluate the
estimates and uncertainties provided by the filter. In the last
section, we provide a conclusion and an outlook.

II. FILTERING AND LIKELIHOODS BASED ON
TRIGONOMETRIC POLYNOMIALS

In the first subsection of this section, we provide the details
on both real and complex trigonometric polynomials. This
serves as the basis for the explanation of the relevant operations
of the SqFF in the second subsection. In our networks, we use

non-redundant parameterizations of trigonometric polynomials.
These are addressed along with the required operations for the
loss term in the third subsection.

A. Basics of Trigonometric Polynomials

In our papers on the Fourier filters, such as [4], we only
consider complex trigonometric polynomials. For the filters,
the representation used is more of a technical implementation
detail than an important aspect. For designing loss terms for
training neural networks, we should consider everything that
has an impact on the computational graph for the loss term.

A complex trigonometric polynomial is parameterized by
a complex Fourier coefficient vector c and is given by [11,
Volume I, Section I.1]

scomplex
kmax

(x) =

kmax∑
k=−kmax

cke
ikx . (1)

Complex trigonometric polynomials can be used to represent
both real and complex functions. For real functions, a real
trigonometric polynomial in the form of

sreal
kmax

(x) =
1

2
a0 +

kmax∑
k=1

(ak cos(kx) + bk sin(kx)) , (2)

which is parameterized by two real Fourier coefficient vectors
a and b, can be used. kmax is referred to as the order of the
trigonometric polynomial.

For a given function on [0, 2π), the complex Fourier
coefficients can be determined according to

ck =
1

2π

∫ 2π

0

f(x)e−ikxdx , (3)

and the formulae

ak =
1

π

∫ 2π

0

f(x) cos(kx) dx , bk =
1

π

∫ 2π

0

f(x) sin(kx) dx

can be used to obtain the real Fourier coefficients [11, Volume I,
Section I.4]. Since not all functions can be represented using
a sum of sines and cosines, one generally only obtains an
approximation of the original function when considering a
trigonometric polynomial of specified order.

It is possible to convert the coefficient vector for a com-
plex trigonometric polynomial to the coefficient vector for a
real trigonometric polynomial. When generating the Fourier
coefficient vectors according to

ak = 2R(ck), bk = −2I(ck) , (4)

the real trigonometric polynomial is equivalent to the original
complex trigonometric polynomial. Only the coefficients with
positive indices are required because ck = c̄−k holds for real
functions, with c̄ denoting the complex conjugate of c. The
conversion from real to complex coefficients is possible using

c0 =
a0
2

, ck =
ak − ibk

2
for k > 0 , ck = c̄−k for k < 0 .

B. Quick Overview of the Fourier Filters
In this subsection, we address the representations used in

the Fourier filters and explain its update step. We also provide
the motivation for using square roots in the Fourier square root
filter and why it is sufficient for the network to output a scaled
likelihood instead of the true likelihood. We do not address
the prediction step as it is not the focus of this paper and refer
the reader to [4], [12] for possible prediction steps.

1) Density Approximation: In the Fourier identity filter [4],
densities are directly approximated using trigonometric poly-
nomials. A parameterized density is given by

f id(x; cid) =

kmax∑
k=−kmax

cid
k e

ikx . (5)

While the Fourier identity filter has been shown to yield
good estimates, it has the disadvantage that the trigonometric
polynomial may have negative function values, which should
not be allowed for probability densities. Negative function
values also pose a problem to the loss terms considered in this
paper. Thus, this representation is not considered any further.

In the SqFF, the nonnegativity of the density is ensured
by approximating the square root of the density using a
trigonometric polynomial, leading to the parametric family
of densities

f sqrt(x; csqrt) =

(
kmax∑

k=−kmax

csqrt
k eikx

)2

. (6)

Due to the squaring operation involved, the function values are
guaranteed to be nonnegative. It is also possible to use these
representations for likelihood functions when no normalization
is enforced.

2) Update Step: In this paper, we assume we obtain a
measurement Ẑt that is an image (or, with multiple color
channels, a tensor). We also assume that the likelihood
fZ|x(Ẑt|x) is time invariant, i.e., the information about the
system contained in the image only depends on the image data
and not on the current time step.

Our update step is based on Bayes’ rule. If we have a prior
density f p

t (xt|Ẑ1, . . . , Ẑt−1) that incorporates only information
of the measurements in previous time steps, we can obtain
the posterior density that incorporates the information of the
current measurement Ẑt according to

f e
t (xt|Ẑ1, . . . , Ẑt)

=
fZ|x(Ẑt|xt)f

p
t (xt|Ẑ1, . . . , Ẑt−1)∫ 2π

0
fZ|x(Ẑt|xt)f

p
t (xt|Ẑ1, . . . , Ẑt−1) dxt

∝ fZ|x(Ẑt|xt)f
p
t (xt|Ẑ1, . . . , Ẑt−1) , (7)

in which ∝ indicates that the term at the end only differs from
the other terms by a non-zero constant. Because the posterior
density is a valid density function and hence integrates to one,
we can conclude from (7) that we can obtain the posterior
density by multiplying the prior density by the likelihood and
normalizing the result afterward. We obtain the same result
when using the likelihood scaled by a positive factor instead
of the actual likelihood. This will be useful later.

To perform the update step based on Fourier coefficient
vectors, we use that the convolution of two complex Fourier
coefficient vectors yields the Fourier coefficient vector for the
multiplication of the two trigonometric polynomials. Because√

f p
t (xt)fZ|x(Ẑt|xt) =

√
f p
t (xt)

√
fZ|x(Ẑt|xt)

holds, we can directly use a discrete convolution (denoted by
∗) of the coefficient vectors for the prior density and likelihood
to obtain the coefficient vector for the unnormalized posterior
density before the normalization step according to

c̊e,sqrt
t = cp,sqrt

t ∗ cL,sqrt
t .

This vector is longer than the original vector since the
convolution operation introduces additional coefficients. To
prevent an increase in the required computation and memory
over time, we truncate the coefficient vector c̊e,sqrt

t to the size
of the vector cp,sqrt

t and call the result c̆e,sqrt
t . The vector c̆e,sqrt

t

still represents a potentially unnormalized density.
The normalization step can be provided based on the formula

for the integral of a trigonometric polynomial. The integral of
the square of a trigonometric polynomial with the coefficient
vector c̆e,sqrt

t over [0, 2π) is 2π
∥∥c̆e,sqrt

t

∥∥2, which can be proven
using the Parseval relation [13, Section 2.7.1]. When scaling the
Fourier coefficient vector, the integral is squared by the square
of the constant because we can pull the square of the constant
out of the squared norm. Thus, by dividing the coefficient
vector by the square root of the integral, we can ensure that
the squared norm multiplied by 2π is 1. Therefore, we obtain
the coefficient vector ce,sqrt

t representing a normalized density
using

ce,sqrt
t =

1√
2π
∥∥c̆e,sqrt

t

∥∥ c̆e,sqrt
t .

C. Non-Redundant Representations with Required Operations
We now consider parameterizations of trigonometric poly-

nomials that involve no redundancies. Such vectors should be
the output of our neural network. As we see later, we need to
be able to integrate over likelihoods and normalize them. To
emphasize that we consider potentially scaled, unnormalized
likelihoods and not densities, we shall use L̆ instead of f from
now on.

For a non-redundant parameterization of complex trigono-
metric polynomials, we consider only the part of the coefficient
vector with the indices 0 to kmax, which we write as csqrt

0:kmax
.

Based on this vector, the parametric likelihood that only
requires elements in csqrt

0:kmax
but is otherwise equivalent to the

square of the original trigonometric polynomial involving all
coefficients is given by

L̆complex(x; c
sqrt
0:kmax

) =

(
kmax∑
k=0

csqrt
k eikx +

−1∑
k=−kmax

c̄sqrt
−ke

ikx

)2
. (8)

To obtain the integral of the likelihood based on only the
coefficients in csqrt

0:kmax
, we can use

2π
∥∥csqrt

∥∥2 = 2π
(
(csqrt

0)2 + 2
∥∥csqrt

1:kmax

∥∥2) . (9)

The normalization can be performed by dividing the vector
csqrt
0:kmax

by the square root of the integral.

Real trigonometric polynomials can also be used to avoid
redundancies. The parametric likelihood is then

L̆real(x; a
sqrt, bsqrt)

=

(
1

2
asqrt
0 +

kmax∑
k=1

(
asqrt
k cos(kx) + bsqrt

k sin(kx)
))2

.
(10)

The formula for the integral can be derived by combining
the integration formula (9) with the rules for converting
a complex Fourier coefficient vector to two real Fourier
coefficient vectors (4). This results in the formula∫ 2π

0

L̆real(x; a
sqrt, bsqrt) dx = π

(
(asqrt

0)2

2
+
∥∥asqrt

1:kmax

∥∥2+∥∥bsqrt∥∥2).
(11)

From this formula, it is evident that if we multiply all entries
in the vectors by a constant, we can pull out the square of that
constant. Thus, we can normalize the likelihood by dividing all
coefficients by the square root of the right-hand side of (11).

III. LOSS TERMS FOR TRAINING AND VALIDATION

We assume there is a measurement function h mapping
the state, in our case an angle, to an image. We assume
that h is deterministic, which is an adequate assumption for
simulations or when there is no measurement noise. For a
fixed measurement Ẑ, the likelihood function is then given by
fZ,x(Ẑ|x) = δ(Ẑ − h(x)), with δ being the Dirac measure.
If h is invertible and the images are not ambiguous, we have
a single Dirac in state space. If there are ambiguities due to
symmetries, fZ,x(Ẑ|x) is a mixture of Diracs instead. While
we will use the assumption that the true likelihood can be seen
as a mixture of Diracs for one of our loss terms, this does not
even hold true for simulation data. Due to its finite resolution
and color information, the image cannot encode every real
number, and thus, h is not invertible. Therefore, the potential
true states can, in general, not be reconstructed with arbitrary
precision based on a single measurement.

Due to the errors involved, the network should not simply
output one or multiple angles. Providing these angles as certain
inputs to our filter may lead to having probability mass only
at these points, although the true value may not be any of
these points. Hence, we want to derive an entire likelihood
with nonnegative function values. By using a likelihood, we
assume the error to be fully stochastic. While (especially in
simulations) the error may be deterministic and caused by
discretization only, assuming the error to be stochastic makes
it possible to apply Bayesian filters. Furthermore, real scenarios
generally involve stochastic noise in the form of sensor noise.

The network nω with parameters ω that we train is supposed
to map a measurement Ẑ to Fourier coefficients, i.e., a and
b or c0:kmax

, that describe a continuous likelihood. The key
hyperparameter of the network is the number of coefficients
to provide, which determines the order of the trigonometric
polynomial. A criterion for a good likelihood is that it should
be high at all possible true angles (or angle, if there are no
ambiguities) and low for angles that are far from the possible
true angles.

First, we present a loss term that is based on maximizing the
likelihood at the possible true angles. While this loss term did

not lead to fast convergence, it is a useful validation metric since
it is not directly influenced by the order of the trigonometric
polynomial and can thus be used to compare configurations
with different hyperparameters. Second, we describe a loss
term that is based on matching the (discrete) trigonometric
moments of the mixture of Diracs at the possible true positions.
The losses obtained for this loss term highly depend on the
number of coefficients employed.

A. Likelihood-Based Loss Term

Our network nω converts the image Ẑ to Fourier coefficients
(without redundancies) that describe the square root of the po-
tentially scaled likelihood L̆(x;nω(Ẑ)). We start by addressing
the case without ambiguities in the image data and denote the
true state as x̃.

If we directly used −L̆(x̃;nω(Ẑ)) as the loss term, the
network would have no incentive to adapt the coefficients so
that the likelihood gets lower at any point. Thus, without any
further adjustments, the parameter vector ω may be changed
by the training steps in ways that make the likelihood increase
indefinitely.

For this reason, we derive the coefficients for the normalized
likelihood, as explained in Sec. II-C. The application of the
network followed by the normalization shall be denoted by
vω and the normalized likelihood by L. The normalization is
not part of the network and is only applied for the calculation
of the losses. For the filter, the likelihood (scaled by some
positive constant) that is output by the network can be directly
used by the SqFF since the result does not depend on scaling
factors (see Sec. II-B2). Based on the normalized likelihood,
we can define the loss term

Lasymm(x̃, Ẑ, ω) = −L(x̃; vω(Ẑ))

for cases without ambiguities.
For a batch of the training data, we calculate the loss as

the average of the losses for the individual training samples.
We recommend subdividing the training data into mini-batches
to improve the training time. Furthermore, using mini-batches
often improves the generalization capabilities of the trained
network [14].

Now, we consider the case with ambiguities in which there
are multiple possible true angles. We shall store these in a
vector x̃. We aim to have comparable losses across the samples
in the training data. If the losses are not comparable, gradients
can still be calculated. However, training samples that allow for
greater improvements in the loss may be given more importance.
Moreover, non-comparable losses would make it harder to keep
track of the learning progress of the neural network.

To attain comparable losses, we take into account that we
normalize the likelihood to one. Due to the smoothness of
trigonometric polynomials, the integral over it is influenced by
each mode. We now assume the area under the curve caused by
any mode is proportional to the value at the peak. Under this
assumption, the heights of the peaks are not independent of the
number of modes since the normalized likelihood integrates to
one. Rather, for m peaks at the m true states, each peak can
only be 1/m of the height of the peak for a single true state.
Under our assumptions

Lsum(x̃, Ẑ, ω) = −
m∑
j=1

L(x̃j ; vω(Ẑ)) (12)

yields comparable losses regardless of the number of possible
true states.

One issue with the loss term (12) is that the likelihood
is not inherently enforced to be multimodal when there are
multiple possible true angles. For example, for two possible
angles that are opposite to each other, the network could always
provide a likelihood that has a single mode in [0, π) and never
consider the other possible true state in [π, 2π) without any
major disadvantage in the obtained losses. This can harm the
quality of the filter results.

Consider a tracking scenario in which the angle slowly
increases toward π and at some point passes π. If the likelihood
only focuses on the mode in [0, π), the posterior density in
the SqFF may have high density only close to π briefly before
the value of π is exceeded. Once π is exceeded, the likelihood
will be high at 0 and low at π. Thus, the prior density and
the likelihood in the update step will be contradictory, which
may lead to high uncertainties. In the worst-case scenario, the
prior density and likelihood are identical up to a shift by π.
In this case, a circular uniform distribution is obtained as the
result of the update step. Conversely, if the likelihood is high
at both possible true angles, the posterior density will be high
at the true state even after it exceeds π, and thus, good tracking
results can be attained.

With this in mind, we define a loss term that ensures high
likelihood at all possible true angles. For this, we take the
mth root of the likelihood and calculate the product of the
likelihoods for all possible true angles. To account for the
lower function values when there are multiple possible true
angles, we multiply the result by m to obtain the loss term

Lprod(x̃, Ẑ, ω) = −m

m∏
j=1

m

√
L(x̃j ; vω(Ẑ)) . (13)

A related loss term that has its minimum at the same value
can be obtained by applying a logarithm to the part after the
minus sign.

Without ambiguities, this loss term introduces little as-
sumptions about the shape of the likelihood and is thus very
versatile. However, with ambiguities, comparable losses are
only achieved if the modes are spaced sufficiently far apart.
Consider an example with very few Fourier coefficients. With
an increasing number of possible true angles, the trigonometric
polynomial will become unable to have low function values
between the peaks and will start to resemble a circular uniform
distribution. When further increasing the number of modes,
the product on the right-hand side of (13) stays approximately
constant while the factor m still increases. Thus, the losses
may become multiple times as large as those for inputs without
ambiguities.

However, if a 2-D shape is not circularly symmetric (which is
a case that would need to be handled differently), the rotational
symmetry must be an m-fold rotational symmetry. This implies
that all possible true angles are 2π/m apart. Hence, if m is
not too high and a sufficiently high number of coefficients
is used so that the function value can go down between two

modes, the loss function (13) is usable. New challenges may
arise for 3-D objects as rotational symmetries along one axis
are widespread, which would require special treatment in the
loss term.

If problems arise concerning non-comparable losses for
different symmetries, one also has the option to generate mini-
batches with a fixed mixing ratio of shapes with different
symmetries. For this, a sufficiently large mini-batch size is
required, and it should be possible to provide mini-batches
with the chosen ratio without using some training samples
much more often than others. One should also keep in mind
that symmetries with higher variability in the losses may be
given more importance.

Using Lprod may lead to large computation graphs through
which gradients have to flow because it involves evaluating
the trigonometric polynomial at all possible true angles. The
loss term introduced in the next subsection leads to smaller
computation graphs and also better convergence.

B. Hellinger Distance-Based Loss Term

The key idea for this loss term is to interpret the possible
true angles x̃ as a sample set and match moments of that
sample set with a continuous density. This loss term can also
be used if the shape is fully circularly symmetric. Using the
formula

rs
k =

1

m

m∑
j=1

eikx̃j , (14)

we obtain the kth trigonometric moment of the sample set [6,
Section 1.3]. We now aim to provide a continuous density based
on a trigonometric polynomial that matches these moments.
This is straightforward since the trigonometric moment of a
continuous density is defined as [6, Section 2.1]

rc
k =

∫ 2π

0

f(x)eikxdx .

Thus, we can obtain the desired density using ck = 1
2π r

s
k for

the complex Fourier coefficient vector or ak = R(rs
k)/π and

bk = I(rs
k)/π for the real coefficient vectors. We can interpret

the 1/m in (14) as the weights of the samples.
To obtain Fourier coefficients for the square root of the

likelihood, we could take the square roots of the weights.
However, since all samples are equally weighted, this would
merely lead to scaling the moments by a fixed constant. As
discussed previously, scaling the coefficient vector with a
constant merely results in scaling the likelihood that is obtained
by squaring the trigonometric polynomial. Since we normalize
the likelihood for calculating the losses, we do not have to
consider this. The derived Fourier coefficients can thus be
directly used to describe a trigonometric polynomial for the
square root of the likelihood.

The number of trigonometric polynomials we calculate based
on x̃ is always identical to the desired number of Fourier
coefficients. In Fig. 2, we show the squared trigonometric
polynomials for different numbers of coefficients. The true
states are illustrated using weighted samples. As we can see,
the likelihood is high at the possible true angles and is low in
the middle between them, which is the desired outcome.

0 : 2:
0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

li
ke

li
h
o
o
o
d

0

0:1

0:2

0:3

0:4

0:5

S
am

p
le

w
ei
gh

ts

Samples
11 coe/cients
35 coe/cients
81 coe/cients

Fig. 2. A weighted sample set at the possible true angles is shown along
with squared trigonometric polynomials for different numbers of coefficients.
The coefficients are determined according to the trigonometric moments of
the sample set.

To formalize the loss term, we now define a function g that
extracts the trigonometric moments rs

0, . . . , r
s
kmax

from the set of
possible true states x̃, converts them into the coefficients for the
trigonometric polynomial, and scales them so that the squared
trigonometric polynomial (which describes the likelihood) is
normalized. Using a mean squared error loss between vω(Ẑ)
and g(x̃) as our loss term would neglect the semantic behind
the coefficients. We want our resulting normalized function
L(x; vω(Ẑ)) to be close to the function L(x; g(x̃)). Since
the two functions are normalized, we can use the Hellinger
distance [15], which is a measure of distance between two
density functions. The Hellinger distance involves a square root
and a factor 1/2, which we can ignore because they do not
change where the distance has its minimum. Thus, we obtain

Lhel(x̃, Ẑ, ω) =

2π∫
0

(√
L(x; g(x̃))−

√
L(x; vω(Ẑ))

)2
dx (15)

as our loss term. The square in the integral must not be omitted
to avoid that positive and negative parts cancel out.

The loss term can be calculated efficiently because g(x̃)
comprises the Fourier coefficients of

√
L(x; g(x̃)) and vω(Ẑ)

of
√

L(x; vω(Ẑ)). Subtracting one trigonometric polynomial
from another is, as evident from the formulae (1) and (2),
possible by subtracting the coefficients of the second from
those of the first. This can be used to directly obtain the
Fourier coefficients of

√
L(x; g(x̃)) −

√
L(x; vω(Ẑ)). The

integral of the square of the trigonometric polynomial with the
resulting parameters over [0, 2π) can be determined according
to the formulae (9) and (11) for complex and real trigonometric
polynomials, respectively. When considering a mini-batch, we
calculate the average of the losses as in the likelihood-based
loss term.

The gradient has to flow from the loss to
√

L(x; vω(Ẑ))
and then through the normalization step to the main part of the
network. No gradient is needed for the likelihood L(x; g(x̃))
since this term is independent of the parameters of the network
(it only depends on the hyperparameters). In the experiments
in our evaluation, good convergence was obtained for the loss
term (15). We further observed that reducing this loss also

(a) Arrow. (b) Semicircle. (c) Double arrow. (d) Triangle. (e) Pentagon.

Fig. 3. Classes used in the evaluation.

resulted in a reduction of the likelihood-based loss (13). A
disadvantage of the loss term (15) is that the losses are not
comparable when the hyperparameter describing the order of
the trigonometric polynomial is changed.

IV. EVALUATION

As a proof of concept, we considered a simple 2-D
orientation estimation scenario1. We used an artificial data
set and a simple network structure, which are explained in
the first subsection. The tracking scenario used to evaluate
the quality of the filter results is described in Sec. IV-B. In
Sec. IV-C, we provide the evaluation criteria and results.

A. Training Data and Network

For the evaluation, we generated artificial images of 5
different shapes with a resolution of 24 × 24, which are
illustrated in Fig. 3. While the arrow and the semicircle only
have a single possible true orientation, the double arrow has
two, the triangle has three, and the pentagon has five.

In Fig. 3, the images are shown in their base orientation,
which we define as 0. For each of the classes, 1000 images
are generated by rotating the base image by a random angle in
[0, 2π) using the imrotate function of Matlab. It was ensured
that the background pixels are always white. A limitation of
this data generation scheme is that since all generated images
are based on the image with an orientation of 0, the image may
be sharper for that orientation. However, we believe this effect
is negligible. As all images are only black and white, only a
single color channel was used. The images were not binarized,
and thus, the intensity values can also contain information
about the orientation of the shape. Thus, subpixel precision
can be achieved. However, even considering this, the image
resolution still limits the achievable precision.

In the evaluation scenario, which we describe in the next
subsection, all data were generated during run time. Thus, it is
guaranteed that none of the data used in the evaluation runs are
contained in the training data. 75% of the 5000 images were
used as training data, the remaining 25% as validation data.
Since the training data comprises approximately 750 images
per class, it is likely that similar images to those encountered
in the evaluation runs have been observed by the network in
the training phase.

In our processing pipeline, we standardized the images by
calculating the mean and standard deviation over the whole
training data, subtracting the mean from the images, and
dividing the result by the standard deviation. In our proof
of concept implementation, we used a modified LeNet-5 [16]
as the basis for our network. The layer at the end that brings
down the dimensionality from 84 to 10 was replaced with a

1A pretrained network and all code are available at
https://github.com/KIT-ISAS/FUSION21_2DLikelihoodFromImg.

fully connected layer with an output size that corresponds to
the desired number of coefficients. No softmax was used.

As the training loss, the Hellinger distance-based loss, as
introduced in Sec. III-B, was used. This loss and the likelihood-
based loss were used as validation metrics. A possible strategy
to choose the number of coefficients is to start with a relatively
low number, which is increased until the likelihood-based
loss term stops decreasing for the validation data. If ground
truth data are available for a high number of runs of the
considered tracking scenario, one may consider stopping earlier
if the tracking results stop improving. In our evaluation, we
use 81 coefficients. While using 101 coefficients led to a
lower likelihood-based loss, the tracking results did not change
significantly. Using 131 coefficients, even the likelihood-based
loss did not improve further.

A single network was trained for all classes using Py-
Torch 1.9. A fixed learning rate of 0.0005 was used. The
training was stopped after 30 epochs. The training took 7
minutes and 47 seconds on a server with an Intel Core i9-
10980XE CPU, 128 GB of RAM, and four Nvidia GeForce
RTX 2080 Ti graphics cards.

B. Evaluation Scenario

The scenario was simulated for ten time steps in each run.
During the run, the shape was not changed. The initial state
x1 was distributed according to a uniform distribution on the
circle. Thus, no specific orientation was given any advantage.
As the system model, we used a random walk adapted to the
periodic manifold. The system state at time step t+1 was thus
generated based on the state of the system xt and the system
noise wt according to

xt+1 = xt +wt mod 2π .

The system noise was i.i.d. over time and von Mises distributed
with parameters µ = 0 and κ = 10. The measurements were
generated by rotating the image according to the state.We used
an SqFF with the same number of coefficients as the likelihood
(81). The filter was initialized with a uniform distribution on
the circle. We used the prediction step for the topology-aware
identity system model with additive noise, as explained in [4].
The unnormalized likelihood L̆(x;nω̂(Ẑ)) based on the trained
network parameters ω̂ was used as the likelihood for the update
step (see Sec. II-B2).

C. Evaluation Results

In our evaluation of the estimation quality, we only consid-
ered the filter result at the last time step. We did not consider
all time steps since the estimation qualities would have been
correlated. Using only the result at the tenth time step also
helps to reduce the effect of the initial prior density on the
estimation quality of the filter. In experiments, the estimation
quality did not change significantly after ten time steps.

As the basis for our assessment of the quality of the estimates
derived from the filter, we used the angular distance

d(x, x̃) = min(|x− x̃| , 2π − |x− x̃|) .

We adjusted this metric to also consider the symmetries of
the different shapes. While the symmetries may not be known

https://github.com/KIT-ISAS/FUSION21_2DLikelihoodFromImg

in practice, considering them in the evaluation allows for a
thorough assessment of the estimation quality. Based on one
possible true orientation x̃, the other possible true orientations
can be described by x̃+ 2πj

m mod 2π with j ∈ {0, . . . ,m−1}.
We consider a distance that is the minimal distance to any of
the possible true states. The formula is given by

dsymm(x, x̃) = min
j∈{0,...,m−1}

{
min

(∣∣∣∣x−
(
x̃+

2πj

m

)∣∣∣∣ ,
2π −

∣∣∣∣x−
(
x̃+

2πj

m

)∣∣∣∣)}. (16)

It would have also been possible to add the offsets to x instead
of x̃ without changing the resulting values. Note that this
distance gives shapes with ambiguities an advantage. If we
have no knowledge about the state and draw x from a uniform
distribution on the circle, the expected distance will be π/2
without ambiguities and π/(2m) with ambiguities.

When the rotational symmetry of the object is unknown,
one can, e.g., use the maximum of the posterior density as
an estimate. In our evaluation, we know the number of true
orientations. Thus, we determined the value that minimized the
expected error with respect to our distance measure (16). In
the formula for the expected distance, the potential estimate x̄
is fixed. The distances of all possibles states to x̄ are weighted
with the probability that the state is the true state according to
the posterior density provided by the filter, and the weighted
distances are integrated over [0, 2π). Denoting the random
variable at time step t with the posterior density f e

t (·) as xe
t,

we obtain the estimate according to

x̂t = arg minx̄∈ [0, 2π)E(dsymm(x̄,x
e
t))

= arg minx̄∈ [0, 2π)

∫ 2π

0

dsymm(x̄, xt)f
e
t (xt|Ẑ1, . . . , Ẑt)dxt .

We will now describe the actual estimation errors and then
compare the expected estimation errors with the actual errors.

1) Estimation Error: In Fig. 4, we show the results of 1000
runs for all the considered shapes using box plots. The red
line in each box is at the median, and the box ranges from the
25% to the 75% quantile. The size of each box corresponds
to the interquartile range. The whiskers extend to the value
that is at most 1.5 times the interquartile range away from the
median. The red crosses are outliers. Almost all outliers are
shown in the plot, and at most three were omitted per shape
to allow for better axis limits.

In almost all runs, the error is less than 0.05 radian (less
than 3 degrees) for all the shapes. All the whiskers end below
0.026 radian, and thus, more than 75% of the errors are less
than 1.5 degrees. The accuracy is not much higher for shapes
with symmetries, which we believe is a result of the very high
accuracy of the estimates.

2) Uncertainty Assessment: A key advantage to using
a recursive Bayesian estimator with likelihoods generated
by the network is that we can provide a whole density
for the orientation. Now, we compare the expected error
E(dsymm(x̂10,x

e
10)), i.e., the error we would expect on average

without any knowledge of the true value (only knowledge about
the symmetries is contained in the distance function) with the

arr
ow

sem
icir

cle

do
ub

le
arr

ow

tri
an

gle

pe
nta

gon

0

0:01

0:02

0:03

0:04

0:05

S
y
m

m
et

ry
-a

w
ar

e
er

ro
r
in

ra
d
ia

n

Fig. 4. Box plots showing the errors. At most three outliers are omitted for
each of the shapes.

actual error dsymm(x̂10, x̃10) at the 10th time step. The latter
was computed using one of the possible true orientations, which
is denoted by x̃t. The other possible true orientations were also
considered due to the definition of the distance function (16).

The individual expected and actual errors of all 1000 runs
for the pentagon shape are depicted as tiny circles in Fig. 5a. A
few circles were omitted to improve the visualization of those
that are shown. Due to the uncertainty from the prediction step
and the uncertainty in the likelihood, the expected deviation
was never below 0.0288. Much higher expected errors were
only observed rarely.

For a better visual assessment, we subdivided the data points
along the axis for the expected deviation into 20 bins with
50 points each. We calculated the averages of the expected
and actual errors in each individual bin. We show these for
all shapes in Fig. 5b. The expected and actual errors are
clearly correlated. The average expected errors were higher than
the average actual errors. One of the possible causes for the
excessive expected errors is that the trigonometric polynomial,
even with 81 coefficients, has some likelihood outside the
direct vicinity of the mode, as can be seen in Fig. 2. The
overestimation of the uncertainties indicates that it may be
feasible to use even more concentrated likelihoods.

There are some related observations in the literature on
estimation of uncertainties using neural networks. In Euclidean
spaces, the variance is commonly used to quantify the expected
and actual uncertainty. [17] stated that uncertainty estimates by
neuronal networks are often inaccurate. The authors proposed
a way to amend this. However, since the proposed mapping
can map each confidence level to almost any other value, this
approach should be considered with caution as it can invalidate
what the network has learned about the uncertainties. A better
approach was proposed in [18]. While this approach still allows
for too high and too low uncertainties to cancel out, it can be
seen as the current state of the art.

Note that even if we found a way to derive the true average
error from the expected error, we cannot directly use it in
the filter. Unlike in the linear case, in which the variance
may be used in the filter, we only use the expected error for
quality assessment, and our filter relies directly on the Fourier
coefficients. For us, it would be more valuable to improve the
coefficients instead.

0:03 0:04 0:05 0:06 0:07 0:08
Expected error

0

0:01

0:02

0:03

0:04
A

ct
u
al

er
ro

r

(a) The individual expected and actual errors are shown for the triangle
data set. Some circles have been omitted to improve the visualization of the
majority of the circles.

0:03 0:04 0:05 0:06 0:07 0:08
Expected error

0

0:01

0:02

0:03

0:04

A
ct
u
al
er
ro
r

Arrow
Semicirlce
Double arrow
Triangle
Pentagon

(b) Line going through the averages of 20 bins.

Fig. 5. Comparison of the expected and actual errors.

V. CONCLUSION AND OUTLOOK

In this paper, we presented two loss terms for training neural
networks to convert image data into likelihood functions for
directional estimation. The output of the network were Fourier
coefficients that described a trigonometric polynomial that was
used as the square root of the (potentially scaled) likelihood.
Possible ambiguities due to rotational symmetries of the shapes
were explicitly considered. The first loss term is based on the
likelihood values at the possible true orientations. The second
was inspired by the Hellinger distance. While the latter loss
term does not yield comparable results for different numbers of
coefficients, it leads to fast convergence and inherently allows
for modeling uniform distributions.

A simple tracking scenario was designed, and a filter that
uses the generated likelihoods was employed. The estimates
derived using the filter were highly accurate. The uncertainties
in the form of expected errors were clearly correlated with the
actual errors, even though the precise values did not match.

A limitation of our paper is that we used synthetic data and
had many images per shape in the training data. A potential
area for future work is to use real-world data. Currently, the
trained network can only be employed when the shape was
included in the training data. It would be interesting to train
a network on a larger variety of shapes and evaluate how it
performs on unknown shapes. For this, one should think of
a coherent way to define the orientation (or, in the case of
ambiguities, possible orientations) of arbitrary shapes.

In future work, it may also be of interest to investigate how
one can adapt the network to provide coefficients that lead
to posterior densities for which the average estimated errors
match the average actual errors more closely. This may lead
to better likelihoods overall and thus also to better estimates.
Another very interesting piece of future work would be to
develop a similar approach for 3-D orientation estimation.
For this, it would be an option to provide likelihoods for the
hyperhemispherical grid filter [19].

ACKNOWLEDGMENTS

This work is partially funded by the Helmholtz AI Coopera-
tion Unit within the scope of the project Ubiquitous Spatio-
Temporal Learning for Future Mobility (ULearn4Mobility).

REFERENCES

[1] J. Traa and P. Smaragdis, “A Wrapped Kalman Filter for Azimuthal
Speaker Tracking,” IEEE Signal Processing Letters, vol. 20, no. 12, pp.
1257–1260, 2013.

[2] R. S. Bucy and A. J. Mallinckrodt, “An Optimal Phase Demodulator,”
Stochastics, vol. 1, no. 1-4, pp. 3–23, 1975.

[3] Q. Q. Liu and J. B. Li, “Orientation Robust Object Detection in Aerial
Images Based on R-NMS,” Procedia Computer Science, vol. 154, pp.
650–656, Jan. 2019.

[4] F. Pfaff, G. Kurz, and U. D. Hanebeck, “Multimodal Circular Filtering
Using Fourier Series,” in Proceedings of the 18th International Confer-
ence on Information Fusion (Fusion 2015), Washington D.C., USA, Jul.
2015.

[5] M. Azmani, S. Reboul, J.-B. Choquel, and M. Benjelloun, “A Recursive
Fusion Filter for Angular Data,” in Proceedings of the 2009 IEEE
International Conference on Robotics and Biomimetics (ROBIO 2009),
Dec. 2009.

[6] S. R. Jammalamadaka and A. Sengupta, Topics in Circular Statistics.
World Scientific, 2001.

[7] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[8] I. Gilitschenski, R. Sahoo, W. Schwarting, A. Amini, S. Karaman, and
D. Rus, “Deep Orientation Uncertainty Learning Based on a Bingham
Loss,” in International Conference on Learning Representations, 2019.

[9] H. Deng, M. Bui, N. Navab, L. Guibas, S. Ilic, and T. Birdal, “Deep
Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
Estimation,” arXiv:2012.11002 [cs], Dec. 2020, arXiv: 2012.11002.

[10] T. Avant and K. A. Morgansen, “Rigid Body Dynamics Estimation by
Unscented Filtering Pose Estimation Neural Networks,” in 2020 American
Control Conference (ACC), Jul. 2020, pp. 2580–2586, iSSN: 2378-5861.

[11] A. Zygmund, Trigonometric Series, 3rd ed. Cambridge University Press,
2003, vol. 1 and 2.

[12] F. Pfaff, G. Kurz, and U. D. Hanebeck, “Nonlinear Prediction for Circular
Filtering Using Fourier Series,” in Proceedings of the 19th International
Conference on Information Fusion (Fusion 2016), Heidelberg, Germany,
Jul. 2016.

[13] R. A. Kennedy and P. Sadeghi, Hilbert Space Methods in Signal
Processing. Cambridge University Press, 2013.

[14] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep
Neural Networks,” arXiv:1804.07612 [cs, stat], Apr. 2018, arXiv:
1804.07612.

[15] Shun’ichi Amari and Hiroshi Nagaoka, Methods of Information Geometry,
ser. Translations of Mathematical Monographs, 2000, vol. 191.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha, “Gradient-Based Learning
Applied to Document Recognition,” p. 46, 1998.

[17] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate Uncertainties for Deep
Learning Using Calibrated Regression,” in International Conference on
Machine Learning. PMLR, Jul. 2018, pp. 2796–2804, iSSN: 2640-3498.
[Online]. Available: http://proceedings.mlr.press/v80/kuleshov18a.html

[18] D. Levi, L. Gispan, N. Giladi, and E. Fetaya, “Evaluating and Calibrating
Uncertainty Prediction in Regression Tasks,” arXiv:1905.11659 [cs,
stat], Feb. 2020, arXiv: 1905.11659.

[19] F. Pfaff, K. Li, and U. D. Hanebeck, “A Hyperhemispherical Grid Filter
for Orientation Estimation,” in Proceedings of the 23rd International
Conference on Information Fusion (Fusion 2020), Virtual, Jul. 2020.

http://proceedings.mlr.press/v80/kuleshov18a.html

