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Abstract—We present a novel nonparametric scheme for mod-
eling circular random variables. For that, the circular Cramér–
von Mises distance (CCvMD) is proposed to measure the statis-
tical divergence between two circular discrete models based on a
smooth characterization of the localized cumulative distribution.
Given a set of weighted samples from empirical data, the under-
lying unknown distribution is then reapproximated by another
sample set of configurable size and dispersion-adaptive layout
in the sense of least CCvMD. Built upon the proposed circular
discrete reapproximation (CDR), a new method is introduced
for density estimation with von Mises mixtures. Moreover, the
CDR scheme is extended to topological spaces composing the unit
circle and Euclidean space of arbitrary dimension, and a new
regression model for random circular vector fields is proposed
based thereon. We provide case studies using synthetic and real-
world data from wind climatology. Numerical results validate
the efficacy of proposed approaches with promising potential of
outperforming competitive methods.

Index Terms—State estimation and inference, directional statis-
tics, nonparametric probabilistic modeling, regression model

I. INTRODUCTION

Random variables in circular domains appear in various ap-
plication scenarios ranging among human-machine interaction,
sound source localization, meteorology, bioinformatics, and
ecology [1]–[5]. Performing state estimation and inference in
this scope depends heavily on the representation fidelity and
efficiency of the deployed circular probabilistic models.

High-fidelity modeling of uncertainty on the unit circle is
nontrivial. Common probabilistic models in Euclidean space
(e.g., normal distribution) cannot be directly applied to circular
domain due to its periodic and nonlinear topological structure.
Conventional strategy interprets directional uncertainty in a lo-
cally linearized space based on local perturbation assumption.
In many related scenarios, however, this strategy is likely to
be invalidated by highly uncertain or dynamic systems [6].

In consideration of the aforementioned issues, recent effort
has been dedicated to applying topology-aware probabilistic
models to directional estimation and inference, in particular,
by using distributions from directional statistics [7]. Unlike
adapted models from Euclidean space, they are inherently
defined on circular or (hyper-)spherical manifolds. Popular
probabilistic models on the unit circle S1 include the wrapped
normal distribution, the von Mises distribution, and the Bing-
ham distribution [8]. Various statistical methods, e.g., deter-
ministic sampling and parameter estimation, have been estab-
lished to facilitate tackling related tasks, in particular, recursive
Bayesian estimation of directional random variables [9].

Though directional statistics provides a theoretically sound
means for modeling directional uncertainty, there still exist
several limitations. For instance, most probabilistic density
functions (PDFs) are defined on directional manifolds of
simple structures (e.g., circles or spheres). In real-world tasks,
however, random variables often belong to domains with extra
complex topological structures, such as antipodal symmetry
(on unit quaternion manifold) and composition with other
Euclidean or non-Euclidean space [10], [11]. The former
can be handled by certain PDFs with antipodally symmetric
dispersion (e.g., Bingham or Watson distributions). The latter
refers to composite directional domains, where choices of off-
the-shelf parametric models are fairly limited w.r.t. topological
variety.

One major theoretical obstacle therein lies in the interpre-
tation of correlation across domain components, for which
solutions are often domain-specific. On the torus S1× S1, the
bivariate wrapped normal distribution and the bivariate von
Mises distribution were exploited for recursive estimation [12].
An antipodally symmetric distribution was proposed on S1 ×
R2 in [13] for estimating planar transformations using the
dual quaternion representation [14]. Based on hyperspherical
parallel transport, a topology-aware modeling scheme was
introduced in [11] on the manifold of unit dual quaternions
representing generic rigid transformations.

PDFs from directional statistics have parametric forms,
which may largely violate the uncertain nature of randomness
with multi-modal or complex dispersion. Given that directional
domains are compact and bounded, one solution is to discretize
the state space using a grid of a certain layout. Consequently,
the underlying uncertainty can be approximated by Dirac mix-
tures or piecewise constant distributions at grid points [15]–
[18]. An extension to the composite directional domain S1×R2

was provided in [19] via Rao–Blackwellization for planar
motion estimation. Due to the fixed grid layout, high-fidelity
approximation of arbitrary dispersion can only be achieved
by increasing grid resolutions, which may lead to runtime
and memory inefficiency in common estimation and inference
tasks [16]. Such issues also arise when exploiting discrete
models based on random samples [20], [21], although their
adaptiveness allows for handling uncertainty of arbitrary form.

One promising methodology to improve the representation
efficiency of discrete models is reapproximation: Given a large
set of weighted samples for density approximation, a smaller
set of weighted samples is produced with deterministic and



dispersion-adaptive locations to reapproximate the underlying
distribution. This methodology was first introduced in [22] on
the planar dual quaternion manifold followed by a variant on
arbitrary dimensions of unit (hyper-)spheres Sd−1 (d ≥ 3)
in [23]. Both variants were applied to on-manifold recursive
estimation of corresponding directional quantities, delivering
superior performance over filtering schemes using random
samples.

Contributions

Following the generic design of on-manifold discrete reap-
proximation, we introduce its variant on the unit circle S1 for
efficient discrete probabilistic modeling of arbitrary circular
distributions (Sec. II). The proposed circular discrete reapprox-
imation (CDR) method further enables a new approach for
circular density estimation using von Mises mixtures (Sec. III).
Moreover, we extend the CDR method to composite circular
domains S1 × Rd incorporating Euclidean space of arbitrary
dimensions, leading to a novel discrete regression model
on random vector field of circular quantities (Sec. IV). We
validate the efficacy of the proposed methods with case studies
using synthetic and real-world data. A few advantages over
competitive methods are shown.

II. DISCRETE REAPPROXIMATION ON THE UNIT CIRCLE

The on-manifold discrete reapproximation methodology was
pioneered by the work in [24] for sample reduction in Eu-
clidean space. Later, a theoretically sound and generic design
for discrete modeling on directional manifolds was progres-
sively established through [22] and [23]. In this section, we
customize this methodology to the circular domain. We first
introduce the so-called circular localized cumulative distribu-
tion with a topology-aware kernel for smooth characterization
of Dirac mixtures on S1. Then, a circular variant of the
Cramér–von Mises distance (CCvMD) is proposed to quantify
the statistical divergence between two discrete models on S1.
Given a set of weighted samples as the source, a template
discrete model of fewer and dispersion-adaptive supports is
produced in the sense of least CCvMD.

A. Circular Localized Cumulative Distribution

Given a large set of samples X̂ = {x̂k}n̂k=1 ⊂ S1 ⊂ R2

and their weights Ŵ = {ŵk}n̂k=1 holding
∑n̂
k=1 ŵk = 1, the

underlying unknown distribution can be approximated by a
discrete model in the form of Dirac mixture

f̂(x) =

n̂∑
k=1

ŵk δ(x− x̂k) . (1)

δ(·) denotes the Dirac delta function. Such a discrete approxi-
mation using large amount of raw, e.g., random, samples lacks
representation efficiency for most empirical inference tasks.
Thus, we take the discrete model in (1) as the source and aim
to produce a template Dirac mixture with fewer supports at
more representative locations {xi}ni=1 ⊂ S1 ⊂ R2 following

f(x) =

n∑
i=1

wi δ(x− xi) . (2)

Here, {wi}ni=1 are the template sample weights that sum to
one, i.e.,

∑n
i=1 wi = 1.

Comparing two circular discrete models is theoretically in-
feasible using standard distance measures because they do not
share common supports. To achieve smooth characterization
using discrete models, we establish the localized cumulative
distribution [24] on the unit circle defined as below.

Definition 1 Suppose a random variable x ∈ S1 follows
a PDF f : S1 → R+. The circular localized cumulative
distribution (CLCD) of f(x) is defined as

F(α, τ) =

∫
S1
f(x)κ(x;α, τ) dx , (3)

with κ(x;α, τ) = exp(τα>x) being the kernel located at α ∈
S1 of concentration τ > 0.

By applying the definition above to (1) and (2), we derive
source and template CLCDs as

F̂(α, τ) =

∫
S1

n̂∑
k=1

ŵk δ(x− x̂k)κ(x;α, τ) dx

=

n̂∑
k=1

ŵk exp(τα>x̂k) and

(4)

F(α, τ) =

∫
S1

n∑
i=1

wi δ(x− xi)κ(x;α, τ) dx

=

n∑
i=1

wi exp(τα
>xi) ,

(5)

respectively. As shown above, the kernel function takes the
form of the unnormalized von Mises distribution, leading to a
topology-aware and smooth characterization of the underlying
distribution.

B. Circular Cramér–von Mises Distance

The next step is to measure the statistical divergence be-
tween two circular discrete models with their CLCDs. For that,
we adapt the Cramér–von Mises distance to the unit circle in
a similar fashion to [23] as follows.

Definition 2 Suppose F and F̂ are CLCDs of two discrete
models f and f̂ on S1, respectively, their circular Cramér–von
Mises distance (CCvMD) is

D(F, F̂) =

∫
R+

V(τ)

∫
S1

(
F(α, τ)− F̂(α, τ)

)2
dα dτ , (6)

with V(τ) = exp(−ετ) being the weighting function.

Given the template discrete model of size n and weights
{wi}ni=1 in (2), sample locationsX = {xi}ni=1 can be obtained
by minimizing its CCvMD to the source, i.e.,

X∗ = argmin
X⊂S1

D(F, F̂) , (7)



with F̂ and F being the source and template CLCDs in (4)
and (5), respectively. We decompose the objective function in
(7) into

D(F, F̂) =: D1(F,F)− 2D2(F, F̂) +D3(F̂, F̂) ,

with D1, D2 and D3 following the general expression of∫
R+

V(τ)
∫
S1 F1(α, τ)F2(α, τ) dα dτ . Here, F1 and F2 de-

note CLCDs of two arbitrary circular discrete models. Thus,
the last term D3(F̂, F̂) is constant given the source model
and does not contribute to optimization. The rest terms follow

D1(F,F) =

n∑
i=1

n∑
r=1

wi wr Q(xi, xr) ,

D2(F, F̂) =

n∑
i=1

n̂∑
k=1

wi ŵkQ(xi, x̂k) ,

(8)

and substitute Q is computed according to the formula

Q(u, v) =

∫
R+

V(τ)

∫
S1
κ(u;α, τ)κ(v;α, τ) dα dτ , (9)

where kernel values are measured at arbitrary sample locations
u, v ∈ S1. By incorporating the von Mises-like kernel defined
in (3) and the weighting function in (6), we then obtain

Q(u, v) =

∫
R+

V(τ)

∫
S1
exp

(
τα>(u+ v)

)
dα dτ

= 2π

∫
R+

exp(−ετ)I0
(
τ(2 + 2u>v)

)
dτ .

Integration over kernel locations induces the normalization
constant of the von Mises distribution, and I0 denotes the
modified Bessel function of the first kind and zeroth order.
Further, the integral over kernel concentration τ refers to the
Laplace transform of function I0(2 + 2u>v). Following the
formula in [25, Sec. 17.13.109], we have

Q(u, v) = 2π
(
ε2 − 2(1 + u>v)

)−1/2
(10)

under condition ε > 2. Then, the CCvMD terms in (8) are
expressed as

D1 = 2π

n∑
i=1

n∑
r=1

wi wr
(
ε2 − 2 (1 + x>i xr)

)−1/2
,

D2 = 2π

n∑
i=1

n̂∑
k=1

wi ŵk
(
ε2 − 2 (1 + x>i x̂k)

)−1/2
.

(11)

Note computations above only depend on the relative distance
respecting the arc length over all pairs of samples. Therefore,
the CCvMD provides a symmetric and unique measure for
quantifying the statistical divergence between two discrete
models adaptively to manifold geometry. Meanwhile, it leads
to a closed form that is smooth w.r.t. sample locations. This
further facilitates our optimization-based reapproximation.

C. Implementation

Similar to the reapproximation scheme for hyperspheres
in [23], we exploit Riemannian trust-region (RTR) method [26]
to solve the optimization problem in (7) given its smooth
and real-valued objective. More specifically, we concatenate
the desired template sample locations X = {xi}ni=1 column-
wise into a matrix, which belongs to the oblique manifold
OB(2, n) ⊂ R2×n. Implementation of the RTR is taken from
Manopt [27]. Riemannian optimization handles manifold
constraints explicitly without modification of the objective
(e.g., through incorporating Lagrange multipliers). Further,
symbolic forms of the objective’s gradients and Hessians in
the ambient space R2×n are often preferable for achieving fast
and stable convergence. This is possible thanks to the closed-
form expressions in (11), and essential derivatives are provided
in Appendix A. We showcase the proposed CDR technique in
the following example.

Case Study 1 We synthesize a complex distribution on the
unit circle by mixing parametric models from directional
statistics. Its PDF is given by f(x) = 0.2 · fVMM(x) + 0.8 ·
fBM(x), with x ∈ S1. fVMM and fBM are von Mises mixture
and Bingham mixture distributions defined as

fVMM(x) =
∑4
i=1 1/4 · fVM(x; θi, λi) and

fBM(x) =
∑2
i=1 1/2 · fB(x;R(φi),Zi) ,

respectively. The von Mises components are parameterized
with means {θi}4i=1 = {−π/4, π/2, π, 0} and concentrations
{λi}4i=1 = {10, 50, 10, 20}. According to the definition of the
Bingham distribution [28], we set up the Bingham compo-
nents with two-dimensional rotation matrices R(θi) through
angles {φi}2i=1 = {−π/6, π/12} and diagonal matrices
{Zi}2i=1 = {diag(−10, 0),diag(−2, 0)}. The former gives the
mode, and the latter controls the dispersion concentration.
We draw n̂ = 10000 random samples from the underlying
distribution, and reapproximate it to n ∈ {5, 10, 15, 30, 60}
template samples of equal weights via CDR.

Shown in Fig. 1, the proposed method yields template dis-
crete models with supports of deterministic and dispersion-
adaptive locations, which are much more representative and
efficient compared with random samples.

As validated in Case 1, the proposed CDR method can
largely improve the representation efficiency of discrete mod-
els approximating arbitrary distributions. A quantitative test of
such improvement can be conducted in the scenario of recur-
sive circular estimation following the generic reapproximation
discrete filtering in [23] (evaluated for hyperspheres). In this
paper, we do not repeat it due to resemblance, and the reader
may refer to the evaluation in [23] for more insight.

III. CDR-BASED DENSITY ESTIMATION

The proposed CDR method can further be exploited for
fitting a von Mises mixture to the source sample set via
maximum likelihood estimation (MLE). For that, we configure
the template samples X = {xi}ni=1 to be equally weighted for



n = 5 n = 10 n = 15 n = 30 n = 60

Figure 1: Circular discrete reapproximation using random samples for Case 1. Red curves denote the underlying circular
distribution, and template discrete models given by CDR are depicted by blue dots.

n = 5 n = 10 n = 15 n = 30 n = 60
HEM = 0.0416 HEM = 0.0336 HEM = 0.0237 7 7
HDR = 0.0333 HDR = 0.0161 HDR = 0.0058 HDR = 0.0023 HDR = 0.0012

Figure 2: Circular density estimation based on discrete reapproximation (DR) and expectation maximum (EM) for Case 2.
The proposed two-stage approach delivers von Mises mixtures of higher fidelity (blue) compared with the ones given by EM
(green) w.r.t. Hellinger distances H to the ground truth (red).

CDR. Then, each component of the targeted von Mises mixture
is placed on each template sample with one joint concentration
parameter ζ, namely,

fVMM(x;X, ζ) =

n∑
i=1

1

n
fVM(x;xi, ζ)

=

n∑
i=1

1

2πnI0(ζ)
exp(ζx>i x) .

The next step is to determine the optimal ζ in the sense of
MLE w.r.t. the source samples {x̂k}n̂k=1 and their weights
{ŵk}n̂k=1, namely,

ζ∗ = argmax
ζ≥0

ß n̂∑
k=1

ŵk ln
(
fVMM(x̂k;X, ζ)

)™
=: argmax

ζ≥0
{Y(ζ)} .

(12)

The objective function Y(ζ) is formulated in the form of log-
likelihood and can further be derived as

Y(ζ) =

n̂∑
k=1

ŵk ln

Å n∑
i=1

1

I0(ζ)
exp(ζx>i x̂k)

ã
= − ln

(
I0(ζ)

)
+

n̂∑
k=1

ŵk ln

Å n∑
i=1

exp(ζx>i x̂k)

ã
.

To solve the MLE problem in (12), we need to find the zero
of the objective’s first derivative Y′(ζ), which follows

Y′(ζ) =

n̂∑
k=1

Å
ŵk

∑n
i=1(x

>
i x̂k) exp(ζx

>
i x̂k)∑n

i=1 exp(ζx
>
i x̂k)

ã
−I

′
0(ζ)

I0(ζ)
. (13)

We substitute the last term with A(ζ) = I′0(ζ)/I0(ζ), and the
numerator goes to I1(ζ) according to the recurrence relations
for derivative of modified Bessel function of the first kind [29].
Thus, we obtain A(ζ) = I1(ζ)/I0(ζ) in the form of Bessel
function ratio [7].

Finding the zero of Y′(ζ) can only be done numerically.
For that, we deploy the Newton’s method with the second
derivative of objective Y(ζ) given by

Y′′(ζ) =

n̂∑
k=1

Å
ŵk

∑n
i=1(x

>
i x̂k)

2 exp(ζx>i x̂k)∑n
i=1 exp(ζx

>
i x̂k)

ã
−

n̂∑
k=1

ŵk

Å∑n
i=1(x

>
i x̂k) exp(ζx

>
i x̂k)∑n

i=1 exp(ζx
>
i x̂k)

ã2
−A′(ζ) .

(14)

For the last term in the formula above, we exploit A′(ζ) =
1 − A(ζ)2 − A(ζ)/ζ given by [7]. Then, an m-th New-
ton’s step can be established following ζm = ζm−1 −
Y′(ζm−1)/Y

′′(ζm−1), with Y′ and Y′′ shown in (13) and
(14), respectively. We provide the following case study for
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Figure 3: ECDR-based wind field modeling for Case 3. Raw data of wind fields are exploited as source for reapproximation
and are denoted by grey arrows with lengths proportional to wind speeds. Template wind fields from ECDR are in blue.

quantitative validation of the proposed circular density esti-
mation procedure.

Case Study 2 We stick to the scenario from Case 1 with the
same underlying distribution and source discrete model. The
proposed density estimation is performed based upon the
template discrete model given by CDR in the former case as
shown in Fig. 1. For comparison with the state of the art of
circular density estimation, we deploy the approach in [30]

using its open-source implementation1. It fits a von Mises
mixture given its number of components n to random samples
on S1 via expectation maximum (EM) and yields components
of individual concentrations. Moreover, the approach only
allows for matching to equally-weighted samples. To quantify
the estimation quality of the two approaches, we compute
the Hellinger distance of the fitted continuous density to the
underlying ground truth [8]. As shown in Fig. 2, given same

1https://github.com/chrschy/mvmdist



component quantities n ∈ {5, 10, 15, 30, 60}, the proposed
CDR-based approach delivers better fitting accuracy com-
pared with the EM. While the latter crashes when component
quantity increases, our scheme produces refined continuous
models (lower Hellinger distances).

The case study above characterizes that the proposed two-
stage scheme using discrete reapproximation provides a su-
perior alternative to estimating circular densities over stan-
dard methodology. CDR to the template samples of equal
weights first fixes locations of the von Mises components
in a dispersion-adaptive manner. This alleviates the model
complexity for the second step of density fitting, because only
the joint concentration parameter ζ is to be determined.

IV. EXTENSIONS TO COMPOSITE DIRECTIONAL DOMAIN

Many tasks in ecological or climatological statistics refer to
modeling and inference on random circular vector field, where
data points incorporate both directions (circular) and locations
(Euclidean). The following sections introduce the essential
building blocks for extending the proposed CDR scheme from
S1 to domains composing both the unit circle and Euclidean
space of arbitrary dimension.

A. Extended CDR on S1 × Rd

Following the generic design of discrete reapproximation in
Sec. II, we now extend CDR to S1 × Rd. We denote random
variables thereon as x = [x>s ,x

>
r ]
>, with xs ∈ S1 and xr ∈

Rd being circular and Euclidean, respectively. We redesign the
kernel in Definition 1 w.r.t. the manifold structure now to be
κ(x;α, τ) = κs(xs;αs, τ)κr(xr;αr, τ), with

κs(xs;αs, τ) = exp(τα>s xs) and

κr(xr;αr, τ) = exp(−τ(xr − αr)
>(xr − αr))

(15)

denoting the circular and Euclidean components, respectively.
In order to model the correlation between domains S1 and
Rd, the two kernel components with locations at αs ∈ S1 and
αr ∈ Rd share the same concentration parameter τ . Corre-
spondingly, we adjust the weighting function in Definition 2 to
be V(τ) = τd/2 exp(−ετ). The double integrals over kernel
locations and concentrations in (9) can be adapted to S1×Rd
by following a similar procedure in Sec. II-B with reference
to [22] and Appendix D of [31]. We then obtain

Q(u, v) = 4π (π/2)d/2
(
(δr + 2ε)2 − 8(1 + δs)

)−1/2
, (16)

with u, v being arbitrary on S1×Rd ⊂ Rd+2. δs = u>s vs and
δr = ‖ur − vr‖2 are topology-aware distance measures for
the circular and Euclidean components, respectively.

Solving the optimization problem for extended CDR is
performed on the matrix manifold OB(2, n) × Rd×n using
the Riemannian trust-region, for which pointwise gradients
and Hessians of the objective in the ambient space R2+d are
desired. Due to space limit and their complicated derivations
(particularly for Hessians across the component domains), we
do not provide the formulae in this paper. However, a unified
implementation for all on-manifold discrete reapproximation

methods will be open-sourced together with upcoming pub-
lications. The following case study shows validations on the
extended circular discrete reapproximation (ECDR) scheme.

Case Study 3 We exploit wind climatology data2 for discrete
modeling of random circular vector field. In this data set, wind
direction and speed of contiguous United States are given in
a resolution of approximately 1.9 × 1.9 degrees of latitude
and longitude. The wind field was recorded in a temporally
continuous manner with more than 1000 snapshots per year.
We exploit the raw data recorded at stamps t ∈ {1, 100, 200}
in the year of 2020 and clip the wind fields into 94 × 94
squares as the source. Further, we exploit the wind speed
at each sample location as the weight (after normalization).
n = {30, 70, 150} template samples of equal weights are de-
ployed for reapproximation using ECDR specified on S1×R2.
Shown in Fig. 3, the proposed approach is efficacious over
various parameterizations and real-world data, and the ob-
tained template samples model the underlying random vector
fields with representative layouts. This validation scenario is
potentially of interest for wind farm planning, where locations
and facing directions of wind turbines are to be configured for
efficient power generation.

B. Regression on Circular Vector Fields

The proposed ECDR method further enables a novel regres-
sion model on random circular vector field. Given a training
set X̂ = {[ x̂>k,s, x̂

>
k,r]
>}n̂k=1 ⊂ S1 × Rd as the source and

inquiry locations {xi,r}ni=1 ⊂ Rd for the template set, the
inquired circular quantities {xi,s}ni=1 ⊂ S1 can be predicted
via discrete reapproximation. Since the Euclidean components
of the template samples are fixed, the optimization takes the
ECDR objective, but is confined to the unit circle as in CDR.

We validate the ECDR-based regression model based on
the wind field in the year of 2021 from the same data set
mentioned in Case 3. The whole wind field of 94 × 192
locations is downsampled with a ratio of 0.5 and used as
training set. Among the rest of data points, another n =
200 spatially uniform locations are selected for inquiry. All
samples (in source and template sets) are equally weighted.
Shown in Fig. 4 at time stamps t ∈ {1, 1000}, the ECDR-
based regression model produces effective predictions of wind
directions at the inquired locations.

Furthermore, we reset the number of inquiries to be n = 50
and perform wind direction prediction over the whole year
of 2021 at an interval of 10 time stamps. For comparing
ECDR regression with state of the art, we apply two Gaussian
processes (GPs) to modeling the two components of wind
directions individually over the field [32] (implementation
from Matlab). Normalization of the two individually pre-
dicted components is needed for prediction. One obvious
drawback of this strategy lies in the ignorance of correlation
between the two direction components. Multioutput GPs might

2https://www.ncdc.noaa.gov/societal-impacts/wind/



t = 1

t = 1000

Figure 4: ECDR-based wind field regression. Given training
sets (grey), inquired wind directions at n = 200 locations are
predicted (blue) and compared with the ground truth (red).

be applicable, however, no off-the-shelf scheme with circular
output domain exists for our reference.

Fig. 5 shows evaluation results w.r.t. prediction accuracy
(average error in radian of all inquiries) and runtime effi-
ciency over the time span for the two regression models.
The proposed ECDR-based model delivers better regression
quality and substantially shorter runtime (over two orders of
magnitude). It considers the correlation across the domain
components and has a comparably simpler computational
design (with only one single optimization using symbolic
gradients and Hessians). However, the standard GP scheme
suffers from large computational cost due to its well-known
cubic complexity.

V. CONCLUSIONS

In this paper, we propose the circular discrete reapproxima-
tion (CDR), a novel probabilistic scheme for discrete modeling
and inference of random variables on the unit circle. The new
circular Cramér–von Mises distance (CCvMD) is proposed to
quantify the statistical divergence between two circular dis-
crete models in a topology-aware manner. Given a large set of
weighted samples as source, the CDR scheme reapproximates
the underlying unknown distribution with template samples
of configurable quantities and dispersion-adaptive locations.
The basic CDR scheme facilitates circular density estimation
using von Mises mixtures and is extended to reapproximation

(A) Accuracy given by the evaluated regression models.

(B) Runtime given by the evaluated regression models.

Figure 5: Evaluation on wind field regression using proposed
ECDR (blue) and standard GP (green).

on the composite directional domain incorporating Euclidean
space of arbitrary dimension. Both methods are novel and the
latter directly enables a novel regression model on random
circular vector field. For improvement, the parameter ε in the
weighting function of Definition 2 should be considered as a
hyperparameter and needs to be automatically tuned. Meth-
ods for uncertainty quantification of ECDR-based regression
model should also be developed. A unified implementation of
the proposed approaches will be open-sourced with upcoming
publications, and we expect more extensive evaluations of the
proposed approaches in various real-world scenarios.

APPENDIX

A. Gradients and Hessians of CCvMD in Ambient Space

Deriving gradients and Hessians of the CCvMD terms in
(8) is essentially done for the expression in (10) w.r.t. sample
locations. For that, we reformulate (10) into

Q(δ) = 2π
(
ε2 − 2(1 + δ)

)−1/2
,

with δ = u>v denoting the distance between two circular
locations. The derivative w.r.t. δ then follows

dQ(δ)
dδ

= 2π
(
ε2 − 2(1 + δ)

)−3/2
=

Q(δ)

ε2 − 2(1 + δ)
, (17)

and we obtain the first derivative of Q w.r.t. location u as

∂Q(u, v)

∂u
=

dQ(δ)
dδ

∂δ

∂u
=

dQ(δ)
dδ

v =: P(u, v) v , (18)

with P(u, v) substituting (17). Further, the second derivatives
of Q(u, v) w.r.t. sample locations can be derived as

∂2Q(u, v)

∂u ∂u>
=

3P(u, v)

ε2 − 2(1 + u>v)
v v> and

∂2Q(u, v)

∂u ∂v>
=
( 3

ε2 − 2(1 + u>v)
u v>+ I2×2

)
P(u, v) .

(19)



Deploying (18) and (19) pointwise to the expressions in
(8) then delivers the desired gradients and Hessians of the
objective in (7) for optimization.
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