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Abstract—In this paper, approximating the shape of a sailing
boat using elliptic cones is investigated. Measurements are as-
sumed to be gathered from the target’s surface recorded by 3D
scanning devices such as multilayer LiDAR sensors. Therefore,
different models for estimating the sailing boat’s extent are
presented and evaluated in simulated and real-world scenarios.
In particular, the measurement source association problem is
addressed in the models. Simulated investigations are conducted
with a static and a moving elliptic cone. The real-world scenario
was recorded with a Velodyne Alpha Prime (VLP-128) mounted
on a ferry of Lake Constance. Final results of this paper
constitute the extent estimation of a single sailing boat using
LiDAR data applying various measurement models.

Index Terms—3D Extended Object Tracking (EOT), Sailing
Boat, Elliptic Cone, LiDAR.

I. INTRODUCTION

As the resolution and accuracy of modern sensors in-
crease, more and more information can be extracted out of
recorded environment data. In earlier perception systems, sen-
sors merely gathered a single measurement per target and time
step, which resulted in modeling the targets as mathematical
points. Nowadays, multiple measurements per time step from
a single target are common. Processing all these measurements
enables estimating the target’s extent [1] instead of tracking
the targets as a single point.

In recent years, numerous articles have been published
examining the extension estimation of dynamic objects apply-
ing various 2D sensor data. Thus, models assuming elliptical
[2]–[5] or rectangular shapes [6]–[8] have been proposed to
estimate the extent of different objects. These models fit well
for a great majority of targets in 2D space such as ellipses
for pedestrians, cyclists, or ships in maritime applications and
rectangles for cars in automotive applications. Moreover, if
prior knowledge of the types of occurring targets is avail-
able, learned spatial distribution models applying variational
Gaussian mixture models [9]–[11] can be utilized. If no prior
knowledge about the target’s extent or shape is available and
measurement sources on the target are modeled accurately,
inference about the target’s shape itself can be performed. This
can be achieved by modeling the shape as star-convex radial
function represented using a Fourier series expansion [12] or
a Gaussian process [13], [14].
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Fig. 1: 3D LiDAR measurements of sailing boat and elliptic
cone as shape approximation.

However, modern devices such as multilayer LiDAR sensors
or depth cameras gather the environment in 3D instead of
2D space. Thus, measurement models processing this data
should be defined in 3D space as well. Models such as in
[2], [3] can be generalized to estimate the target’s extent by
means of ellipsoids. Moreover, basic geometric shapes such
as cylinders can be applied in modified random hypersurface
models (RHMs) [15]–[17] where extrusions are modeled using
a spatial distribution. As in 2D space, shapes can be estimated
in 3D space if no prior knowledge of the shape or the extent
is available and measurement sources on the outer hull of
the target are modeled accurately. This can be achieved by
representing the target’s shape as star-convex radial function
in spherical coordinates expanded by spherical harmonics [18],
spherical double Fourier series [19] or Gaussian processes
[20]. When tracking targets in 3D space, applied models
should match the application in terms of complexity so that
the most efficient method is used. If the shape information
of the target is desired or highly accurate estimates of the
system are needed, a shape estimation procedure is more
suitable. Otherwise, shape approximation algorithms are way
more efficient in terms of computational effort as the fixed
shapes can be represented with much fewer parameters.

The contribution of this paper is to propose two models for



the extent estimation of sailing boats. In maritime applications,
ships can be assumed to have an elliptical shape [21] when
estimated in 2D space. However, when 3D measurements
of multilayer LiDAR sensors are processed, applying an
ellipsoidal shape for every class of maritime objects is not
sufficient. In Fig. 1, measurements of a sailing boat can be
seen. The measurements were recorded by a ferry on Lake
Constance, which had to pass through a regatta. It is clearly
evident that an ellipsoidal shape is not appropriate for this class
of maritime objects. Therefore, the contribution of this paper is
to apply cones with an elliptical base as shape approximation
for sailing boats in 3D space. The objective is to estimate the
extent of the boat by means of length a, width b, and height
h, as can be seen in Fig.1. For this purpose, different models
for the estimation of a cone shape with an elliptical base are
presented in this paper and evaluated using simulations and
real data.

The remainder of this paper is structured as follows. First,
in Sec. II details on the problem formulation and further
basics are given. In Sec. III, different measurement models
for estimating an elliptic cone are presented. Thus, a greedy
measurement association model (GAM) and an extrusion
RHM with a GAM component [16] are presented. In Sec. IV,
implementation methods for the different models are pre-
sented. In this paper, the models are implemented using a
smart sampling Kalman filter (S²KF) [22] for all measurement
association techniques presented in Sec. III. Afterwards, the
models are investigated in Monte Carlo simulations with static
and dynamic objects in Sec. V and in a real-world scenario
for a single sailing boat in Sec. VI. The paper ends with the
conclusion and proposals for future work in Sec. VII.

II. FUNDAMENTALS

In this section, details on expected measurements and the
system state are given. Furthermore, particulars on the as-
sumed shape and on modeling extended objects in 3D space
are specified.

A. Measurements and likelihood
In this paper, a measurement set with nk measurements

Yk =
{
y
k,l

}nk

l=1
of the target’s boundary is assumed to be

recorded at every time step k. Each measurement is given in
3D Cartesian space y

k,l
∈ R3. As measurements are assumed

to be mutually independent, the likelihood can be expressed
as

p (Yk|xk) =
nk∏
l=1

p
(
y
k,l
|xk
)

(1)

with state variable xk. Thus, it is sufficient to specify the
measurement model and the measurement likelihood for a
single measurement. The likelihood encodes the probability of
a single measurement being recorded given a specific system
state. Finally, the state distribution p(xk) can be estimated
using recorded measurements and the likelihood by applying
Bayes’ rule. Please note that indices k, l will be omitted if not
needed as the measurement model and the likelihood will be
developed for a single measurement at a single time step.

Fig. 2: Illustration of an elliptic cone. Position as blue cross,
measurements as green crosses, measurement sources as black
balls and slices as red dashed ellipses.

B. System state

The system state comprises the position mk, orientation ψk,
velocity components vk and the shape parameters p

k
and is

given as

xk =
[
mT
k , ψk, v

T
k , p

T
k

]T
. (2)

Please note that in this paper, we limit ψk to the orientation
of the target in the xy-plane, namely the yaw angle. However,
also all three rotation angles in Euler angles or quaternions
as described in [20] could be used to describe the orientation
of the target in 3D space. In dynamic scenarios, objects are
assumed to evolve with a coordinated turn model [23] over
time in this paper.

C. Elliptic cone

The shape investigated in this work is an elliptic cone as an
approximation for sailing boats in 3D space. An elliptic cone
can be represented in parametric form as [16]

c(u, s, p) =

 (1− u) · a · cos(s)
(1− u) · b · sin(s)

u · h

 , (3)

with major half axis a and minor half axis b of the base
ellipse and height h. Thus, the shape parameters are given
as p

k
= [ak, bk, hk]

T . Please note that p as function argument
highlights the dependence on the actual shape parameters. The
parameter u ∈ [0, 1] is used to linearly scale the base ellipse
with the full ellipse at the bottom and a single point at the top.
The parameter s ∈ [0, 2π] lets us iterate through all points on
a specific height. An ellipse on a specific height in parallel
to the xy-plane will be called slice in the further course of
this paper. An illustration of an elliptic cone and the defining
parameters can be seen in Fig. 2. The position of the elliptic
cone is located in the center of the base ellipse.



D. Modeling 3D extended objects

The measurement is assumed to be generated based on a
measurement source model given as

y = z + w

= c(u, s, p) + w (4)

with measurement source z. We assume Gaussian noise
w ∼ N (0,Cw) in this paper so we can apply Gaussian sam-
pling techniques [22]. The likelihood depends on the param-
eters u and s and can be given as the marginal distribution
[16]

p(y|x) =
∫
U

∫
S

p(y|x, s, u) · p(s, u|x) ds du. (5)

Both parts of this likelihood can be interpreted differently.
The likelihood p(y|x, s, u) can be regarded as the sensor
model, which is defined through the noise density fW (w). The
distribution p(s, u|x) expresses the source model. Since the
actual source of a specific measurement is unknown, we have
to deal with the well-known measurement source association
problem [24]. An illustration of the association problem can
be seen in Fig. 2, where measurements and measurement
sources on a specific slice are depicted. In the remainder
of this work we will present various approaches for solving
this association problem. As the parameters u and s will be
modeled differently in the RHM with GAM component, the
likelihood (5) is finally split up as

p(y|x) =
∫
U

∫
S

p(y|x, s, u) · p(s|x, u) · p(u|x) ds du (6)

using the approximation p(s, u|x) = p(s|x, u) · p(u|x) [25,
pp. 79], [16]. In the following, both likelihoods (5) and (6)
will be used to develop different approaches to deal with the
association problem.

III. MEASUREMENT MODELS

Based on Sec. II-D, we want to present two different
measurement models to estimate the extent of a sailing boat
modeled by an elliptic cone. The presentation of these models
is arranged in ascending order by means of robustness, effec-
tiveness, and accuracy. Some difficulties of the models are also
addressed. Implementations for every model will be given in
Sec. IV.

A. Spatial distribution model (SDM)

For completeness, SDMs are briefly addressed in this
section, but not implemented in this work. A well-known
example of SDMs are random matrices [2]. However, many
other approaches to model extended targets using a spatial
distribution exist. In the likelihood (5), the development of
an SDM would mean that the distribution p(s, u|x) has to be
modeled explicitly. Thus, a common approach is to assume
measurements to be recorded uniformly distributed from the
whole surface. It is well known that SDMs yield unbiased
estimates even in the presence of high noise [16]. However,

Fig. 3: Illustration of GAM with red distance lines being
perpendicular to the surface.

this is only the case if the measurements actually fit the
assumed distribution. Otherwise, the estimate may be biased.
In the presence of partial occlusions and different viewing
angles, constructing a proper spatial distribution would be very
difficult, computationally expensive, and is therefore neglected
in this paper.

B. Greedy association model (GAM)

A GAM [25, pp. 29–32] [24] is an intuitive but also naive
approach of solving the association problem for extended
objects. Here, the measurement source on the surface of the
shape is assumed to be the most likely one, or, in our case,
the point on the surface with the smallest distance c(û, ŝ, p) to
the actual measurement. Thus, the mass of the source model
p(s, u|x) is reduced to the Dirac δ-distribution

p(s, u|x) = δ (s− ŝ, u− û) . (7)

Therefore, the likelihood (5) is reduced to a Gaussian distribu-
tion around the most likely point defined by the measurement
noise given as

p(y|x) = N
(
y; c(û, ŝ, p),Cw

)
. (8)

An illustration of a GAM is depicted in Fig. 3 where each
measurement is allocated to a specific point on the surface.
The point on the surface of an elliptic cone with the smallest
distance to the measurement ỹ = [ỹx, ỹy, ỹz]

T can be calcu-
lated as the intersection of a normal through the measurement
with the surface. The parameter ŝ can be calculated as

ŝ = cos−1
(

a ỹx
(1− û) a2 − û h2 − ỹz h

)
= sin−1

(
b ỹy

(1− û) b2 − û h2 − ỹz h

)
(9)



with given parameter û. Using the equality
sin
(
cos−1(x)

)
=
√
1− x2, the quartic equation

1− ỹ2x a
2

((1− û) a2 − û h2 − ỹz h)2

=
ỹ2y b

2

((1− û) b2 − û h2 − ỹz h)2
(10)

results, which can be solved using a symbolic math software.
Please note, that ỹ is the measurement y in local coordinates.
GAMs are known to be biased in the presence of high noise
[24] and additionally not capable of robustly estimating length
or height parameters [25, pp. 74–79]. However, the model can
still produce adequate estimates and is the most basic approach
of solving the association problem.

C. Extrusion RHM

Another way of solving the association problem is given
in this section by redefining a basic tool of extended object
tracking (EOT), namely RHMs [3], [16], [17]. When using
RHMs, fundamental tools of EOT are combined in a single
model. In this case, an RHM consists of the combination of
an SDM and a GAM. When using 2D RHMs [3], [12], the
measurement source at the border of a closed shape is modeled
using a GAM. Additionally, measurements of the shape’s
interior are represented using a scaling factor s ∈ [0, 1], which
is modeled as actual 1D distribution. This formulation can be
used for modeling 3D measurement models by adapting the
likelihood (6) [15]–[17]. Therefore, the distribution p(s|x, u)
is modeled as Dirac δ-distribution

p(s|x, u) = δ(s− ŝ) (11)

and hence as GAM for a given slice u. The slice distribution
p(u|x) instead is modeled using an explicit distribution. If
measurement sources are assumed to be equally distributed on
the target’s surface, the slice distribution scales linearly with
the perimeter of a given slice. Therefore, the slice distribution
can be modeled as triangular distribution between 0 and 1 [16].
This triangular distribution can be approximated as normal
distribution with E{u} = 1

3 and Var{u} = 1
18 by means of

moment matching [16]. Finally, an estimator for elliptic cones
using extrusion RHMs can be developed using the likelihood

p(y|x) =
∫
U

N
(
y; c(u, ŝ, p),Cw

)
· N

(
u;

1

3
,
1

18

)
du. (12)

An illustration of an extrusion RHM for elliptic cones can
be seen in Fig. 4, where the slice distribution is depicted by
coloring the shape with red for high probability changing to
blue for low probability. For a given slice, the GAM part can
be reduced to 2D space by finding the closest point on a slice
ellipse e(u, s, p) to a given measurement ỹ

x,y
= [ỹx, ỹy]

T

which is given as

e(u, s, p) =

[
(1− u) · a · cos(s)
(1− u) · b · sin(s)

]
. (13)

Fig. 4: Illustration of extrusion RHM with the color gradient
indicating the distribution of the height parameter u.

For finding the closest point on an ellipse to a given point,
we propose to use analytic solutions which can be found, e.g.
in [26]. This extrusion RHM for elliptic cones is capable of
producing satisfying height estimates due to the explicitly ap-
plied slice distribution. Additionally, it is capable of handling
partial occlusions by design like the GAM presented before.
However, for high noise, estimating the half axes can still
be biased because of the applied GAM part in the extrusion
RHM. This problem could be solved by integrating a partial
information model (PIM) part [16], [24] instead of the GAM
part. However, as we aim to process data of a multilayer
LiDAR sensor that produces measurements with low measure-
ment noise, the GAM part in the extrusion RHM is sufficient.
To produce unbiased height estimates, the distribution of the
height parameter must not be approximated with a Gaussian
distribution. However, this would mean that the S²KF can no
longer be used as it calculates an arbitrary number of samples
from a multidimensional Gaussian distribution.

IV. IMPLEMENTATION

In this section, some more insights on implementing the
aforementioned models are presented. In this paper, every
model is implemented using the S²KF [22] due to its straight-
forward implementation. Equations for the prediction and
update step of the S²KF can be found in [22]. However,
other filtering techniques like the progressive Gaussian filter
(PGF) [27] for example could also be appropriate. Nonlinear
estimators like the PGF could outperform the S²KF, however,
an explicit likelihood function is needed [28] which can be
hard to calculate due to the integrals in (5) and (6). The
kinematic evolution over time is modeled as coordinated turn
[23] with constant cone parameters, i.e., the cone dimensions
being constant over time. Measurement equations for the
update steps are presented in the following.

A. GAM

When implementing a GAM for an elliptic cone, the first
step is to calculate the measurement in object local coordinates



as
ỹ = R−1ψ ·

(
y −m

)
(14)

with 3D rotation matrix Rψ for the yaw angle (in the xy-
plane). The greedy point estimate can now be calculated as
the closest point of the measurement in local coordinates to
the predicted shape as

c(û, ŝ, p) = min
s∈[0,2π] , u∈[0,1]

(
‖ỹ − c(u, s, p)‖2

)
. (15)

We propose to use analytic solutions of the minimization
problem as outlined in Sec. III-B for computation time reasons.
However, numeric solutions can be applied as well. Given the
measurement source (15) for an elliptic cone GAM, the final
measurement equation is given as

0 = h(x, y) = Rψ · c(û, ŝ, p) +m− y , (16)

where 0 can be interpreted as a constant pseudo-measurement.
Please note that we assume isotropic white zero-mean Gaus-
sian noise, which can be handled inherently by the S²KF. So
the system state must not be extended by the measurement
noise to sample the joint distribution as was intended in
[22]. Instead, the measurement noise covariance matrix can
be added to the measurement covariance matrix in the update
step.

B. Extrusion RHM

When implementing an extrusion RHM, the GAM part
breaks down to 2D space as already mentioned in Sec. III-C.
However, the height parameter u has to be sampled for every
measurement from the Gaussian distribution p(u|x), cf. (12).
With a given measurement in local coordinates (14) and
a sampled parameter u, the greedy point estimate can be
calculated as

c(u, ŝ, p) =

[
min

s∈[0,2π]
(‖ỹ

x,y
− e(u, s, p)‖2)

u · h

]
. (17)

Again we propose to use analytic solutions [26] for finding
the estimate for the closest point on an ellipse. Finally, the
measurement equation for an elliptic cone extrusion RHM is

0 = h(x, y) = Rψ · c(u, ŝ, p) +m+ w − y (18)

with the constant pseudo-measurement 0. Since the parameter
u is modeled as multiplicative noise, the height cannot be esti-
mated with a standard linear estimator. Therefore, we suggest
to extend the measurement equation to a quadratic estimator
as proposed in [15], [22], [29]. The extended measurement
equation can then be given as[

0
0

]
=

[
Rψ · c(u, ŝ, p) +m+ w − y(

Rψ · c(u, ŝ, p) +m+ w
)◦2 − (y)◦2

]
(19)

using element-wise squaring. Please note that the measurement
noise w is integrated in the measurement equation (19). This
means, that the joint density fX,W,U (x,w, u) of the system
state extended by the measurement noise w and the height
parameter u has to be sampled for an update using the S²KF
[22].

C. Update step with multiple measurements

As a measurement set Yk with nk measurements is recorded
every time step, a procedure for updating the system state
using all measurements is needed. A first intuitive way is to
process measurements sequentially in multiple update steps.
Therefore, the density fX(x) for a GAM or the joint density
fX,W,U (x,w, u) for an extrusion RHM has to be sampled
every sequence of update procedures with the latest update.
Another possibility is to update the system state xk simul-
taneously with all measurements Yk by aggregating them
into a single measurement vector. A measurement update can
then be performed by extending the measurement equation
using the aggregated measurement vector. Please see [15] for
example for more details. A major drawback of RHMs is
discernible at this point, since the extended system state has
to be sampled. This means, for every measurement y

k,l
the

height parameter uk,l and the measurement noise wk,l has
to be sampled individually. This results in a possibly large
system state with a varying number of state variables when
performing a single measurement update. Solutions could be
to fix the maximum number of measurements processed in the
update step and to decide for an optimal measurement set to
represent the extent of the target or to simply use a single
measurement update for every measurement.

V. SIMULATION EXPERIMENTS

In this section, both new models are investigated in simu-
lated scenarios. Therefore, a static and a dynamic scenario are
considered. In both scenarios, measurements are generated by
sampling the parameters s and u and integrating them into the
shape function (3). The parameter s is sampled from a uniform
distribution s ∼ U

(
0, 3π2

)
. The parameter u is sampled from a

triangular distribution u ∼ T (0, 0, 1) with peak and the lower
limit at 0 and the upper limit at 1, thus, the same that is
assumed for the extrusion RHM in Sec. III-C. However, only
parameters smaller than 0.8 are forced to be sampled. Hence,
measurements are drawn from an artificially occluded object
to demonstrate the capability of both models to track occluded
targets. If an SDM would be used with a uniform distribution
on the entire surface, it could not handle this occlusion since
the assumption of a uniform distribution would be corrupted.
The system state is sampled with 10 samples per dimension
in each simulation experiment using the routine of the S²KF
[22], [30].

A. Static scenario

In the static scenario, 1500 measurements are drawn for a
single simulation run and corrupted by isotropic noise with
a standard deviation of σw = 0.05m. In every simulation
run, the position and orientation of the elliptic cone are
initialized with the reference as the experiment is intended
to mainly investigate the extent estimation of both models.
In this simulation, the measurement noise is low as would be
with a multilayer LiDAR sensor to show the capability of both
models to estimate the extent of the target. The reference cone
is implemented with parameters a = 5m for major half axis,
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Fig. 5: RMSEs of static scenario.

b = 2m for minor half axis and height h = 8m. The system
state is initialized with position m = [1, 1, 3]T , orientation
ψ = 0.3 rad and shape p = [1, 1, 1]T . The system state
covariance matrix is initialized as P = diag(1, 1, 1, 1, 5, 5, 5).
In the static simulation, the prediction step is completely
neglected. In Fig. 5, root mean square errors (RMSEs) of
a Monte Carlo simulation with 100 runs are depicted. It is
evident that the height of the cone is estimated better when
using an extrusion RHM instead of a GAM. This performance
gain can be attributed to the correctly assumed distribution
in the height parameter which directly affects the estimation
accuracy of any other state parameter in the static scenario.
Finally, it ensures better performance of the extrusion RHM
compared to the GAM. The better height estimate of the
GAM can be affiliated with the inability of GAMs to penalize
overestimated lengths. For more details, see [25, p. 74].

B. Dynamic scenario

In the dynamic scenario, a single reference trajectory was
generated using a coordinated turn model [23] in 2D space
corrupted by noise with σvxy

= 2.2m/s² for polar velocity
and σψ̇ = 1.5 °/s² for turn rate. The z-component of the
position is modeled to be constant. The sampling rate is
simulated as dt = 0.1 s. Every time step, 15 measurements
are drawn and corrupted by isotropic measurement noise with
σw = 0.3m. In this simulation, higher measurement noise
is chosen to show the capability of the models to track the
target even with high measurement noise. In the prediction
step, the same coordinated turn model with the same system
uncertainties is used with a constant z-component in the
position and constant cone parameters. The cone parameters
of the reference are chosen to be the same as in the static
scenario. In this simulation, the system state is initialized using
the first measurement set. The position in the xy-plane is taken
to be the mean position

mxy =
1

15

(
15∑
i=1

y(i)
xy

)
(20)
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Fig. 6: RMSEs of dynamic scenario.

of the first measurement set. The z-position is initialized as
the minimum z-value. In the following, the covariance matrix

Cm = Cov
(
y(i)x , y(i)y

)
i = 1, . . . , 15 (21)

of the first measurement set is calculated. The orientation of
the covariance matrix Cm is used as initialization for the
system state. The parameters a and b are taken to be twice the
major and minor eigenvalues of the covariance matrix Cm,
respectively. Finally, the height is initialized as the distance
between the maximum and minimum z-components of the
first measurement set. The covariance of the system state is
set to be Cm for position in xy-plane, 1 for other described
parameters and 5 for velocity components that are initialized
to be 0.

In Fig. 6, again RMSEs of a Monte Carlo simulation with
100 runs are depicted. In this simulation, the improvement
of the estimation outcome when using an extrusion RHM
compared to the GAM is as clear as before in the static
scenario. The height estimate converges to the true value when
using an extrusion RHM. The height estimate of the GAM is
biased as expected. Thus, the position estimate of the extrusion
RHM outperforms the GAM as well. However, the extrusion
RHM is still biased in the estimation of the half axes a
and b because of the GAM part for the parameter s. As a
consequence, the GAM even outperforms the extrusion RHM
in the estimation of the half axis b.

VI. REAL DATA EXPERIMENTS

In this section, 3D measurements of a sailing boat as can
be seen in Fig. 1 are fused to estimate the extent of the sailing
boat approximated as an elliptic cone. The measurements were
taken by a ferry on Lake Constance that had to go through a
regatta of folk boats. These folk boats are standardized with
a length of 7.68m, a width of 2.2m, and a mast height over
the water surface of 9.95m which serves as a reference for
our extent estimation experiments [31].

The measurements were recorded from an Alpha Prime mul-
tilayer LiDAR sensor [32]. This sensor has a 360° horizontal
and 40° vertical field of view. The measurement range is up



Fig. 7: Extension estimation using a GAM.

to 245m, the sensor has 128 channels and measurements are
recorded with a variable frame rate of 5Hz to 20Hz. In this
paper, measurements are taken with a frame rate of 10Hz. The
sensor has a minimum angular vertical resolution of 0.11°
and an angular horizontal resolution between 0.1° and 0.4°
depending on the frame rate.

As measurement model, a coordinated turn model [23] is
used in the xy-plane like in the simulated dynamic scenario
before. Additionally, a constant velocity movement is added
in z-direction to allow the object to change the position in z.
The system uncertainties are taken to be σvxy = 1m/s² for
velocity in the xy-plane, σψ̇ = 1 °/s² for the turn rate and
σvz = 0.05m/s² for the velocity in z-direction. Additionally,
uncertainties of σa = σb = σh = 10−3 m are assumed for the
cone parameters in order to prevent local minima during the
estimation procedure. The initialization scheme of the system
state is taken from Sec. V-B. The system covariance matrix
is initialized with Cm for the position in the xy-plane, 3m
for the position in z-direction, 1m/s for the velocity in z-
direction, 3m/s for the velocity in the xy-plane, 30° for the
heading angle, 5 °/s for the turn rate and 1m for every cone
parameter.

When performing the estimation procedure, we found out
that the distribution of the height parameter u does not
follow an exact triangular distribution as described in Sec. V.
Therefore, we transformed all recorded measurements of the
whole scenario to a local coordinate system and calculated
the statistical mean and variance of the height parameter u
and approximated it as Gaussian distribution

p(u|x) = N (u; 0.2902, 0.0434) . (22)

In Fig. 7 and Fig. 8 estimation results applying an elliptic
cone GAM and extrusion RHM respectively to measurements
of a sailing boat in a single time step are depicted. The z-
position is estimated more accurately when using an extrusion

Fig. 8: Extension estimation using an extrusion RHM.

RHM and estimated too low for a GAM. This causes the height
and length to be overestimated as well when using a GAM.
In the figures, it can also be seen, that the peak of the cone
does not fit the maximum measurement of the sailing boat.
This is caused by the fact that the mast is not centered on
the boat hull to be assumed a regular elliptic cone. In Fig. 9,
estimated cone parameters for the whole scenario are depicted
as well as the parameters of a folk boat as described before.
It turns out that the suspicion of an overestimated height and
length parameter is correct when using a GAM. In comparison,
length is estimated quite accurately when using an extrusion
RHM. The height estimate of the extrusion RHM is slightly
overestimated, indeed better in comparison to the GAM. The
width of the boat is underestimated by both models which
could be caused by the GAM part in both models or the not
perfectly fitting shape approximation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new 3D shape approximation
for sailing boats. Thus, we proposed two different models to
solve the measurement source association problem, namely a
GAM and an extrusion RHM for elliptic cones. We investi-
gated both models in a simulated static and dynamic scenario,
as well as in a real-world scenario recorded by an Alpha Prime
mounted on a ferry on Lake Constance. Simulations and the
real-world scenario showed that both models were capable
of tracking the extent of the target. We saw, that the height
estimate is more stable when using an actual distribution for
the height parameter that fits the measurements. However,
unbiased height estimates would require sampling from a
mixed Gaussian and triangular distribution. Finally, we saw
that both models are capable of estimating the extent of the
target and tracking the sailing boat.

In future work, the parameters of the Gaussian defining the
distribution of the height parameter could be set adaptively
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Fig. 9: Results of parameter estimation applying GAM and
extrusion RHM.

and learned from actual data. Also, the shape itself could be
slightly adapted by adding a shear transform or shifting the
center and peak of the cone to better fit the position of the
mast. Finally, mixed Gaussian and triangular sampling of the
mixed joint density could be investigated or other appropriate
filters like the PGF [27] could be used to produce better
estimation results.
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