
Robot Joint Tracking With Mobile Depth Cameras
for Augmented Reality Applications

Antonio Zea, Michael Fennel, and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

antonio.zea@kit.edu, michael.fennel@kit.edu, uwe.hanebeck@kit.edu

Abstract—Augmented reality (AR) in mobile devices (such as
smartphones and tablets) is becoming more popular each day,
and because of this many newer devices are starting to ship
with embedded depth sensors. This presents a great opportunity
for the field of extended object tracking, whose algorithms are
well-suited for dealing with varying measurement quality while
requiring little CPU usage. In this paper, we present an applica-
tion in the field of robotics, based on the idea of reconstructing
the dynamic state of a robot (joint positions and velocities)
simply by observing it with an AR device, and using only the
robot specification (its URDF file) as prior knowledge, without
requiring a connection to the robot’s control system. This can
allow the mobile device to identify where a robot is, or viceversa,
without requiring markers such as QR codes. Additionally, this
can serve as a stepping stone for more sophisticated assistance
systems that can interact with the robot without requiring any
access to its internals, which could otherwise make it difficult
to deploy the AR app in sensitive systems. Using the iPad Pro
2020 as an example device, we examine the challenges involved in
processing mobile depth images, how to develop a robust shape
model and the corresponding estimator, and how the app can
ask the user to help in its initialization using AR. We will also
provide an evaluation with real data that shows how the proposed
system can track a moving robot robustly even if measurement
quality is reduced significantly.

I. INTRODUCTION

Extended object tracking (EOT) [1] focuses on estimating
the pose of moving targets from point measurements by ex-
ploiting information about the target’s shape. Unlike traditional
tracking techniques, which model the object being tracked as
a point, in EOT the target is assumed to have an extent, i.e.,
we assume that multiple measurements from different points
on its surface can be generated in a single scan. In turn, this
means that the target’s center cannot be observed directly,
raising the challenge of how to incorporate information from
unstructured, noisy measurements in an efficient way, given
that both the shape and pose parameters may be unknown
and have to be estimated simultaneously. There are multiple
models in literature depending on how the target’s shape is
approximated, such as rectangles [2] or ellipses [3]. More
complex star-convex shapes can be described using Fourier
coefficients [4] or Gaussian processes [5]. Traditionally, EOT
has been used to track relatively large targets such as airplanes,
ships, or cars using LIDAR or radar measurements. As high-
quality depth cameras become more affordable, for example
with the Microsoft Kinect, EOT techniques have started being

Fig. 1: Example AR visualization of a robot’s velocities
using an iPad Pro 2020. Using the iPad’s depth images and
the robot’s description, an estimator can reconstruct its joint
positions and velocities from the outside, without requiring a
connection to the robot’s internal system.

applied to smaller targets such as hand-held objects [6], [7].
Lately, a new generation of miniaturized mobile depth cameras
embedded in smartphones and tablets has reached the market,
noteworthy among them the iPads and iPhones from Apple,
which promise to extend the applicability of EOT techniques
in even more domains.

Mobile devices (in particular smartphones and tablets) have
also attracted attention lately for another reason: augmented
reality (AR). In contrast to virtual reality, which replaces the
real world with the digital, in AR the objective is to enhance
how users perceive and interact with their real surroundings.
Ideally, the tasks of an effective AR application include se-
mantic recognition of objects in the scene, visualizing context-
aware information around them, reacting to changes in the en-
vironment, and enabling new ways to interact with the world.
However, even if some requirements such as self-localization
are already mature, overall AR can be still considered to be
in its infancy. This can be attributed, among others, to the fact
that mobile devices do not yet have the processing capability to
understand general environments quickly and robustly enough.
Nonetheless, there are already multiple notable works in litera-
ture that deal with understanding the environment using mobile



lj j+1

(a) Example joint and link. (b) Virtual robot constructed from description. (c) Real robot.

Fig. 2: Sketch of how a robot is constructed from its specification. In Fig. 2a we observe a link l with parent joint j and child
joint j + 1. The link consists of a ‘visual’ property (its geometric shape, grey) and a simplified ‘collider’ (rectangle in dotted
lines). In Fig. 2b we see the simplified collider models (cylinders and cuboids) of the robot in Fig. 2c. Originally intended to
detect collisions, colliders are meant to be fast, not to represent the robot’s geometry with accuracy.

depth cameras, especially iPads [8], [9], with applications
ranging from veterinary [10], [11] and forestry [12], [13] to
reconstruction of buildings [14] and heritage documentation
[15]. This serves as a motivation for new techniques that can
bridge EOT and mobile AR, as EOT algorithms are already
designed to deal with noisy measurements in environments
with low computational resources.

A promising and rather underexplored application of AR is
in the field of robotics, with some notable exceptions [16],
[17]. AR can be used to better understand robotic algorithms
by showing important information related to a place on top
of that place itself, rather than a 2D monitor several meters
away. Ideally, a paradigm of interaction with the robot would
be to simply tap on it in order to launch an assistance system,
which in turn gathers all relevant information about the robot’s
state and its pose simply by observing it — preferably, without
being connected to the robot at all. To achieve this, we can use
the fact that the entire specification of the robot is contained
in its URDF description, including its joints, its links, and its
geometry (Fig. 2). Then, using the depth images of an AR
device, we can reconstruct its dynamic state, i.e., its pose and
current joint positions and velocities, with minimal latency.
This approach can be beneficial in the following contexts.
First, it can be used by an AR device to localize the robot
– or for the robot to find the device – quickly and without
requiring markers such as QR codes. Second, it can be used for
validation, to ensure that the internal robot state corresponds
to the real joint position and link poses. And third, it may
be that the robot encoders are not sensitive enough to know
the exact joint positions, especially in large and heavy robots,
and thus, our system would allow for more precise controllers
without changing the hardware. Implementing this, however,
requires an examination of the challenges involved in dealing
with mobile depth cameras, and how they can be addressed
using AR interactions.

In this paper, we propose a simple EOT approach to track
the dynamic state of a robot using only its URDF specification,

usually stored in a public repository, and the depth images of
a mobile device. The goal of this framework is to serve as a
stepping stone for more complex AR-based HRI interactions
in the near future. As the target application in mobile AR,
we will focus on Apple’s iPad Pro 2020 and its sensors as
a representative example. Our contribution is divided into the
following sections. We start with the problem formulation in
Sec. II, followed by a description of our algorithms in Sec. III.
Then, we present an evaluation using real data in Sec. IV, and
conclude it in Sec. V.

II. PROBLEM FORMULATION

The objective of this work is to estimate the state xk of
a robot using noisy point measurements captured from its
surface. The state

xk =
[
xp
k xr

k xj
k

]T ∈ Rn (1)

at time step k consists of a position xp
k, an orientation vector

xr
k, and a list of joint positions xj

k. Additional parameters
such as velocities and accelerations can be included if needed.
Structurally, the robot consists of a series of interconnected
links 1 ≤ l ≤ nl (see Fig. 2a) that form a graph (or more
commonly, a tree). The shape of each link l, modeled as the set
Sk,l, is known a priori. These shapes do not change in time, but
they are subject to rigid transformations whose parameters are
determined by xj

k. Thus, the pose [xp
k, x

r
k]

T refers to the first
link (the ‘base link’), and the pose of the remaining links can
be constructed recursively using standard forward kinematics.
Fig. 2b shows a virtual robot constructed this way, based on
the description of the real robot in Fig. 2c.

At each time step k, the robot is observed by a depth
sensor, yielding a depth image Ik from which a series of mea-
surements y

k,1
, · · · , y

k,m
can be obtained. Each measurement

y
k,i

∈ R3 is assumed to stem from a source zk,i drawn from



(a) Example depth image of a robot. (b) Corresponding confidence image. (c) Reconstructed point cloud.

Fig. 3: Example depth captures from the iPad Pro 2020, taken from the scene in Fig. 2c. In Fig. 3a, we see the depth image
in grayscale. Note the interpolations in regions where the cable loops. Fig. 3b shows the confidence image, where the colors
represent: Yellow 2 (high), brown 1 (mid), and black 0 (low). Fig. 3c presents the reconstructed point cloud of the robot.

one of the links’ surfaces, which is then distorted with an
additive noise term vk,i as modeled in

y
k,i

= zk,i + vk,i (2)

= hk,i(xk) + vk,i , (3)

where vk,i is assumed to be zero-mean with covariance matrix
Cv

k,i, and hk,i(·) is the measurement function which associates
the measurement y

k,i
to the state xk. Furthermore, we assume

that the state evolves in time according to

xk+1 = ak(xk) + wk, (4)

where wk is a system noise term assumed to be zero-mean
with covariance matrix Cw

k . The term ak(·) is the system
function.

III. PROCESSING PIPELINE

In this section, we will sketch out the implementation of
our AR-based estimator using mobile depth images. First,
we will analyze the depth images typically produced by a
mobile depth sensor, and propose mechanisms to extract useful
measurements from them while avoiding outliers and other
artifacts. Second, we will describe an approach to obtain the
link shapes from the robot description, which we will need
in order to associate measurements with them. Third, we
propose a small AR-based assistant system, which simplifies
the segmentation task based on user input. Finally, we derive
a nonlinear estimator to estimate the pose, joint positions, and
other dynamic parameters of the robot efficiently.

A. The iPad Depth Sensor

In this section, we will briefly describe the characteristics of
the depth images from the iPad Pro 2020 (Fig. 3), which we
will use later for the evaluation, and how to obtain meaningful
measurements from them. As other mobile depth systems
for AR such as the Samsung Galaxy 20 or the Microsoft
Hololens 2 have similar advantages and shortcomings, we
believe the iPad can serve as a representative example of the
considered sensor range.

The iPad RGBD system consists of two devices: an RGB
camera and a time-of-flight depth sensor, both on the back

of the tablet. Unfortunately, Apple’s platform ARKit does not
provide direct access to the depth measurements. Instead, it
fuses the LIDAR data with color information from the RGB
camera producing two synthetic data streams: a processed
depth image and a confidence image, both at a rate of 30
frames per second. The depth image (Fig. 3a) has a size of
256× 192 pixels, and each pixel’s depth is described as a 32-
bit floating point number representing the measured distance
in meters. According to some studies [18], this depth image
is extrapolated from only 576 LIDAR pulses, which serves to
explain why measured surfaces appear smooth and deformed,
lack sharp corners, and have a high amount of ‘flying pixels’
around discontinuities. Furthermore, unlike more mainstream
depth sensors like the Microsoft Kinect 2, depth pixels within
a single frame are highly correlated with their neighbors, likely
because of the RGB fusion procedure.

Another difference w.r.t. the Kinect is that the validity
of each depth pixel is not encoded in whether its value is
different from 0. Instead, the reliability of each measurement
is described separately in the confidence image (Fig. 3b), also
of size 256 × 192 pixels. Here, however, each measurement
is associated with an 8-bit value that can be either 0 (low
confidence), 1 (mid confidence), or 2 (high confidence). Thus,
if a pixel in the confidence image has a value of 0, we know
that the corresponding position in the depth image carries little
to no information.

The resulting depth cloud can be seen in Fig. 3c. While
the robot arm appears recognizable, slightly changing the
perspective to a view from above, shown in Fig. 4, makes
the relatively low quality of the depth measurements evident,
especially given how close the sensor is to the scene (about 1
meter). To alleviate this issue without modifying the measured
depths, we propose the following preprocessing steps:

1) first, we invalidate all pixels in the depth image whose
corresponding confidence is not 2 (high), and

2) second, we invalidate all ‘flying pixels’, defined as any
pixel that has at least one neighbor with a relative
distance larger than 0.02 m.

Note that these thresholds are not definitive, and can be relaxed
if the number of acceptable measurements is too low.



Fig. 4: View of the scene in Fig. 3 from above, highlighting
the relatively low quality of the available measurements, and
the strong presence of outliers and deformations.

Given an image Ik preprocessed with the above steps, we
can extract the point measurements y

k,i
as follows. First,

we read the pre-calibrated intrinsic matrix K from the AR
platform, which for iPads look something like

K =

212.4 0 127.0
0 212.4 96.3
0 0 1

 , (5)

representing a horizontal field of view of approximately 60
degrees. Then, for each valid pixel at position [xk,i, yk,i] with
depth zk,i we introduce the pseudo-measurement in screen
coordinates

ys
k,i

:=
[
xk,i yk,i 1

]T
. (6)

We also assume that there exists a sensor noise term modeled
as zero-mean with covariance matrix

Cv,s
k,i ≈ diag

(
1

3
,
1

3
, 0

)
, (7)

where the variances correspond to a distribution of U(−1, 1),
i.e., the true source position was equally likely to be between
the previous, the current, and the next pixels. We also need an
uncertainty for the depth zk,i, which is difficult to obtain given
that it depends on multiple factors such as distance, material,
and the unknown internals of the RGB fusion system. For this
work, we will use the conservative approximation of

σ2
z ≈ 10−5 m2 , (8)

calculated from empirical observations.
Based on these conditions, we obtain the measurement in

camera coordinates using the standard pinhole unprojection
formula

yc
k,i

= K−1 · ys
k,i

· zk,i , (9)

with the corresponding covariance matrix following from the
random variable product rule as

Cv,c
k,i = K−1

((
Cv,s

k,i + ys
k,i

[ys
k,i

]T
)
σ2
z +Cv,s

k,i z2k,i

)
(K−1)T .

(10)

As a final step, we must transform these values to world
coordinates. We assume that the camera pose [Rc

k, tck] is

known and provided by the AR platform. This yields the
desired measurement

y
k,i

= Rc
k · yc

k,i
+ tck , (11)

Cv
k,i = Rc

k ·Cv,c
k,i · (R

c
k)

T . (12)

This formula keeps the correlations intact. However, for rea-
sons of speed it is often preferable to use an isotropic noise
term. In this case, a reasonable approximation for points close
to the image center is

Cv
k,i ≈ σ2

z · I3 . (13)

While the proposed approach is simplified by using the
camera pose from the AR platform, it should be noted that
this value is also uncertain. The inter-frame noise is very low
compared to the measurement noise, but it has a bias that
accumulates over time, roughly reaching about 1 cm after a
couple of minutes. This means that robot pose, together with
the entire scene, will drift slightly over time.

B. Constructing a Shape Model for the Robot

As mentioned before, the robot description contains the
necessary information to determine the robot geometry in
function of a state vector. The most commonly used format
is the XML-based URDF format, generally included as a
file in the robot drivers or written in the ‘robot description’
parameter in a ROS system. It contains all the important
properties of the robot, in particular

• a list of links (the robot ‘segments’), including their
shapes and ‘colliders’,

• and a list of joints, which connect links to each other and
determine how they can move, for example by rotating
(revolute) or translating (prismatic) along an axis.

Of interest in each link is the ‘collider’ property, which gives
us a rough (usually convex) simplification of the link geometry.
This is often more useful than the ‘visuals’, which generally
consist of detailed CAD models better suited for visualization.
Another important characteristic of colliders is that they are
rarely covered by NDAs, as they are too coarse to contain
important proprietary information. For this reason, URDFs
and their colliders are often available from public repositories,
which can in turn be easily accessed from our mobile app.

In order to derive our shape model, we need two things.
First, we need a way to obtain the robot geometry for any given
state xk. To achieve this, we calculate the pose of each link
using standard forward kinematics libraries such as [19]. The
robot geometry is then constructed by applying the resulting
transformations onto the link shapes Sk,l. Second, we need
a mechanism to associate an arbitrary measurement y

k
to the

link shapes produced by xk. As modeled in (3), this is achieved
by finding the source zk on the robot’s surface that generated
y
k
. Unfortunately, as a consequence of the sensor noise vk, it

is usually impossible to find the exact source with complete
certainty. Instead, as proposed in [20], we can approximate
it as the point most likely to have generated it, according to
the distribution of vk. In case that the measurement noise is



(a) Determining the workplace volume. (b) Starting pose of the robot. (c) Representative point cloud after filtering.

Fig. 5: Sketch of the AR assistant system to simplify the estimation process, allowing the user to set a workplace volume for
gating (Fig. 5a) and a custom starting pose (Fig. 5b). The resulting measurement point cloud (Fig. 5c) is much informative,
and can be compared to the unfiltered source image in Fig. 4.

approximately isotropic, this corresponds to the point on the
robot with the smallest Euclidean distance to y

k
, i.e.,

zk = minarg
z∗
k∈Sl,k

1≤l≤nl

∥z∗k − y
k
∥2 , (14)

which can be found in closed-form for shapes such as spheres,
cylinders, cuboids, or triangle meshes.

C. Initializing with Augmented Reality

While the preprocessing steps from Sec. III-A are effective
at removing spurious measurements, we still have the problem
that measurements from the background, or from nearby ob-
jects, can confuse the estimator and lead to incorrect results. A
way to alleviate this issue is to implement a gating mechanism
that rejects measurements that are too far from the estimate,
and thus, have a high likelihood of either being outliers or
belonging to another object. However, this requires an initial
estimate that is reasonably close to the real robot. In the worst
case, if either the gating threshold or the starting pose are far
from appropriate, the estimator may lose track of the robot or
end up stuck in a local minimum.

To address this issue, we propose a simple additional step
that ensures a robust initialization in any scenario, in the form
of an AR assistant system that lets a user provide both starting
parameters (Fig. 5). First, the user determines the extent of
the workplace using a resizable cuboid (Fig. 5a, the dots in
each face are the handles). All measurements from outside this
geometry are rejected. Then, the user is asked to set the starting
position and orientation of the base link (Fig. 5b) using a small
on-screen joystick. Finally, with a simple tap, the application
starts the estimation process. Fig. 5c shows the resulting point
cloud after the preprocessing and gating, which reproduces the
real robot with improved accuracy. Of course, the initialization
does not require or expect a perfect user input, and as shown
later in Sec. IV-A, the estimator can deal with initial offsets
of 10 to 20 cm.

D. Deriving an Estimator
We will now put all the pieces in this section together to

derive an estimator. Given the relatively low measurement
quality, the high amount of outliers, the coarseness of the col-
lider approximations, and the low resource availability coupled
with the ‘real-time’ demands of the tracking application (30-60
frames per second), we propose the use of recursive nonlinear
Kalman filters such as the UKF or the S2KF [21]. In these
filters, the state and its uncertainty are represented by the mean
x̂k and the covariance matrix Cx

k .
The initialization can be implemented as

x0 =
[
xp
0 xr

0 xj
0

]T
, (15)

where [xp
0, x

r
0]

T is the user input described in Sec. III-C, and
xj
0 is set to zero. The corresponding covariance matrix is

Cx
0 = σ2

x,0 · In , (16)

where σ2
x,0 is suitably larger than the measurement noise, for

example σ2
x,0 ≈ 10−2.

At each time step, a new image Ik will be captured by
the depth sensor. The measurements y

k,i
∈ R3 are obtained

as described in Sec. III-A, using the measurement equation
(3) and as measurement function the closest source derived
in Sec. III-B. In order to process multiple measurements at
the same time, they can be stacked vertically into a single
vector. However, as the number of valid measurements m after
gating (Sec. III-C) can still be anywhere from 100 to 10, 000,
it is impracticable to process them all in a single update step,
as this would require a cubic operation on a large matrix of
size 3 m × 3 m. A more efficient approach is to shuffle the
measurements and update the state recursively using only 8 at
a given time (i.e., a vector size of 24), in order to maximize
SIMD usage.

Finally, for cases when the robot joints are usually moving,
it makes sense to implement a motion model. In this case, the
state can be extended to include a joint velocity vector xα

k ,
leading to a linear system equation

xk+1 = Fk · xk + wk , (17)



(a) Estimate with simulated data (red). (b) Real data estimate, ‘straight’ configuration. (c) Real data estimate, ‘L’ configuration.

Fig. 6: Setup of experiments for the evaluation, with simulated data (Fig. 6a) and with real data, both in a ‘straight’ configuration
(Fig. 6b) and in an ‘L’ position (Fig. 6c). The cyan lines represent the estimate that corresponds to the measurements.

where the transition matrix Fk advances the joint positions
according to their velocities and the time elapsed. The covari-
ance matrix for the noise term wk can be modeled as

Cw
k = σ2

w,k · In , (18)

where σ2
w,k is suitably smaller than the measurement noise, for

example σ2
w,k ≈ 10−7. Note that the system noise of the robot

pose is non-zero to compensate for AR camera pose drifting.

IV. EVALUATION

We will present an evaluation of the proposed approach
using a robotic manipulator with 2 joints, shown in Fig. 2c
and throughout the paper. Two sets of experiments were done,
based on synthetic and real data. Fig. 6 shows a sketch of
the experiment setup. For the synthetic simulations, we used
the colliders from the description shown in Fig. 2b. For the
real captures, we used depth images from an iPad Pro 2020
taken of the robot in Fig. 2c. Fig. 6a shows an example of
the simulated point measurements (red), while Fig. 6b and
Fig. 6c present example point clouds reconstructed from the
depth images. The lines in cyan show example estimates.

The state consisted of

xk =
[
xp
k,(0) xp

k,(1) xj
k,(0) xj

k,(1)

]T
∈ R4 , (19)

with [xp
k,(0), x

p
k,(1)]

T representing the horizontal and verti-
cal positions of the robot’s base link on the table, while
[xj

k,(0), x
j
k,(1)]

T were two joint positions in radians. For refer-
ence, the base link is on left side in Fig. 6b (the black cylinder).
The first joint xj

k,(0) is on top of the base link, while the
second joint xj

k,(1) is in the center, shown bent in Fig. 6c. As
the z-position of the robot does not change (it is anchored to
the table plane), its value was taken directly from the position
given to the AR assistant. The initialization was implemented
as proposed in Sec. III-D, and for the real data the starting pose
was set in a similar way as in Fig. 5b. For estimation, a S2KF
with 5 samples per dimension was used. The visualization and
data collection were done using the mobile app iviz [22].

A. Synthetic Data

The experiments with synthetic data were aimed at estab-
lishing a baseline for the results that can be expected for a
generic mobile sensor. Furthermore, they helped to establish a
threshold when dealing with incorrect but close initializations.
As is it difficult to reproduce artifacts such as outliers and
deformations, we used a reduced amount of measurements per
time step and increased the measurement noise compared to
(8). The setup was as follows. We launched 1000 runs, each
with a different initialization, with the starting positions moved
a distance of U(−0.2, 0.2) meters from the ground truth, and
both joints moved similarly with an offset of U(−π/8, π/8)
radians. For reference, the length of the stretched arm is 0.5
meters. At each time step, we generated 100 sources from
the surface of the robot colliders, and disturbed them with a
measurement noise of Cv

k,i = 5 · 10−4 · I3. As proposed in
Sec. III-D, the update step processed measurements sequen-
tially in batches of 8. After each update step, a prediction step
was applied with an identity system function and process noise
of Cw

k = 10−7 · I. Two configurations were used: ‘flat’ with
extended joints (Fig. 6b) and ‘L’ with the second joint set to
90 degrees (Fig. 6c).

Fig. 7 and Fig. 8 show the results, with the mean value
in blue and the worst case in red. In general, we see that
the convergence of the position is rather fast, with the mean
getting closer to 1 centimeter after the first frame. This is not
surprising, given that all measurements contribute indirectly to
the position. And while the convergence is slower for the L
configuration (Fig. 8a) than for the straight (Fig. 7a), we see
that even in the worst case we are still very close by the first
second (frame 30). Of interest here is the second joint, which
is the most susceptible to noise. Here, we see that we never
really converge to 0, and there is a bias of about 3 degrees.
The presence of bias is not surprising, as studied in [20],
given the rather unrefined source assumption of taking simply
the closest point in the closest link. While more sophisticated
probabilistic techniques are possible, they also come at the
expense of increased processing time. Furthermore, having a
limit of around 7 degrees in the worst case is an acceptable



upper bound. It is also worth noting that the noise in most real
sensors is much lower than modeled here.

(a) Position error, base link. (b) Angle error, second joint.

Fig. 7: Synthetic data, straight configuration.

(a) Position error, base link. (b) Angle error, second joint.

Fig. 8: Synthetic data, L configuration.

B. Real Data, Static

The setup for the real data was similar to the synthetic
data. The main difference was that 100 runs were used, and
the measurements originated from an iPad observing the real
robot. Each run was executed one after another, and each
captured 30 frames. The initializations were random with the
same parameters as the synthetic data. However, unlike the
simulations, the real experiments processed as many measure-
ments as they could while staying below 15 milliseconds per
frame. This yielded on average 2300 measurements per frame.

For the real experiments we will focus on the L configu-
ration only. An example estimate is shown in Fig. 6c. The
results of the position errors and seconds joint errors are
shown in Fig. 9. An interesting observation here is that, even
though there are much more measurements, and nominally
the measurement noise is lower, convergence is actually a bit
slower, and the variance of estimates is higher. This can be
explained by the high amount of outliers, and the fact that
the colliders are not exact representations of the robot. Even
worse, the cables of the robot produce several measurements
that confuse the estimator. Still, after 7 or so frames, the
position error (Fig. 9a) reaches its minimum. The remaining
position bias is likely caused by a drift in the AR camera pose.
The second joint in Fig. 9b is also slightly biased, likely due
to artifacts that push the manipulator away from the camera.

(a) Position error, base link. (b) Angle error, second joint.

Fig. 9: Real data, L configuration.

C. Real Data, Moving Pendulum

For this last scenario, we used a different setup. We pro-
grammed the robot to move both joints like sinusoidal pendu-
lums, with amplitude 30 degrees. The first joint completed a
cycle every 5 seconds and the second joint every 2.5 seconds.
A total of 20 runs were launched one after another, like in the
previous scenario, each until they completed 750 frames. For
the estimator, the state was extended to incorporate a constant
velocity model for the two joints, i.e., the estimator was not
directly aware of the sinusoidal motion.

Of note in this scenario is the appreciable reduction in mea-
surement quality for the iPad sensor when capturing moving
targets. On average 800 measurements were processed each
time step, not because of an artificial constraint, but because
that was the total of measurements available after preprocess-
ing. As shown in Fig. 10, the iPad had significant difficulties
observing the manipulator (last link) when it moved, and quite
often, entire parts of the robot became invisible. This can be
a consequence of the RGB fusion system, or due to motion
blur in the depth sensor. The number of artifacts also increased
significantly.

Fig. 10: Example of low measurement quality for the moving
robot. Note the lack of measurements for the last links.

Fig. 11 shows the mean positions for the two joints (‘AR’)
compared to the ground truth (‘GT’). We observe that the
results of the first joint are quite acceptable, as the first links
do not move too much and thus do not become distorted.
However, the second joint, which moves much faster, is clearly
delayed, and its results are much noisier. Interestingly, the
frequency is the same, and none of the runs lost its track,



showing that the estimator can keep up with the robot even
with extremely few measurements.

(a) First joint position. (b) Second joint position.

Fig. 11: Pendulum scenario, ground truth and AR app.

V. CONCLUSION

As augmented reality (AR) becomes more popular, the
number of mobile devices with depth cameras is starting to
increase dramatically. This presents new opportunities for the
field of extended object tracking (EOT), which is well-suited
for dealing with noisy measurements while using low CPU
resources. In particular, EOT can be used to fill a gap in
modern AR applications: understanding the environment.

In this paper, we presented an AR application that used
EOT to estimate the pose of a robot and its joint positions,
using only the robot’s specification as prior information. To
achieve this, we used the depth camera of the AR device
to obtain point measurements from the robot’s surface. Then,
we derived a measurement equation that can be plugged into
an estimator, such as a nonlinear Kalman filter, to track
the robot’s movements efficiently in real time. To ensure
robustness during initialization, we proposed a simple AR
assistant system that lets the user determine a gating threshold
and a starting pose.

We evaluated our algorithm by tracking a serial manipulator
robot using depth images from an iPad Pro 2020, selected
as a representative AR device. We showed that the estimator
provided very accurate results when the robot was not moving,
even when shape models did not reflect the real robot very
closely. And while measurement quality degraded significantly
once the joints started moving as a consequence of the
limitations of the mobile sensor, the estimator was still able
to exploit this sparse information to follow the robot with
remarkable accuracy.

REFERENCES

[1] K. Granstrom, M. Baum, and S. Reuter, “Extended object tracking: Intro-
duction, overview and applications,” arXiv preprint arXiv:1604.00970,
2016.

[2] S. Lee and J. McBride, “Extended object tracking via positive and
negative information fusion,” IEEE Transactions on Signal Processing,
vol. 67, no. 7, pp. 1812–1823, 2019.

[3] S. Yang and M. Baum, “Tracking the orientation and axes lengths of
an elliptical extended object,” IEEE Transactions on Signal Processing,
vol. 67, no. 18, pp. 4720–4729, 2019.

[4] M. Baum and U. D. Hanebeck, “Shape tracking of extended objects and
group targets with star-convex rhms,” in 14th International Conference
on Information Fusion. IEEE, 2011, pp. 1–8.

[5] E. Özkan, N. Wahlström, and S. J. Godsill, “Rao-blackwellised particle
filter for star-convex extended target tracking models,” in 2016 19th
International Conference on Information Fusion (FUSION), 2016, pp.
1193–1199.

[6] F. Faion, A. Zea, M. Baum, and U. D. Hanebeck, “Bayesian estimation
of line segments,” in Proceedings of the IEEE ISIF Workshop on
Sensor Data Fusion: Trends, Solutions, Applications (SDF 2014), Bonn,
Germany, October 2014.

[7] A. Zea, F. Faion, and U. D. Hanebeck, “Tracking elongated extended
objects using splines,” in Proceedings of the 19th International Confer-
ence on Information Fusion (Fusion 2016), Heidelberg, Germany, July
2016.

[8] M. Vogt, A. Rips, and C. Emmelmann, “Comparison of iPad Pro®’s
LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning
Solution,” Technologies, vol. 9, no. 2, 2021. [Online]. Available:
https://www.mdpi.com/2227-7080/9/2/25

[9] A. Breitbarth, T. Schardt, C. Kind, J. Brinkmann, P.-G. Dittrich, and
G. Notni, “Measurement accuracy and dependence on external influences
of the iPhone X TrueDepth sensor,” in Photonics and Education in
Measurement Science 2019, vol. 11144. International Society for Optics
and Photonics, 2019, p. 1114407.

[10] S. J. Valberg, A. K. Borer Matsui, A. M. Firshman, L. Bookbinder, S. A.
Katzman, and C. J. Finno, “3 dimensional photonic scans for measuring
body volume and muscle mass in the standing horse,” PloS one, vol. 15,
no. 2, p. e0229656, 2020.

[11] A. Matsuura, M. Dan, A. Hirano, Y. Kiku, S. Torii, and S. Morita, “Body
measurement of riding horses with a versatile tablet-type 3d scanning
device,” Journal of equine science, vol. 32, no. 3, pp. 73–80, 2021.

[12] C. Gollob, T. Ritter, R. Kraßnitzer, A. Tockner, and A. Nothdurft,
“Measurement of forest inventory parameters with apple ipad pro and
integrated lidar technology,” Remote Sensing, vol. 13, no. 16, p. 3129,
2021.

[13] X. Wang, A. Singh, Y. Pervysheva, K. Lamatungga, V. Murtinová,
M. Mukarram, Q. Zhu, K. Song, P. Surovỳ, and M. Mokroš, “Evaluation
of ipad pro 2020 lidar for estimating tree diameters in urban forest,”
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 8, pp. 105–110, 2021.

[14] A. Spreafico, F. Chiabrando, L. Teppati Losè, and F. Giulio Tonolo,
“The ipad pro built-in lidar sensor: 3d rapid mapping tests and qual-
ity assessment,” ISPRS-International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 43, pp. 63–69,
2021.

[15] A. Murtiyoso, P. Grussenmeyer, T. Landes, and H. Macher, “First
assessments into the use of commercial-grade solid state lidar for
low cost heritage documentation,” ISPRS-International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 43, pp. 599–604, 2021.

[16] D. Lee and Y. S. Park, “Implementation of augmented teleoperation
system based on robot operating system (ros),” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 5497–5502.

[17] M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with
augmented reality virtual surrogates,” in 2019 14th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI). IEEE, 2019, pp.
202–210.

[18] System Plus Consulting, “Apple iPad Pro LiDAR Module,”
https://www.systemplus.fr/reverse-costing-reports/apple-ipad-pro-
11s-lidar-module/, 2021, [Online; accessed 26-Oct-2021].

[19] Orocos.org, “Orocos Kinematics and Dynamics,”
https://www.orocos.org/kdl.html, 2021, [Online; accessed 13-Mar-
2022].

[20] F. Faion, A. Zea, M. Baum, and U. D. Hanebeck, “Partial likelihood for
unbiased extended object tracking,” in Proceedings of the 18th Inter-
national Conference on Information Fusion (Fusion 2015), Washington
D.C., USA, July 2015.

[21] J. Steinbring and U. D. Hanebeck, “Lrkf revisited: The smart sampling
kalman filter (s2kf),” Journal of Advances in Information Fusion, vol. 9,
no. 2, pp. 106–123, December 2014.

[22] A. Zea and U. D. Hanebeck, “iviz: A ROS visualization
app for mobile devices,” Software Impacts, vol. 8, p. 100057,
May 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2665963821000051


