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Abstract—The reapproximation of discrete probability den-
sities is a common task in sample-based filters such as the
particle filter. It can be viewed as the approximation of a given
Dirac mixture density with another one, typically with fewer
samples. In this paper, the Wasserstein distance is established as
a suitable measure to compare two Dirac mixtures. The resulting
minimization problem is also known as location-allocation or
facility location problem and cannot be solved in polynomial
time. Therefore, the well-known sliced Wasserstein distance
is introduced as a replacement and its ties to the projected
cumulative distribution (PCD) are shown. An iterative algorithm
is proposed to minimize the sliced Wasserstein distance between
the given distribution and approximation.

Index Terms—Deterministic sampling, density reapproxima-
tion, Dirac mixtures, nonlinear filtering, least-squares, Wasser-
stein distance.

I. INTRODUCTION

Sample-based filters play an important role when dealing
with nonlinear filtering problems. In these filters, the involved
probability densities are represented by a discrete set of
samples or particles. This allows them to handle the complex
densities that can arise when working with nonlinear models.

A common step in such filters is the reapproximation or
resampling of the sample density to keep a good representation
of the actual density without the use of exponentially many
samples. For example, in a particle filter this is often done
with sequential importance resampling. In the filter step, each
particle is weighted according to the measurement likelihood.
This resulting density is then reapproximated with unweighted
samples by randomly selecting samples with replacement
according to their weight. Without this step, the filter can
either suffer from particle degeneracy or has to increase the
number of samples to be able to keep more samples in relevant
regions. This makes fast and accurate resampling and sample
reduction basic building blocks for nonlinear filtering. In this
paper, the problem of reapproximating a set of samples with
a new set containing fewer samples is investigated. The new
samples should be placed in a way to optimally represent the
given samples as illustrated for two dimensions in Fig. 1.

To this end, the samples are first represented as Dirac
mixture (DM) distributions

f(x; X̂,W ) =

N∑
i=1

wiδ(x− x̂i) . (1)

Fig. 1: Result of reducing 1000 random samples of a standard
normal distribution to 10 samples using projected cumulative
distributions.

They consist of N Dirac impulses at the sample positions X̂ =
{x̂0, . . . , x̂N} and the according weights W = {w0, . . . , wN}
for each sample, which sum to one.

When these weights are chosen to be equal for all Dirac
impulses as 1/N , the distribution is defined only by the sample
positions. This essentially makes the mixture unweighted, as
no additional information is encoded in the weights. When
they are chosen differently for each sample, it is possible to
encode different probability distributions without altering the
sample positions, which is used in the filter step of a particle
filter.

Throughout this paper it is assumed, that both the given
and the reduced DM are equally weighted. This restriction is
made because it is in general NP-hard to find the weighted
reduced DM that optimally represents the original DM, even
in one dimension [1]. In contrast, finding the best equally



weighted approximation can be done in polynomial time.
Furthermore, when reducing a weighted DM to an equally
weighted DM some additional challenges would arise, which
will be discussed towards the end of the paper.

A. Optimal Reduction

One approach to optimal DM reduction is the optimization
of some measure of quality of the approximation.

There are different measures to define such measures of
quality. A straightforward approach would be to compare the
probability density functions (PDFs) of the involved distri-
butions. This can for example be done by calculating some
metric based on the difference of the PDFs or also some more
specialized methods like the Kullback-Leibler divergence [2].

However, all of these methods only give meaningful results
when the PDFs of both of the involved distributions are
nonzero on the same sample space. This is not the case when
DM densities are involved as they are zero almost everywhere,
rendering these distances unusable for DM reduction.

Instead, it is much easier to employ the cumulative density
functions (CDFs) of the DMs in the measure of quality [3].
The CDF of a scalar Dirac mixture is a staircase function,
which is well defined on a continuous support and can
be easily compared to other functions. Unfortunately, when
moving to more than one dimension, the CDF of a probability
distribution is not uniquely defined anymore [3].

One method to get around this limitation is the use of
localized cumulative distributions (LCDs) [3]. This technique
has also been used for Dirac mixture reduction both in
Euclidean space [4] and on spheres [5], [6]. It creates a smooth
representation of the involved densities by integrating over
kernels of all different sizes. While this works for all kinds of
densities, it is quite computationally expensive.

In this paper, the idea of PCD introduced in [7] will be
extended with the Wasserstein distances as a measure of
quality for optimal Dirac mixture reduction. We will first give
some background on the Wasserstein distance and optimal
transport theory. The task of Dirac mixture reduction is then
modeled as allocation-location problem stemming from the
field of logistics. It will be shown how this problem can be
solved approximately using PCDs and how these relate to the
sliced Wasserstein distance [8].

Furthermore, the resulting optimization problem will be re-
formulated as a least-squares problem and an efficient iterative
solution algorithm will be proposed.

B. Wasserstein Distance

The p-Wasserstein distance is a popular measure to compare
two continuous distributions µ(x) and ν(y) according to a
distance function d(x, y)

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
d
(
x− y

)p
dγ(x, y)

) 1
p

. (2)

It has its origin in transportation theory and is the optimal
value of the optimal transport problem to find the transport
plan γ that minimizes the overall cost to transform one of

the distributions into the other one. It is also known as Earth
Mover’s distance [9] as the transport plan can be interpreted
as describing how much earth or mass is moved from every
point x in the support of µ to every point y in the support of
ν.

The distance function describes the cost to move mass
between the two points x and y and is often chosen to be
the Euclidean or Manhattan distance. In the remainder of
this paper the 2-Wasserstein distance in combination with the
Euclidean distance as metric will be used.

Another way to think of the Wasserstein distance is that
at each point of one of the distributions a specific demand
is present. Each point in the other distribution can satisfy a
specific amount of this demand, such that the overall supply
and demand are the same. The optimal transport plan now
assigns every point of supply to every point of demand, so
that the demand is satisfied with minimal transportation cost.

The Wasserstein distance is also widely used to compare
discrete densities like image data [8] and has also been used
as loss function in neural networks [10].

In the case that both distributions are Dirac mixtures, the
integral in the Wasserstein distance reduces to a sum and the
transport plan is a sparse matrix describing how much mass
is moved between two samples.

Given the two Dirac mixtures f(x; X̂) = 1
N

∑N
i δ(x− x̂i)

and g(y; Ŷ ) = 1
M

∑M
j δ(y− ŷ

j
), the optimal transport matrix

T with entries tij and the 2-Wasserstein distance can be found
by solving the linear program

W (f, g) = min
tij

N∑
i

M∑
j

tij∥x̂i − ŷ
j
∥2 (3a)

s.t.
N∑
i

tij =
1

M
∀j (3b)

M∑
j

tij =
1

N
∀i (3c)

tij ≥ 0 . (3d)

The constraints (3b) to (3d) define the set of all valid transport
plans. This set is often called the transport polytope. These
constraints make sure that the supply and demand at each
point are satisfied and all mass is moved between the two
distributions.

C. Optimizing the Sample Positions

The Wasserstein distance can be used as a measure of
quality between distributions and as such for DM reduction.
Given a distribution with sample positions Ŷ = {ŷ

0
, . . . , ŷ

M
}

the optimal reduced DM can be found by minimizing the
Wasserstein distance with respect to the new sample positions
X̂ = {x̂0, . . . , x̂N}.

For a given transport plan T the goal is to find the positions
of unweighted samples, so that the transport cost between



these samples and the given distribution is minimized. This
transport cost for a fixed matrix T is simply given as

D(X̂, Ŷ ) =

N∑
i=1

M∑
j=1

tij∥x̂i − ŷ
j
∥2 . (4)

Minimizing this with respect to the new sample positions gives
the unconstrained convex optimization problem

min
x̂i

D(X̂, Ŷ ) . (5)

The gradient of D(X̂, Ŷ ) is given as a vector G with entries

Gi =
dD

dx̂i

= 2

N∑
i=1

M∑
j=1

tij(x̂i − ŷ
j
) . (6)

Setting this gradient equal to zero and using that the sum over
one row of the transport plan,

∑M
j=1 wij , is 1/N the optimal

position of the i-th sample x̂i can be determined in closed
form

x̂i = N

M∑
j=1

tij ŷj (7)

This is the weighted average of all given samples, that the
new sample is assigned to, weighted with the amount that is
assigned.

However, the transport plan is typically not given for DM
reduction and needs to be found according to (3). But in addi-
tion, the sample positions x̂i now become decision variables as
well. This type of problem is also known as location-allocation
problem or (Capacitated) Multi-Source Weber problem in
different variants [11]. Unfortunately, this problem is now a
non-convex nonlinear optimization problem, making it much
harder, in fact NP-hard, to solve.

Calculating the exact solution to this problem is only fea-
sible for relatively small instances with hundreds of samples.
A general and exact solution method would be for example
to enumerate all vertices of the transport polytope, that is
described by the constraints of the problem and find the one
with the smallest Wasserstein distance. This number of vertices
depends on the number of possible assignments between the
original and reduced DM, which grows extremely fast with
increasing number of samples.

There also exist some special cases, where further assump-
tions about the solution can be made [11]. One such special
case, which will later be used to derive a new approximate
solution algorithm, occurs, when all samples are located on a
line, reducing the problem to a single dimension.

An approximate algorithm was first proposed by Cooper
[12] and is also known as Alternating Transportation-Location
method or Cooper-ATL. It is an iterative scheme starting with
some initial guess for the sample positions and alternates
between solving the transport problem and the positioning
problem with each step. As such, the solution found is
highly dependent on the starting values used. Over time many
different heuristics have been proposed to guide this algorithm
closer to the global optimum [13], [14].

II. PROJECTIONS ONTO ONE DIMENSION

The concept of PCDs [7] will now be introduced and used as
a basis to propose a new algorithm to approximately solve the
location-allocation problem. PCDs were originally introduced
for deterministic sampling of continuous probability densities
in Euclidean space. However, they have also been extended
for use on different manifolds, for example, circles [15]. The
main idea behind PCDs is to represent the given distribution
and the sample distribution by the set of all of their one-
dimensional projections, known as the Radon transform. The
goal now is to find sample positions, so that the difference
between these projected distributions is minimal for each
projection. By doing so, the optimization is broken down
from one multi-dimensional problem into infinitely many one-
dimensional problems, that are easier to solve. To make the
Radon transform computationally tractable, a finite subset of
projections needs to be chosen. This is commonly done by
uniform random sampling [16] or deterministic sampling [7]
from the according hypersphere.

The sample positions are then found by minimizing the
average Cramér-von Mises distance C̃ over all projections. The
Cramér-von Mises distance C between two one-dimensional
probability distributions with CDFs F (x) and G(x) is defined
as

C(F (x), G(x)) =

∫
R
(F (x)−G (x))

2
dx . (8)

This means that a given density f(x) with projected
CDFs F0(r), . . . , FV (r) for V projection vectors v0, . . . , vV ,
is approximated by a DM g(x; X̂) with projected CDFs
G(r; R̂k), . . . , G(r; R̂V ) by minimizing

C̃
(
f (x) , g

(
x; X̂

))
=

1

V

V∑
k=1

C
(
Fk (r) , G

(
r; R̂k

))
.

(9)
Note, that the one-dimensional projection of a DM with N
components is another DM with impulses at the projected
positions R̂k = {v⊤k x̂0, . . . , v

⊤
k x̂N}. The CDF is then a

staircase function with steps at these positions

G(r; R̂k) =

N∑
i=1

H(r, r̂i) . (10)

Here, the Heaviside function H(r, r̂) is defined as

H(r, r̂) =


0 r < r̂

0.5 r = r̂

1 r > r̂

. (11)

To minimize (9), gradient-based optimization algorithms
can be used. So far, PCDs have not been used for Dirac
mixture reduction or solving the location-allocation problem.
One reason for this is that the Cramér-von Mises distance is
not well suited as an objective function in this case. When both
of the distributions are Dirac mixtures, there is in general no
unique solution that minimizes this distance.

This is evident, when looking at an example of reducing
two samples to one: Two given one-dimensional samples are



located at ŷ1 and ŷ2 and the optimal sample position x̂ needs
to be found. Intuitively, x̂ should be at the center between the
two samples in a unique minimum. However, the Cramér-von
Mises distance yields the same result for all x̂ between the two
original samples. When replacing the distance measure with
the 2-Wasserstein distance, the optimal solution to the above
problem is unique and lies in the center of ŷ1 and ŷ2.

Plugging the Wasserstein distance into (9) instead of the
Cramér-von Mises distance yields

W̃ =
1

V

V∑
k=1

min
tij

N∑
i=1

M∑
j=1

tij

(
v⊤k x̂i − v⊤k ŷj

)2

. (12)

This quantity W̃ is also known as the sliced Wasserstein
distance [8]. It has for example been successfully employed for
texture synthesis [17], generative neural networks [18], [19]
or interpolation between measures [20]. It makes use of the
fact that one-dimensional optimal transport can be calculated
efficiently without explicitly solving the linear program (3).

In this case, the optimal transport plan between two DMs
does not depend on the absolute sample positions, but only
on their weights and their order on the real line [1]. This
means, that the transport plan between two DMs with M and
N components with weights 1/M and 1/N can be calculated
by sorting the samples on the real line and filling the transport
matrix sequentially as detailed in Algorithm 1. To calculate
the sliced Wasserstein distance for fixed sample positions, this
transport matrix can stay the same for all projections, as long
as the projected samples are sorted. With the orderings σ(i)
and τ(j), this simplifies (12) to

W̃ =
1

V

V∑
k=1

N∑
i=1

M∑
j=1

tij

(
v⊤k x̂σ(i) − v⊤k ŷτ(j)

)2

(13)

without the explicit minimization.

III. OPTIMIZING PROJECTED POSITIONS

While the sliced Wasserstein distance is a well established
substitute for the Wasserstein distance, it has not been used as
an objective function for optimal sample placement or DM
reduction. To find the optimal sample positions, the sliced
Wasserstein distance in (13) needs to be minimized with
respect to the positions. This leads to a very similar problem
to the location-allocation problem. However, due to the one-
dimensional projections, the optimal transport plan in each
direction can be calculated easily using algorithm 1. Given
this transport plan, the optimal projected sample positions can
be found with (7).

Overall this means that the optimal sample positions for
each projection can be computed efficiently. The goal now is to
find sample positions in the original high-dimensional space,
such that their projections are close to the optimal positions for
all projection directions. This can be written as a least-squares
problem

min
x
∥Rx− b∥2 , (14)

where the positions of all samples are stacked in the vector x.

Algorithm 1 Calculation of the optimal transport plan between
two equally weighted, one-dimensional Dirac mixtures with
M and N samples respectively. It is assumed that the samples
are already sorted by position.

function TRANSPORTPLAN(M , N )
TM×N ← 0.0
n, m, sum, a← 0
for i from 1 to M +N − 1 do

if n
N < m

M then
tmn ← n

N − sum
a← tmn

n← n+ 1
else

tmn ← m
M − sum

a← tmn

m← m+ 1
end if
sum← sum+ a

end for
return T
end function

For each of the V directions vk, the optimal projected
positions X∗

k = (x∗
1,k, . . . , x

∗
N,k)

⊤ are calculated according
to (7). The results are collected in the right-hand-side vector
of the least-squares problem b

b =
[
X∗

1 X∗
2 . . . X∗

V

]⊤
. (15)

The matrix R on the left-hand side is a collection of matrices
Rk that are also calculated for each direction

R =
[
R1 R2 . . . RV

]⊤
. (16)

Each Rk projects the vector of samples x onto direction vk
and sorts the projected samples according to their positions.
Therefore it consists of the projection matrix

Vk =

v
⊤
k

. . .
v⊤k

 (17)

and the permutation matrix Pk that sorts x⊤vk as

Rk = PkVk . (18)

It is clear that the permutation matrix depends on the
optimal sample positions and vice versa. To break this de-
pendency, an iterative algorithm alternating between two steps
is proposed. First, the sample positions are optimized by
solving the least-squares problem. Then, the new permutation
matrix is calculated from the found positions as described
in Algorithm 2. As an initial guess for the matrix, some
random sample positions are used. The algorithm terminates
either when a maximum number of iteration is reached or the
changes of the sample positions is small enough. In Fig. 2,
the sparse structure of these matrices is shown. It can be seen



Algorithm 2 Proposed iterative algorithm for Dirac mixture
reduction with the M given sample positions Y and initial
approximation X with N samples using V directions.

function DIRACREDUCTION(Y , X , V , iters)
W ← TRANSPORTPLAN(M, N)
R← [ ], b← [ ]
for i from 1 to iters do

for k from 1 to V do
vk ← sampleUnitVector()
concatenate(b,NW sort(Y ⊤vk))
Pk ← permutationMatrix(X⊤vk)
Vk ← blockdiag(v⊤k , N)
concatenate(R,PkVk)

end for
X ← (R⊤R)−1Rb

end for
return X
end function

(a) (b) (c)

Fig. 2: Sparsity structure of (a) the permutation matrix P,
(b) projection matrix V and (c) overall matrix R of a problem
with N = 6 samples and V = 6 projections.

that there are no dependencies between the different projection
directions.

This can be used to reformulate the problem as a recursive
least-squares problem, incorporating each direction one by
one. This means that the complete matrix R does not have
to be computed at once, but only one Rk at a time. The
recursive least-squares algorithm needs some initialization for
the covariance matrix C0, which is typically chosen to be
large, for example C0 = 100 I. The weight matrix for each
direction is chosen to be the identity matrix. Hence, the gain
only depends on the initial covariance and left hand side
matrices Rk

Kk = CkR
⊤
k

(
I+RkCkR

⊤
k

)−1
. (19)

The updates for the sample position and covariance are the
standard equations for recursive least square filtering

xk+1 = xk +Rk (bk −Rkxk) , (20)

Ck+1 = (I−KkRk)Ck . (21)

The formulation above can be broken down even further, by
separating Rk into its projection and permutation part from
(18). The permutation matrix matches each of the projected
sample positions with one entry from the right-hand side. It
can easily be inverted and the inverse applied to the right
hand side vector instead to get the permuted vector b′k. This
leaves the projection operation for the left-hand side, which
is identical for each sample. As there are no dependencies
between the samples now, the updates to their positions can
be performed independently for each sample

xi,k+1 = xi,k +Ki,k

(
b′k − v⊤k xi,k

)
. (22)

By taking a closer look at the covariance matrix Ck, it can be
seen, that it is a block-diagonal matrix with the same D ×D
block Σk for each sample on the diagonal. This means, that
is sufficient to only calculate and save one of these blocks for
all samples. The gain from (22) becomes

Ki,k = Gk = Σkvk

(
1 + v⊤k Σkvk

)−1
(23)

and the covariance update

Σk+1 =
(
I−Gkv

⊤
k

)
Σk . (24)

A. Computational Complexity

As all of the involved algorithms are iterative and showed
a similar time to convergence in the practical experiments, in
the following the time complexity per iteration is investigated.
The number of given samples and approximation samples is
summarized in the variable n = M +N .

In the original Cooper-ATL algorithm, an optimal transport
problem is solved in each iteration. This is equivalent to
solving a min-cost-flow problem, which can be done in O(n3)
[21] or O(n3 log(n)) [9] depending on the algorithm used.
The calculation of the optimal positions, given the transport
plan runs in O(nD) time by multiplying each of the O(n)
entries in the transportation matrix with the corresponding
D-dimensional given sample and summing up these products.

In the PCD-based method, no linear program needs to
be solved, instead the transport plan is approximated by the
one-dimensional projections. In each iteration, n samples are
projected and sorted for each of V directions in O(V n log(n)).
As the given samples are not changing between iterations,
they actually need to be projected only once, which has a
noticeable effect when there are many given samples and few
approximation samples, but will be neglected for this analysis.
If the given Dirac mixture is equally weighted, the transport
plan needs to be calculated only once for the entire algorithm
in O(n), otherwise this needs to be repeated for each direction.
The optimal positions are then calculated by averaging the
best positions in each projection in O(V Dn). Overall the
dominating cost in the Cooper-ATL lies in finding the solution
to the optimal transport problem. In the PCD-based method
this is replaced by a sliced version, that can be calculated
in (V n log(n)), where V somewhat controls the quality of



(a) (b)

(c) (d)

Fig. 3: Some example results for Dirac mixture reduction
to 10 samples with the proposed method. (a) 200 samples
LCD approximation of default Gaussian (b) 200 samples LCD
approximation of correlated Gaussian (c) 1000 samples from
uniform distribution (d) 800 samples from Gaussian mixture.

the approximation. On the other hand, the calculation of the
optimal positions gets slightly more complex for the proposed
method, as the average over all directions needs to be taken.

IV. EVALUATION

The proposed algorithm and the Cooper-ATL were imple-
mented in Julia using JuMP [22] to model and solve the
occurring linear program. The code including the examples
presented in this paper is made available on GitHub1.

Some example results of reducing different given densities
can be seen in Fig. 3. This demonstrates that the proposed
method works well for many different distributions.

The proposed method was compared to the Cooper-ATL
and k-means clustering. The k-means algorithm is a well
established and fast algorithm to split a dataset into clusters
and calculated the cluster centroid. It was included in the
comparison to evaluate the performance of such clustering
algorithms for DM reduction. Each of the algorithms was run
for 25 iterations with 100 different random starting positions.
The average, minimum, and maximum values of Wasserstein
and sliced Wasserstein distance were recorded for all starting
positions Fig. 4. As would be expected, the Cooper-ATL yields

1https://github.com/KIT-ISAS/DiracMixtureReduction

the smallest final Wasserstein distance on average. The sliced
Wasserstein distance outperforms k-means in terms of mini-
mization of the actual Wasserstein distance. This experiment
also illustrates the dependency of the final solution on the
starting position as there is a significant difference between
the maximum and minimum values of the final Wasserstein
distance. This can be observed for all three algorithms, but is
most prominent with k-means.

In addition to the distances, the final sample positions were
also recorded and the best solutions are shown in Fig. 5. As
the k-means algorithm has no limit to the number of points in
one cluster it covers the support of the given density more or
less evenly without respecting the sample density. The other
two methods yield visually very similar results and take the
increased sample density in the center of the distribution into
account. Both give a good approximation of the original DM,
with the proposed sliced Wasserstein variant being about ten
times faster in this example as it does not need to solve a
linear program in each iteration.

V. CONCLUSION AND OUTLOOK

In this paper, a new method for Dirac mixture reduction
based on PCDs was proposed. It was first shown how DM
reduction can be reinterpreted as the location-allocation prob-
lem, known from optimal transport theory. As this leads to
an optimization problem that is computationally expensive to
solve, an approximate solution algorithm utilizing PCDs was
derived. By replacing the Cramér-von Mises distance in the
original formulation of PCDs with the Wasserstein distance,
the well-known sliced Wasserstein distance between the given
and the reduced DM distribution was obtained as an objective
function.

The minimization of the sliced Wasserstein distance with
respect to the new sample position was formulated as a least-
squares problem, that can be solved with an iterative algorithm.
The complexity of this new method is shown to be less than
when optimizing the true Wasserstein distance, while still
yielding very good results.

However, the results of the proposed method are highly
dependent on the initial guess for the new sample positions.
Therefore, some techniques that might help the algorithm find
a good solution more consistently, should be investigated.
For example, it could be advantageous to introduce additional
heuristics as was done for the Cooper-ATL. Using a sophis-
ticated initialization scheme for the initial sample positions
or permutation matrix itself could also yield more consistent
results.

There are also some variants of the sliced Wasserstein
distance, like the max-Wasserstein distance, that takes the
maximum Wasserstein distance in any direction instead of the
average, and also generalized versions [23], [24]. These seem
to give improved results for some applications and scenarios
and could be worthwhile to investigate for Dirac mixture
reduction.

While the proposed method can easily be extended to work
with weighted Dirac mixtures or to increase the number of

https://github.com/KIT-ISAS/DiracMixtureReduction
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Fig. 4: (a) Sliced Wasserstein distance and (b) Wasserstein distance after each iteration of the least-squares, Cooper-ATL and
k-means algorithms. The border of the shaded area denotes the minimum and maximum value obtained in each iteration.
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Fig. 5: Comparison of the final positions for k-means, Cooper-
ATL and least-squares algorithms with the smallest Wasser-
stein distance out of 100 restarts with random initial positions.

samples instead of reducing them, the result is not a good
approximation of the underlying continuous density anymore.
This can immediately be seen, when trying to double the
number of samples of a uniform distribution. Two of the
new samples would be located at each of the original sample
positions, minimizing the transport cost to zero. This is not
the desired result of keeping the uniform sample distribution.
Some kind of continuous interpolation between samples needs
to be used to get around this effect.

Overall the approximation of densities through one-
dimensional projections seems to be a promising approach,
that is worthy of further investigation.
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