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Abstract—We propose a method for deterministic sampling
of arbitrary continuous angular probability density functions.
With deterministic sampling, good estimation results can be
obtained with a much smaller number of samples than with
the commonly used random sampling. The Unscented Kalman
Filter also uses deterministic sampling, but takes a very small
number of samples. Our method can draw an arbitrary number
of deterministic samples, improving the quality of state esti-
mation. Conformity between the continuous density function
(reference) and the Dirac mixture density, i.e., sample locations
(approximation), is established by minimizing the distance of
the cumulatives of dozens of univariate projections. In other
words, we compare density functions in Radon space.

I. INTRODUCTION

A. Considered Problem

In this work, we consider the problem of deterministic
sampling of arbitrary continuous densities on the circular
domain with an arbitrary number of unweighted samples.

B. Context

State estimation or control techniques for nonlinear systems
often use samples (or particles) to represent the occurring
densities. Obtaining unweighted discrete samples (on continu-
ous domains) from a continuous probability density function
(PDF) is, therefore, an important module in many state
estimators and controllers. The “brute force” approach, often
used to obtain ground truth for reference, is Monte Carlo
Sampling with large numbers of entirely random samples.
There are universal but rather slow random sampling methods
like Metropolis-Hastings [1], and faster methods that are
specialized for certain densities like the von Mises-Fisher
distribution [2]. Acceptance-rejection methods [3], [4] are
always an option as well, their efficiency depending on
whether a good proposal distribution is available. The uniform
proposal that is predestined for arbitrary density functions
would become inefficient for “narrow” densities.

Ideal for filtering are also weighted particles on a regular
grid, but likewise expensive, especially in higher dimensions.
In the non-compact Euclidean space, the region with non-
negligible probability density must be tracked and filled with
a floating grid for this purpose [5]. On closed Riemannian
manifolds such as the circle [6], the sphere [7], or the torus
[8], it is possible to fill the entire domain with a regular grid,
but expensive to extend to a high number of dimensions. To
optimize computational complexity, it can be advantageous to

Fig. 1: Wrapped Laplace Distribution (blue) on the circular
domain (black) with proposed deterministic sampling for 35
samples (red).

use a parametric representation that efficiently approximates a
complicated likelihood or density function [9]. Similar ideas
have been proposed also for Riemannian manifolds like the
torus [10].

While parametric density representations can be convenient,
it is often difficult to update the parameters when the system
model is nonlinear. Therefore, many nonlinear parametric
filtering algorithms use some kind of numerical integration
internally [11]. In embedded systems subject to real-time
constraints and limited memory, the number of evaluation
points for numerical integration should be rather small.

C. State-of-the-art

Moment-based deterministic sampling of normal densities
in the Euclidean domain using a very small number of samples
is the basis of the Unscented Kalman Filter (UKF) [12], [13].
Its efficient concept has successfully been transferred to the
circular domain [14], [15], however, inheriting equivalent
limitations (only a small number of samples, only specific
types of densities). Using higher-order moments, the number
of samples can be increased to five [16] and multiples of



four (plus one) with superposition techniques [17]. UKF-like
sampling methods are easily applied to higher-dimensional
directional estimation for orientations on the hypersphere
[18], [19], for multivariate circular estimation on the torus
[20], and for dual quaternions on special Euclidean groups
[21], [22], general Lie groups [23], or arbitrary Riemannian
manifolds [24], [25] – all without an exponential increase of
the computational cost.

The question that arises is how to make deterministic
sampling more flexible, i.e., provide more samples than UKF-
like schemes, but avoid Cartesian products. One way to
achieve this is based on the Localized Cumulative Distribution
(LCD) and a modified Cramér-von Mises distance. The LCD
transforms any density, either continuous or Dirac mixture
(DM), to a continuous representation via kernel convolution.
The modified Cramér-von Mises distance is basically an
L2 norm of the difference of densities [26] but additionally
averages over all kernel widths. LCD and modified Cramér-
von Mises distance together yield a distance measure between
continuous and DM densities in any combination [27], which
has been successfully applied in the Euclidean domain [28],
especially for Gaussian densities, where pre-computed samples
are taken from a library during run time [29], [30].

Early adaptions to directional estimation applied the LCD
in the Euclidean tangent space of the density’s mean, placing
samples on the coordinate axes only [31] or distributing them
in the entire tangent space [32]. Direct application of the LCD
on non-Euclidean manifolds has been performed for sample
reduction (DM to DM approximation) on the sphere [33], the
hypersphere [34], and for dual quaternion sample reduction
in the special Euclidean group SE(2) [35]. Unfortunately, this
method cannot easily be applied to arbitrary density functions
and manifolds, because the involved integrals often do not exist
in closed form. For the special case of the von Mises-Fisher
density, there is also a very efficient deterministic sampling
method that places samples on an arbitrary number of “beams”
in a star-like arrangement [36], [37]. It is very fast and more
flexible than UKF-like placement, but the star-like arrangement
does not always cover the state space homogeneously and
purely according to the density function.

There are many applications for angular state estimation
and control on Riemannian manifolds, with potential appli-
cations for deterministic sampling enabling more efficient
implementation. An interesting application is odor source
localization [38], [39] because the angular measurements of
odor sources are very uncertain, thus the naïve estimation in
the Euclidean tangent space would be particularly insufficient
here. The same holds for acoustic source localization and
tracking [40], [41], [42]. Magnetometers and gyroscopes
yield angular measurements as well, and sensor fusion
methods should respect that [43]. Advanced deterministic
sampling methods that fit into this context have already been
successfully applied to wavefront orientation estimation [44]
and visual Simultaneous Localization and Mapping [45]. Of
course, depending on the sensor capabilities and the occurring
motions, measurement and state spaces can be spheres S2 or

hyperspheres SN , where the circular solution we are going
to present here would not be sufficient.

Yet, this does not lessen the importance of filtering or
sampling approaches specifically optimized for the S1 domain
only. Applications with circular estimation problems include:
1) Phase estimation in transmitted electromagnetic signals
[46]. 2) Reflectometry on signals from global navigation
satellite systems enabling measurements of the tidal range
[47], [48]. 3) Flow estimation using Doppler sonar based
on circular statistics [49]. 4) Determining the instantaneous
angle in electrical generators [50]. 5) Phase lock-in amplifiers
using circular regression for detection of weak sinusoidals in
noisy signals [51]. 6) Edge detection for pattern recognition
in images [52]. 7) Orientation estimation of objects in images
[53]. 8) Protein structure prediction based on uncertain
estimates of dihedral angles [54]. 9) Multi-target tracking
for bearings-only measurements with a circular probability
hypothesis density filter [55].

Deterministic sampling for purely circular state estimation
has already been successfully applied in control [56] and
heart phase estimation [57]. Yet most of the existing circular
deterministic sampling methods are limited to particular types
of density functions and particular numbers of samples. Only
the “Binary Tree” sampling can get an arbitrary number
of samples from any circular density where the cumulative
density function (CDF) is available [17]. However, it is not
invariant w.r.t. an interval choice and samples are not optimally
placed.

D. Contribution

This paper presents a method to optimally approximate
a continuous angular density function fC (x) on the circular
domain with a Dirac mixture density (DMD) fDM (x) with
an arbitrary number samples.

II. PROBLEM FORMULATION AND KEY IDEA

Let fC (x), x ∈ S1, be an arbitrary continuous density
function on the circle, considered as reference density here.
The goal is to obtain a DMD

fDM (x) =
1

L

L∑
i=1

δ(x− x̂i) (1)

with sample locations x̂i ∈ S1 , i ∈ {1, 2, . . . , L}. This DMD
should optimally approximate the given continuous reference
density, limited in accuracy only by the allowed number of
samples L. Required inputs are

I1 the number L of wanted samples,
I2 a numerical function handle of the continuous angular

reference density function fC (x), x ∈ S1,
I3 and complexity trade-offs such as the number of itera-

tions.
Obtained outputs are the sample locations x̂i ∈ S1, see Fig. 1
for an example.

To solve this, we propose to transfer the projected cumu-
lative distribution (PCD) from the Euclidean space Rd [58],
[59] to the circular domain S1 and use it for deterministic
sampling. The key idea is the projection to one-dimensional



(a) Two projected densities (b) Projected sampling procedure (c) Fixed eval. points (d) Adaptive eval. points

Fig. 2: (a) Continuous density function (blue) and two orthographic projections or marginals (yellow, purple), see (7).
(b) Procedure for deterministic sampling of a projected von Mises-Fisher density, using orthographic projection (7). Upper
part: we evaluate f(r) (blue) at the fixed evaluation points thj (black) as well as previous sample locations (red). Lower part:
Trapezoidal integration on said evaluation points is performed (blue). Compare the ground truth obtained with a numerical
ODE solver (yellow). Then, one-dimensional deterministic sampling is performed (black), yielding an approximating DM
distribution function (red). See also Alg. 1 for a more detailed description. (c, d) Deterministic circular sampling using (c)
only a fixed base set of 30 evaluation points thj versus (d) the 30 fixed base points plus the previous samples, for better
numerical integration. The difference for this quite “narrow” von Mises-Fisher distribution (κ = 500) is notable.

marginal distributions, thereby we reduce a multivariate
problem to a set of univariate ones. In the univariate setting,
cumulative distributions are uniquely defined and can easily
be approximated even for arbitrary density functions. In other
words, we match a continuous density with a DMD in the
Radon domain [60]. To optimally capture and transfer all of
the density’s details, it is important to include about 50 to
100 different projections, which we implement iteratively.

III. PROJECTION OF THE CIRCULAR DOMAIN

Projection along a certain direction u ∈ S1 allows to
compare one-dimensional PDFs f(r|u) at a time. CDFs
F (r|u) are uniquely defined in one dimension and, if no
closed-form solution is available, can easily be calculated
from the PDFs via the trapezoidal rule with proposal samples.
Furthermore, it is straightforward to compare two one-
dimensional CDFs. The following two types of projections
f(r|u) of circular densities f(x), (a) exponential map and
(b) orthographic projection, appear to be equally performant
for our purpose.

A. Exponential Map

Consider the circular domain as a real interval of length 2π
by cutting the unit circle open at an arbitrary position u ∈ S1,
and “unwrapping” it to a one-dimensional interval

f(r|u) =

f
([

cos(r − ∠u)

sin(r − ∠u)

])
, 0 ≤ r ≤ 2π ,

0 , otherwise ,

(2)

where ∠u = atan2(u(2), u(1)) is an angular representation
of u.

Intuitively, one might unwrap the circle just once at the
point of lowest probability density, compute the according
CDF, and place samples on the [0, 2π] interval using inverse
transform sampling, i.e., propagating equidistant samples on
[0, 1] through the inverse CDF. However, this works perfectly
only if the density doesn’t “interact” across that point of
lowest density. That is, the overall density should be narrow,
and virtually zero in a considerably wide region around the
point of lowest density. Otherwise, all circular permutations
have to be considered [61], [62]. For example, the wrapped
Cauchy distribution in Fig. 3b exhibits some interaction across
the point of smallest density.

B. Orthographic Projection

Consider the Euclidean embedding of the circular manifold
S1 in R2. We then perform a linear projection

rrr = u>xxx , (3)

of the random variable xxx using the direction vector u, which
yields a univariate random variable rrr. In terms of densities,
we calculate the marginal distribution along u

f(r|u) =

∫
S1

f(x) δ(r − u>x) dx | α = ∠x (4)

=

2π∫
α=0

f

([
cos(α)
sin(α)

])
δ

(
r −
[
cos(∠u)
sin(∠u)

]>[
cos(α)
sin(α)

])
dα

(5)



Algorithm 1: Calculate sample deltas that make a
DMD approximate a continuous density by matching the
cumulatives, in the univariate (projected) setting.
Function
{∆ri}Li=1 ← sample1D( frrr(·), {ri}Li=1 )
Input: frrr(·): continuous reference density in one

dimension,
{ri}Li=1: current sample approximation

Output: {∆ri}Li=1: proposed step for each sample, to
improve similarity to frrr(·){

thi
}Lh

i=1
// Fixed evaluation points

{tj}L
e=Lh+L

j=1 ←
{
thi
}Lh

i=1
∪ {ri}Li=1

{Fj}L
e

j=1 ← cumtrapz( {tj}L
e

j=1 , {frrr(tj)}
Le

j=1 )

{Fj}L
e

j=1 ←
{
Fj + 1−FLe

2

}Le

j=1
// Centering

for i← 1 to L do
F det ← 2i−1

2L // Deterministic sampling(
jL, jR

)
← adjacent( F det, {Fj}L

e

j=1 )

// Quadratic interpolation

m← fjR−fjL
tjR−tjL

(a, b, c)← FjL +
∫ x
tjL

m ·
(
x− tjL

)
dx

!
= F det

(xquad1 , xquad2 )← roots( a, b, c )
// Linear interpolation

xlin ← Fdet−FjL

m + tjL
// Updated sample location

rei ← select_best( xquad1 , xquad2 , xlin )
end
// Assign ri and rei(
{rsorti }Li=1 , {ji}

L
i=1

)
← sort( {ri}Li=1 )

for i← 1 to L do
∆rji ← rei − rsorti // Sample step

end

=

2π∫
α=0

f

([
cos(α)
sin(α)

])
δ(r − cos(α− ∠u)) dα (6)

=


2∑
i=1

f

([
cos(αi + ∠u)

sin(αi + ∠u)

])
1

|sin(αi)|
, |r| ≤ 1 ,

0 , |r| > 1 ,

(7)

with

αi =

{
arccos(r) , i = 1,

2π − arccos(r) , i = 2 .
(8)

See Fig. 2a for a visualization of two orthographic projections
of a von Mises density.

IV. IMPLEMENTATION

With a suitable projection at hand, we can now start
approximating the given continuous density. It is well known
that samples of any one-dimensional density, like our projected

Algorithm 2: PCD-based deterministic sampling of
conditional circular densities.
Function {x̂i}

L
i=1 ← sampleS1( fxxx(·), L )

Input: fxxx(·): continuous circular density, x ∈ S2,
L: number of wanted samples

Output: {x̂i}
L
i=1: deterministic samples on the circle that

approximate fxxx(·)
N ← 2 // Projections per iteration
// High quality for visualization
M ← 200 // Number of iterations
λ0 ← 0.99 // Update step decrease factor
// Initialization
λ← 1

{x̂i}
L
i=1 ← rand( L, S2 )

for m← 1 to M do
ϕ0 ← rand( 1, S2 )

{∆x̂i}
L
i=1 ← 0

for n← 1 to N do
// Symmetric projections
ϕ← π · (n− 1)/N + ϕ0

u←
[
cos(ϕ)
sin(ϕ)

]
// Project the samples x̂i → ri

{ri}Li=1 ←
{
u>x̂i

}L
i=1

// Project the density fxxx(·)→ frrr(·|u)
// according to Sec. III
frrr(·)← project( fxxx(·), u )
// Get projected sample updates
// using Alg. 1

{∆ri}Li=1 ← sample1D( frrr(·), {ri}Li=1 )
// Get sample updates in R2

{∆xi}
L
i=1 ← { backproject( ∆ri ) }Li=1

{∆x̂i}
L
i=1 ← {∆x̂i + ∆xi}

L
i=1

end
λ← λ · λ0
for i← 1 to L do

// Perform sample update
x̂i ← x̂i + λ∆x̂i/N
// Restrict to S2

ϕi ← atan2( x̂(2)i , x̂
(1)
i )

x̂i ←
[
cos(ϕi)
sin(ϕi)

]
end

end

PDF, can easily be drawn when the inverse of the CDF
is available. Therefore, we seek to obtain the following
intermediate results one by one in the course of this section:

• reference PDF fC (x) (is given),
• projected PDF fC (r|u),
• projected CDF FC (r|u),
• inverse CDF FC

−1
(p|u),

• sample locations ri,
• sample updates ∆xi.



(a) von Mises (b) wrapped Cauchy (c) wrapped normal (d) wrapped exponential

(e) von Mises mixture (f) custom distribution, sinusoidal (g) piecewise constant (h) uniform

Fig. 3: Illustration of various circular distributions and deterministic samples obtained with the proposed method. Continuous
probability density function (blue) on the angular domain S1 (black), with sampling results (red). For better visualization, the
length of the red lines representing the unweighted samples has been set to the maximum density function value (mode)
instead of the sample weight 1/L.

The procedure will then be repeated iteratively for different
projection vectors u.

A. Composite Trapezoidal Integration

The projected PDF fC (r|u) is available in closed form
by inserting the given fC (x) into (2) or (7). Since we
are permitting arbitrary density functions, a closed-form
representation of the according CDF

FC (r|u) =

∫ r

t=−∞
f(t|u) dt (9)

is not possible in general. However, we know that the integrand
f(r|u) has limited support, i.e., r ∈ [0, 2π) for the exponential
map projection (2), and r ∈ [−1, 1] for the orthographic
projection (7). To obtain an approximation of F (r|u), we
apply the composite trapezoidal rule with an adaptive set of
function evaluation points tj .

A fixed base set of homogeneous function evaluation points
thj inside the support interval is always used to ensure a
good general approximation of the CDF’s global shape. In
addition to the base points, to maintain proper accuracy of the
numerical integral even in the case of very localized PDFs
with small extent, the projected samples rpi in the currently
assumed approximating density fDM (r|u) are always included
into the set of function evaluation points. Summarizing, after
composite trapezoidal integration of fC (r|u) with said evalua-
tion points, we now have a piecewise quadratic representation
of the projected reference CDF, FC (r|u).

B. Deterministic Sampling

We draw deterministic samples pi that are uniformly
distributed in [0, 1] ,

pi =
2i− 1

2L
, i ∈ {1, 2, . . . , L} , (10)

and propagate them through the inverse CDF to obtain
deterministic samples ri of fC (r|u)

ri = FC
−1

(pi|u) , i ∈ {1, 2, . . . , L} . (11)

Under the assumptions that have been made with the
trapezoidal rule, our representation of fC (r|u) is piecewise
linear, and thus FC (r|u) is a piecewise quadratic. Therefore,
evaluation of FC

−1
(pi|u) for any pi to obtain ri involves two

steps. First, a search for the relevant interval, i.e., an adjacent
pair (tL, tR) from the trapezoidal function evaluation points ti
such that FC (tL|u) ≤ pi < FC (tR|u). Second, the quadratic
(or sometimes linear) function that represents the CDF in this
segment has to be inverted, which is easily done in closed
form.

Of course, if a closed-form representation of the projected
CDF or even its inverse is available, we can use it directly
for sampling, with no need for trapezoidal integration. For
example, a fast approximation of the von Mises-Fisher
density’s cumulative (in conjunction with the exponential
map) is available in closed form [63]. Note that deterministic
sampling by propagating equally distributed deterministic
samples, i.e., equidistant samples, on [0,1] through the inverse
CDF, as proposed here, is equivalent to deterministic sampling



(a) Mean estimate versus L (b) Run time versus L

MetropolisHastings
PCD25
PCD50

(c) Error versus run time

Fig. 4: Evaluation that compares the proposed deterministic PCD sampling with 25 iterations (red) and 50 iterations (yellow)
to random sampling (blue). Shaded areas denote 1σ-bounds based on 100 trials. (a) Expectation value estimation with
nonlinear function (12). (b) Computation time needed to obtain L samples. (c) Optimality plot showing estimation error
versus computational complexity for sampling only.

by minimizing the L2-norm of the difference of both CDFs
[58].

At this point, we have available the deterministic sample
locations ri in the projected space that is defined by the
projection direction u. See Fig. 2b for a visualization of
CDF-based sampling in the projected space.

C. Sample Update

The projected sample locations ri now have to be back-
projected to the original domain S1. We typically use
updates from several symmetrically arranged projections
simultaneously in order not to create preferential directions.
The projected samples generated as described in Sec. IV-B
are not naturally associated with the existing samples from
previous iterations. Thus, we have to find an appropriate
association first. Projection also helps us here as in the one-
dimensional case, the association that minimizes the global
distance of associated point pairs can simply be obtained by
element-wise comparison of the sorted sets. The according
global distance is also called Wasserstein distance. Refer to
Alg. 1 for a pseudo-code representation of the procedure
described up to here.

D. Multiple Projections

To equally consider all dimensions, we propose to use
a symmetric set of N projections in each iteration step.
For the case N = 2 as considered here, we use N = 2
projections per iteration. We choose orthogonal projections
(90° between them) but with random orientation, see Fig. 2a
for an example. The individual sample updates from each
projection are averaged, thus yielding the total update ∆x̂i
of the current iteration step.

E. Iterative Update

The procedure is repeated until the arrangement of the
samples obtains a satisfactory quality. In practice, one can
specify a fixed number of iterations like 10, 25, or 50 –

depending on how locally homogeneous and accurate the
points should be. In general, the trade-off between the number
of samples and the number of iterations depends on the
computational complexity of the algorithm that uses the
generated samples afterwards. To asymptotically reach a
stationary state, we propose to multiply sample updates with an
exponentially decreasing discounting factor λ. This accounts
for the fact that more and more information (from more
projections) is already present in the sample locations and
the amount of extra information provided by every additional
iteration decreases. Refer to Alg. 2 for a more detailed
presentation regarding the iterative sample update scheme.

V. EVALUATION

Our adaptive choice of evaluation points for numerical
integration allows for an accurate approximation even for
“narrow” densities, see Fig. 2d, where the base set of fixed
evaluation points alone would not be sufficient, see Fig. 2c.
Note that acceptance-rejection random sampling with a
uniform proposal would be very inefficient in this case. The
flexibility of the proposed method is demonstrated by showing
obtained deterministic samples from various density functions,
see Fig. 3.

A simulation of a nonlinear expectation value estimation
demonstrates the capabilities of our proposed method more
quantitatively. We compare the proposed deterministic sam-
pling with random samples from the Metropolis-Hastings
method [1] using the implementation in the libDirectional
library [64]. It samples from arbitrary density functions,
just like our proposed new method. An equally distributed
initial sampling set is transformed to a von Mises density
(µ = 0, κ = 3) in 25 and 50 iterations, respectively, with two
projections per iteration, and a base set of 30 fixed evaluation
points thj for the composite trapezoidal rule. The expected
value of

zzz =
√

(xxx− 1)2 + yyy2 (12)



is estimated based on these samples. See Fig. 4 for the
results. Estimation accuracy is of course much better with
deterministic samples than with random samples, see Fig. 4a.
The cost is however more computation time, although PCD
sampling can get faster than Metropolis-Hastings for L > thj ,
see Fig. 4b. Note that PCD sampling becomes even more
attractive when the nonlinear function propagating the sam-
ples is computationally complex because PCD means fewer
samples for the same accuracy.

MATLAB source code implementing the presented algo-
rithm is published as supplementary material in IEEE Xplore
as a Code Ocean capsule1.

VI. CONCLUSIONS

We presented a new, alternative method for generating any
number of deterministic samples for any continuous density
function on the circle. The concept can be applied just as
well in higher dimensions. It does not require gradient-based
numerical optimization like LCD-based methods. Instead,
we use a naturally gradient-free method to optimize sample
locations iteratively. Moreover, the distance measure is simple
and indisputable: fitting the cumulatives in terms of the L2

norm is always an adequate solution for univariate densities.
No parameters such as kernel widths or weighting functions
need to be chosen. Using PCD, we can apply the same
elementary method (fitting one-dimensional cumulatives) to
higher dimensions. Our proposed solution is faster than
existing methods based on the LCD, yet it still requires an
iterative loop to get optimal sample locations. Therefore it
is especially suitable 1) when function evaluations in the
calculation of expected values are relatively expensive, e.g.,
require their own simulation, and evaluation points must be
chosen as carefully as possible, or 2) where the deterministic
sampling results can be pre-calculated offline and stored in a
static library for online use.

In the future, we will extend this method to higher-
dimensional geometries such as the hypersphere and the
hypertorus. While calculating the projected densities was
straightforward on the circle, it will be more difficult in higher
dimensions, because one-dimensional cumulatives have to be
calculated repeatedly when using the PCD method. We will
look for closed-form solutions that work for specific types of
densities. Furthermore, numerical integration techniques with
an adaptive choice of evaluation points will be pursued, as
also pure sample reduction techniques, where no integration
is necessary. Presumably, orthographic projection is a good
choice for hyperspherical higher-dimensional extensions of
the circle, and the exponential map for the Cartesian product
of circles, i.e., toroidal manifolds.
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