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Abstract—We present a quasi-Monte Carlo acceptance-
rejection sampling method for arbitrary multivariate continuous
probability density functions. The method employs either a uni-
form or a Gaussian proposal distribution. The proposal samples
are provided by optimal deterministic sampling based on the
generalized Fibonacci lattice. By using low-discrepancy samples
from generalized Fibonacci lattices, we achieve a more locally
homogeneous sample distribution than random sampling meth-
ods for arbitrary continuous densities such as the Metropolis-
Hastings algorithm or slice sampling, or acceptance-rejection
based on state-of-the-art quasi-random sampling methods like
the Sobol or Halton sequence.

I. INTRODUCTION

A. Context

Random, quasi-random, and deterministic samples, or par-
ticles, play an important role in, e.g., nonlinear filtering and
control. In contrast to continuous density functions, samples
can very easily be propagated through nonlinear functions
like system dynamics or measurement models. Furthermore,
expectations such as covariance matrices can be efficiently
estimated using samples. Quasi-random numbers, instead of
random numbers, are often used to cover the state space more
uniformly and to avoid clusters of samples, and gaps in other
places, that occur frequently in random samples, see Fig. 1.

B. Problem to be Considered

We consider the problem of obtaining unweighted samples
of arbitrary multivariate continuous density functions. In order
to obtain a point distribution that is locally homogeneous, and
therefore exhibits faster convergence of expectation estimates,
we employ low-discrepancy samples, preferably with the
generalized Fibonacci lattice.

C. State-of-the-art

There are different ways to represent density functions with
samples. The simplest way is a regular, equidistant grid, where
the samples are weighted proportionally to the density value
at the respective location [1]. However, since the entire state
space must be covered with this grid, storage requirements
are high. Furthermore, samples with small weights have only
little contribution to the result but contribute equally to the
computational load. Alternatively, there are non-equidistant
unweighted samples that store information about the density
in the sample locations instead of their weights. Three general

Fig. 1: Random (blue), quasi-random (red), and optimal deter-
ministic (purple) Gaussian samples. Quasi-random: inversion
method on uniform Sobol sequence. Optimal deterministic:
inversion method on uniform Fibonacci grid. The figure shows
300 samples for each method.

variants exist. See Fig. 1 for a visual comparison between
them.

Random: First and foremost, there are independent
random samples. There are direct methods and fast inversion
methods in place to generate random (or pseudo-random)
samples efficiently for various density functions, like the
uniform and standard normal random number generators being
present in every statistical programming library. For arbitrary
densities, the random acceptance-rejection method can be
used [2], [3]. Furthermore, there are Markov chain-based
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Fig. 2: Simple and intuitive example for acceptance-rejection sampling from a univariate Gaussian density (thick black line).
Uniform proposal samples (union of red and blue dots) with added “extra dimension” (vertical axis). Samples “above” f(x) are
rejected (red dots), samples “below” are accepted (blue dots). Finally, the y-coordinate, corresponding to the “extra dimension”,
is discarded, and we obtain the wanted univariate samples of f(x) (black dots).

samplers like the Metropolis-Hastings algorithm [4] and the
slice sampler [5].

Quasi-Random ≡ Suboptimal Deterministic: Second,
there are quasi-random deterministic sequences that exhibit
a low discrepancy. That is, they cover the state space more
evenly by avoiding random clusters, and therefore allow for an
improved convergence rate, i.e., better estimation results with
fewer samples. Examples are the Halton and Sobol sequence
[6]. These sequences generate multivariate uniform samples and
can often be used as a drop-in replacement for random samples.
With inversion techniques, some non-uniform densities such
as the Gaussian can be obtained just as with random samples.
Acceptance-rejection, on the other hand, cannot be transferred
one-to-one from random samples to quasi-random ones. To
retain the low discrepancy, the samples may be smoothed
[7]. A more elegant way is to produce quasi-random proposal
samples with one additional dimension, and have a deterministic
acceptance-rejection based on the value of that additional
coordinate [8], [9]. This is exactly what we propose, however,
for proposal sampling, we employ the generalized Fibonacci
sequence.

Optimal Deterministic: Third, there is optimal determin-
istic sampling. These methods place each individual sample
optimally. Usually, they are the solution to an optimization
problem and thus are expensive to compute. This holds for the
Localized Cumulative Distribution (LCD), where a distance
measure between continuous and discrete density functions
is defined and minimized numerically [10], [11], [12]. The
projected cumulative distribution (PCD) can be applied to
more types of density functions and is somewhat easier to
calculate, as sample placement involves a gradient-free iterative
optimization similar to expectation-maximization [13], [14].
Recently, Purser’s generalized Fibonacci grid [15] has made it
possible for the first time to have sample sets with properties
analogous to the well-known two-dimensional Fibonacci grid
[16], [17] also in higher dimensions. It has been used to
directly obtain optimal deterministic Gaussian samples [18] in
dimensions N where (2N + 1) is prime and also for N = 4.

Sampling techniques can also be classified into “open”
methods, where samples can be added without changing the

previously drawn samples, and “closed” methods, where all
samples have to be discarded in order to add or remove
samples. Furthermore, some methods produce samples that
can be transformed, e.g., from standard normal to arbitrary
Gaussian, while keeping their homogeneity properties.

II. KEY IDEA

Instead of state-of-the-art quasi-random proposal samples
for acceptance-rejection [3], we propose to employ optimal
deterministic proposal samples. More specifically, we use
Purser’s generalized Fibonacci grid. These point sets generalize
the properties of the two-dimensional Fibonacci grid to
higher dimensions. Note that constructions for the generalized
Fibonacci grid are yet available for a limited number of
dimensions only [18].

III. INPUTS AND OUTPUTS

Here, we give a brief overview of what our method requires
as input (I1, I2, I3, I4) and returns as output, depending on
the type of proposal.

A. Uniform Proposal Density

I1 density function f(x) as function handle
I2 bounding box of probability mass of f(x)
I3 scaling factor c such that c · f(x) ≤ 1 ∀x
I4 wanted number of samples

B. Gaussian Proposal Density

I1 density function f(x) as function handle
I2 mean µp and covariance Cp of proposal fp(x)
I3 scaling factor c such that c · f(x)/fp(x) ≤ 1 ∀x
I4 wanted number of samples
Based on this information, our proposed method calculates

L unweighted quasi-random samples that approximate f(x).

IV. METHOD DERIVATION

A. Prerequisites

We assume an arbitrary known probability density function
(pdf) f(x) with x ∈ R

N to be given. The argument vector x
can be written as

x =
[

x(1) x(2) . . . x(N)
]⊤

= x(1:N) . (1)
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Fig. 3: Visualization of acceptance-rejection sampling from a given univariate density f(x) (in black). The vertical axis
represents the “extra dimension” used for the acceptance-rejection decision. Uniform samples are shown, where the red ones
are rejected and the blue ones accepted. A histogram of the blue (accepted) samples with 43 bins is shown in yellow. Random
samples give the worst result, closely followed by Latin hypercube sampling. Low-discrepancy sequences (Halton, Sobol)
provide more uniform results but are outperformed by three-dimensional Fibonacci sampling (N + 2, “open”) and even more
by two-dimensional (N + 1, “closed”) Fibonacci sampling. (Figure modified from [9].)

The pdf f(x) is not necessarily normalized, i.e., the condition

∫

RN

f(x) dx = 1 (2)

does not necessarily hold. A typical reason for that is that the
normalization integral cannot be calculated with a reasonable
computational cost.

For this pdf f(x), we want to find a Dirac mixture (DM)
approximation of the form

f̂(x) =
1

L

L
∑

i=1

δ(x− x̂i) , (3)

i.e., a set of equally weighted (what we also call unweighted)
samples x̂i that represent the continuous pdf f(x) in an optimal
way.
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Fig. 4: Contour lines (yellow) of the non-Gaussian density function f(x) used here for evaluation, the exact formula is given in
(22). Overlaid about 210 samples (blue) produced by slice sampling (a) and acceptance-rejection of various uniform sample sets
(b-f). Note that the individual numbers of samples vary slightly due to rejection. For state-of-the-art methods (a-d), MATLAB
standard parameters for the random slice sampler (a) and the quasi-random number generators (b-d) are used, i.e., no skip or
leap. Compare our proposed methods (e, f) with a uniform generalized Fibonacci proposal: “closed” version, projected from a
three-dimensional Fibonacci grid (e), and “open” version, projected from a four-dimensional Fibonacci grid (f). Quantitative
results in Fig. 5.



B. Uniform Proposal Sampling

In the first step, we generate a uniform proposal point set
ûj with one “extra dimension”

ûj ∈ [0, 1]
N+1 ⊂ R

N+1 , (4)

ûj =

[

û
(1:N)
j

û
(N+1)
j

]

, j ∈ {1, 2, . . . , L0} , (5)

where L0 is chosen properly such that the we obtain approx-
imately the desired number of samples after rejection. We
propose to use the generalized Fibonacci grid [15], [18] here
as an optimal deterministic proposal.

Second, we define a bounded region that contains a signif-
icant amount of the probability mass of f(x). In this paper,
we focus on a hyperrectangular bounding box B ⊂ R

N

for simplicity. We describe this bounding box by a matrix
B ∈ R

N×2 that contains minimum and maximum values
for each dimension. A practical criterion for defining such
a bounding box in this context is

c · f(x) ≤ γ ∀ x /∈ B , (6)

B : {x | x ∈ [B1,1, B1,2]× . . .× [BN,1, BN,2]} , (7)

where γ = minj

{

û
(N+1)
j

}

, which is on average 1/L for

uniform distributions, c is a constant such that c · f(x) ≤ 1 ∀x,
and Bn,m are the entries of B that describe B. The proposal
point set is then, via scaling and translation of the individual
coordinates, transformed from [0, 1]

N+1 to B × [0, 1].

C. Gaussian Proposal Sampling

For the Gaussian proposal fp(x), we generate an optimal
deterministic uniform Fibonacci grid in [0, 1]

N+1 just as
above. Subsequently, the first N dimensions are transformed
to the Gaussian proposal distribution using the eigenvalues
and eigenvectors of its covariance, as described in [18]. The
coordinate of dimension (N + 1) stays uniformly distributed.

D. Rejection

The rejection decision can be best understood intuitively
for the uniform proposal, see Fig. 2. As the height of the
pdf is proportional to the desired local point density, and the
area under pdf corresponds to the probability mass, we obtain
the correct distribution of samples if we uniformly fill the
area under the pdf with samples, and then project the samples
down by marginalizing out the “extra dimension”. For a more
detailed explanation, refer to [3].

Regarding the formal description of the rejection process, at
this point, we have a proposal sample set in R

N+1 given as
sample locations ûj , where û

(1:N)
j is either uniform or normal,

and û
(N+1)
j is uniform. In the next step, some samples must

be rejected to obtain a representation of the wanted pdf f(x).
We define a function h(x) that serves as a reference for

whether to accept or reject any sample

h(x) = c · f(x) (8)

for uniform and

h(x) = c · f(x)/fp(x) (9)

for Gaussian proposals. Either way, it holds h(x) ∈ [0, 1] ∀x.
In the rejection phase, we remove those samples where the
coordinate û(N+1)

j is larger than the function value of h(û(1:N)
j ).

In other words, the indicator function I(·)

I(û) =

{

1 , û(N+1) ≤ h(û(1:N))

0 , û(N+1) > h(û(1:N))
(10)

decides whether to keep (I(·) = 1) or to reject (I(·) = 0)
a sample û. After this decision, the coordinate of dimension
(N + 1) can be discarded and the coordinate values û

(1:N)
i

become the final sample locations x̂i. See Fig. 3e and Fig. 4e
for examples in N = 1 and N = 2, respectively.

Note that it is not known beforehand how many samples
get rejected, and thus how many samples L one obtains for a
given number of uniform samples L0. Therefore, if a “closed”
sequence is used, and one wants to obtain exactly a pre-
determined number of samples L, sampling and rejection must
be done repeatedly if necessary. To avoid this, one should
resort to “open” sequences in this case, or use the method
described in the next section.

E. Sequential Sampling

A small generalization allows for reducing or increasing
the number of samples even after rejection, while keeping the
old samples in place. To do this, we add yet another “extra
dimension” and generate uniform proposal samples

ûj ∈ B × [0, 1]× [β1, β2] ⊂ R
N+2 , (11)

û =





û(1:N)

û(N+1)

û(N+2)



 , (12)

with β1 < β2 , e.g., [β1, β2] = [0, 1]. Rejection works just
the same way as before, based on û

(N+1)
j . See Fig. 3f and

Fig. 4f for examples in N = 1 and N = 2, respectively. To
remove samples from the final sample set, they are first sorted
according to û

(N+2)
j . Then, the desired number of samples

with the largest, or smallest, value of û(N+2)
j are removed. For

the non-periodic Fibonacci lattice, it is also possible to add
samples. One simply needs to take a connected set for û(N+2)

j

that follows without gap, e.g., (β2, β3] = (1, 2]. Note that
some state-of-the-art low-discrepancy sequences like Halton
and Sobol are “open” by design, i.e., have their good-but-not-
optimal properties for a wide range of the number of samples
and can be used sequentially one by one without the extra
dimension.

V. EVALUATION

We consider calculating the expected value of a nonlinear
function g(·) of the random vector xxx

E{g(xxx)} =

∫

RN

g(x) · f(x) dx , (13)
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Fig. 5: Quantitative nonlinear expectation estimation results and computation times with various sampling methods. In (a), the
minimum and maximum value, and in (b), the best and worst result out of 100 trials is indicated by the shaded area. Solid
lines show the mean of all trials. To obtain different results in individual trials also for the quasi-random sequences, parameters
like “skip” or “burn-in” were randomly chosen. For the 3D Fibonacci grid and the “open” 4D version (FibonacciExt), random
grid offsets and coordinate permutations were used. Geometric visualization of the setup is given in Fig. 4.

and obtain an estimate Ê{·} of the expected value by replacing
the true pdf f(x) by its Dirac mixture approximation f̂(x).
This yields

Ê{g(xxx)} =

∫

RN

g(x) · f̂(x) dx (14)

=

∫

RN

g(x) ·
1

L

L
∑

i=1

δ(x− x̂i) dx (15)

=
1

L

L
∑

i=1

g(x̂i) . (16)

Depending on the choice of g(·), the expected value E{g(xxx)}
can be the mean value of the pdf f(x), the correlation, the
covariance, and others. In our example, we choose the number
of dimensions to N = 2 for ease of visualization of the setup
and the function g(·) as

g(x) =

∣

∣

∣

∣

x−

[

1
0

]
∣

∣

∣

∣

2

=

√

(

x(1) − 1
)2

+
(

x(2)
)2

. (17)

The non-Gaussian pdf f(x) in our examples can be written as
a product of a prior pdf fp(x) and a likelihood Λ(x), where

µ
M

=
[

0 0.5
]⊤

, (18)



N
(

x, µ, C
)

= |2πC|−N/2
exp

{

−
1

2
x⊤

C
−1x

}

, (19)

fp
1,2(x) = N

(

x, ±µ
M
, I

)

, (20)

Λ1,2(x) = N

(

∣

∣

∣
x∓ µ

M

∣

∣

∣

2

2
, 1, 0.2

)

, (21)

f(x) = fp
1(x)Λ1(x) + fp

2(x)Λ2(x) . (22)

See Fig. 4 for visualizations of the f(x) as defined in (22),
together with various sampling results. Note that it is not
important that f(x) is properly normalized. We only need to
know the constant c, and a boundary B containing all the
significant probability mass, or the Gaussian proposal. The
mode xmode of f(x) in (22) has been obtained by numerical
optimization,

xmode ≈

[

0.873
−0.0220

]

, (23)

1/c = f(xmode) ≈ 1.033 . (24)

Quantitative evaluation results are shown in Fig. 5.
A MATLAB implementation of the proposed sampling

method for arbitrary continuous pdfs is published along with
this paper. You can find the source code in IEEE Xplore Code
Ocean1.

VI. CONCLUSIONS

The proposed method for rejection sampling is simple to
implement, works with arbitrary multivariate pdfs, and does
not require a normalized pdf.

In a first step, optimal deterministic uniform (or Gaussian)
proposal samples are generated in higher-dimensional spaces
(original dimensions plus one or two auxiliary dimensions). In
a second step, rejection sampling simply selects those samples
from “under” the pdf and projects them to the original space,
which yields the desired samples.

The proposal samples in the higher-dimensional space
are generated using generalized Fibonacci grids as optimal
deterministic samples. With generalized Fibonacci grids, large
numbers of optimal deterministic uniform and Gaussian sam-
ples can be generated quickly (without optimization required)
for the first time. Also, nearly-optimal deterministic samples
of arbitrary pdfs can be generated via acceptance-rejection
as demonstrated in this work: by acceptance-rejection and
projection onto the lower-dimensional original space, the
optimal deterministic samples lose some of their optimality
but are still superior to state-of-the-art quasi-random samples.

In the future, we will follow up with lattice rules and
Kronecker rules for Purser’s generalized Fibonacci grids.
These will allow for optimal deterministic generated fast and
sequentially one by one even in higher dimensions.

1https://codeocean.com/capsule/0257002/tree
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