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Abstract—In tracking applications, multiple radars used to ob-
serve target motion usually work asynchronously due to different
sampling rates and initial sampling time instants, and the fusion
time instant at the fusion center can be designated arbitrarily.
In this paper, the estimation fusion problem for target tracking
with asynchronous multi-rate multi-radar measurements is inves-
tigated. Two asynchronous fusion algorithms are proposed, i.e.,
batch time-aligned asynchronous fusion with unbiased converted
measurements and sequential linear minimum mean square error
(LMMSE) asynchronous fusion with converted measurements.
The batch time-aligned asynchronous fusion algorithm is sub-
optimal because of the correlation between measurement error
covariance and measurement itself. The sequential LMMSE
asynchronous fusion algorithm is theoretically optimal in the
sense of minimizing the mean square error within the set
of all linear estimators. Numerical examples are provided to
demonstrate the effectiveness of the proposed two asynchronous
fusion algorithms.

Index Terms—Asynchronous fusion, multi-radar measure-
ments, LMMSE, measurement conversion, target tracking.

I. INTRODUCTION

The problem of target tracking with radar measurements
has been of great interest for various civilian and military
applications, e.g., intelligent traffic monitoring, anti-missile
system, and air traffic control and battlefield surveillance
[1, 2]. In tracking applications, multiple radars observe target
state in the original sensor coordinates, while the fusion center
commonly performs tracking in the Cartesian coordinates.
Due to the nonlinear relationship between the polar/spherical
coordinates and Cartesian coordinates, tracking in Cartesian
coordinates using raw radar measurements is essentially a
nonlinear filtering problem. Therefore, the regular nonlinear
filters, e.g., extended Kalman filter (EKF) [3], unscented
Kalman filter (UKF) [4], divided difference filter (DDF) [5],
quadrature Kalman filter (QKF) [6], and particle filter (PF) [7],
can be used by simply stacking all raw radar measurements
up.

To circumvent the limitations of these regular nonlinear
filters for target tracking, such as high computational com-
plexity and suboptimal estimation accuracy, a specially de-
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signed nonlinear filtering approach is commonly employed
to address the problem of tracking with radar measurements
in polar/spherical coordinates. The converted measurement
Kalman filter (CMKF) converts the polar/spherical radar mea-
surement model into a pseudolinear form in Cartesian coor-
dinates, allowing for the use of the standard Kalman filter.
Existing approaches for measurement conversion include the
debiased converted measurement (DCM) [8], unbiased con-
verted measurement (UCM) [9], modified unbiased converted
measurement (MUCM) [10], decorrelated unbiased converted
measurement (DUCM) [11], and the unscented transformation
(UT) [12].

An optimal LMMSE filter for target tracking was proposed
in [13], which minimizes the mean square error among all
linear unbiased estimators. In this filter, the moments needed
in filtering are computed as accurately as possible by using
the converted measurements. For the synchronous multi-radar
case, the existing LMMSE filter has been extended by simply
stacking all converted measurements up [14]. To improve the
performance of the LMMSE centralized fusion, recombination
and compression approaches for multi-radar measurements
were applied [14, 15]. To reduce the computational com-
plexity, we further proposed a recursive LMMSE sequential
fusion algorithm in [16] and proved that it is equivalent to the
LMMSE centralized fusion algorithm.

In practice, the target motion is observed by an arbitrary
number of radars with different sampling rates and initial
sampling time instants, and the fusion time instant at the
fusion center can be designated arbitrarily as well [17, 18].
In [19], a decentralized asynchronous track-to-track fusion
algorithm was proposed for target tracking in asynchronous
two-dimensional radar networks. This algorithm is not optimal
due to the approximation about the measurement conversion
from polar to Cartesian coordinates. Since multiple radars
work asynchronously, the original LMMSE fusion algorithms
are not applicable. In this paper, we will extend the LMMSE
fusion to the tracking cases with asynchronous multi-rate
multi-radar measurements. By aligning measurements col-
lected at different time instants to a common fusion time
instant or constructing a state-transition model to the measure-
ment time instant, two asynchronous fusion algorithms are pro-
posed using measurement conversion. The proposed sequential
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Fig. 1: Radar measurements during time interval (tk−1, tk].

LMMSE asynchronous fusion with converted measurements is
the best within the set of all linear estimators.

This paper is organized as follows. Section II formulates the
problem. Section III presents batch time-aligned asynchronous
fusion with unbiased converted measurements and sequential
LMMSE asynchronous fusion with converted measurements.
Section IV provides illustrative examples to verify the perfor-
mance of the proposed two asynchronous fusion algorithms.
Section V gives conclusions.

II. PROBLEM FORMULATION

Consider the following motion model of a target to be
tracked described by a continuous-time linear stochastic dif-
ferential equation

ẋ(t) = A(t)x(t) +D(t)w̃(t), (1)

where x(t) = [x(t), ẋ(t), y(t), ẏ(t)]T is the target state vector
in two-dimensional Cartesian coordinates, A(t) and D(t) are
known coefficient matrices with appropriate dimensions, w̃(t)
is continuous-time zero-mean white process noise with power
spectral density q̃(t).

Let tk, k ∈ N, be the time instant when the fusion
center executes the current tracking fusion operation. The
target motion is observed by N radars with different initial
sampling time instants and sampling periods. Suppose that a
total number of Nk measurements are collected by all these N
radars during time interval (tk−1, tk]. As shown in Fig. 1, these
Nk measurements collected asynchronously can be arranged in
time sequence, where zik is the i-th measurement in (tk−1, tk].
Denoting tik as the time instant when zik is collected, we have
tk−1 < t1k ≤ t2k ≤ · · · ≤ tNk

k ≤ tk, where the equalities hold
when two associated measurements are obtained at the same
time.

During the time interval (tk−1, tk], a radar may have pro-
vided more than one measurement because these radars are
multi-rate and asynchronous, or perhaps it has provided no
measurement at all. Denote by njk the number of measurements
provided by radar j. Then we have

Nk =

N∑
j=1

njk. (2)

As shown in Fig. 1, a unique one-to-one correspondence
between (k, i) and (j, l), k ∈ N, i ∈ {1, · · · , Nk}, j ∈
{1, · · · , N}, l ∈ N, can be determined to represent that the
i-th measurement zik during the k-th time interval (tk−1, tk] is
the l-th measurement zlj provided by radar j at time tik, that
is, zik = zlj .

Let zik = [rmi

k , bmi

k ]T . Then the radar measurements, range
rmi

k and bearing (or azimuth) bmi

k in polar coordinates at time
tik, are defined as

rmi

k = rik + r̃ik,

bmi

k = bik + b̃ik,
(3)

where

rik =
√

(x(tik))2 + (y(tik))2,

bik = tan−1
(
y(tik)/x(tik)

) (4)

are the corresponding ground truth, r̃ik and b̃ik are zero-mean
white measurement noises with standard deviation σir and σib,
respectively. We assume that they are uncorrelated with each
other and uncorrelated with x(0) and w̃(t), and independent
across radars. For convenience, all radars used to observe the
target state are assumed to be co-located at the origin of the
Cartesian coordinates where target dynamics are modeled.

III. ASYNCHRONOUS FUSION WITH CONVERTED
MEASUREMENTS

Denote Φ(tk, tk−) as the state transition matrix from
time tk−1 to tk, and Tf as the sampling period of fusion
center. Discretizing the continuous-time linear system (1), the
corresponding discrete-time dynamic model of the target is
then obtained as

x(tk) = Φ(tk, tk−)x(tk−1) +w(tk, tk−1), (5)

where
tk = kTf , k ∈ N,

w(tk, tk−1) =

∫ tk

tk−1

Φ(tk, τ)D(τ)w̃(τ)dτ.
(6)

Under the zero-mean and white noise assumptions on w̃(t) in
(1), it follows that

E[w(tk, tk−1)] = 0,

E[w(tk, tk−1)wT (tl, tl−1)] = Q(tk, tk−1)δkl,
(7)

where δkl is the Kronecker delta function. Then the covariance
of the discrete-time process noise w(tk, tk−1) is given by

Q(tk, tk−1) =

∫ tk

tk−1

Φ(tk, τ)D(τ)q̃(τ)DT (τ)ΦT (tk, τ)dτ.

(8)

For convenience, we define
λi1 = E[cos b̃ik] = e−(σi

b)2/2

λi2 = E[cos2 b̃ik] = (1 + e−2(σi
b)2)/2

λi3 = E[sin2 b̃ik] = (1− e−2(σi
b)2)/2

λi4 = E[cos 2b̃ik] = e−2(σi
b)2

. (9)



A. Batch Time-Aligned Asynchronous Fusion with Unbiased
Converted Measurements

Given the true range rik and bearing bik, the unbiased
measurement conversion with multiplicative debiasing at time
tik is [9]

xui

k = (λi1)−1rmi

k cos bmi

k ,

yui

k = (λi1)−1rmi

k sin bmi

k .
(10)

Let yui

k = [xui

k , y
ui

k ]T , i = 1, · · · , Nk, and

Hi
k =

[
1 0 0 0
0 0 1 0

]
. (11)

Then the unbiased converted measurements at time tik can be
compactly rewritten as

yui

k = Hi
kx(tik) + vik, (12)

where

vik = [xui

k − r
i
k cos bik, y

ui

k − r
i
k cos bik]T (13)

is the unbiased converted measurement error. The true range
rik and bearing bik in (13) are unavailable in practice. It is
thus necessary to compute the first two moments of vik by
an approximate approach that does not need the true range
and bearing. Then the measurement-conditioned mean of vik
is given by [10]

µik = E[vik|r
mi

k , bmi

k ] = ((λi1)−1 − λi1)

[
rmi

k cos bmi

k

rmi

k sin bmi

k

]
(14)

and the corresponding covariance of vik is given by

Ri
k = cov(vik|r

mi

k , bmi

k ), (15)

where

Ri
k(1, 1) =− (λi1)2(rmi

k )2 cos2 bmi

k

+
1

2
((rmi

k )2 + σ2
r)(1 + λi4 cos 2bmi

k ),

Ri
k(2, 2) =− (λi1)2(rmi

k )2 sin2 bmi

k

+
1

2
((rmi

k )2 + σ2
r)(1− λi4 cos 2bmi

k ),

Ri
k(1, 2) =Ri

k(2, 1) = −(λi1)2(rmi

k )2 cos bmi

k sin bmi

k

+
1

2
((rmi

k )2 + σ2
r)λi4 sin 2bmi

k .

From (5), we have

x(tik) = Φ−1(tk, t
i
k)(x(tk)−w(tk, t

i
k)). (16)

Substituting (16) into (12), the i-th unbiased converted mea-
surements during the time interval (tk−1, tk] can then be
rewritten as
yui

k = Hi
kΦ
−1(tk, t

i
k)(x(tk)−w(tk, t

i
k)) + vik

= Hi
kΦ
−1(tk, t

i
k)x(tk)−Hi

kΦ
−1(tk, t

i
k)w(tk, t

i
k) + vik.

(17)

Let
H̄i
k = Hi

kΦ
−1(tk, t

i
k),

v̄ik = vik − H̄i
kw(tk, t

i
k).

(18)

Then from (12), it follows that

yui

k = H̄i
kx(tk) + v̄ik. (19)

It can be easily seen from (5) and (12) that the mean and
covariance of v̄ik are

µ̄ik = µik,

R̄i
k = Ri

k + H̄i
kQ(tk, t

i
k)(H̄i

k)T
(20)

and the auto-covariance of v̄ik is

cov(v̄ik, v̄
l
k) = H̄i

kQ(tk, t
s
k)(H̄ l

k)T , s = max {i, l} . (21)

By simply stacking all the unbiased converted measure-
ments up during the time interval (tk−1, tk], we have

yuk = Hkx(tk) + vk, (22)

where

yuk = [(yu1

k )T , (yu2

k )T , · · · , (yuNk

k )T ]T ,

Hk = [(H̄1
k)T , (H̄2

k)T , · · · , (H̄Nk

k )T ]T ,

vk = [(v̄1
k)T , (v̄2

k)T , · · · , (v̄Nk

k )T ]T
(23)

and the stacked measurement error vk is still white with mean

µk = [(µ̄1
k)T , (µ̄2

k)T , · · · , (µ̄Nk

k )T ]T (24)

and covariance
Rk =R1

k + H̄1
kQ(tk, t

1
k)(H̄1

k)T · · · H̄1
kQ(tk, t

Nk
k )(H̄

Nk
k )T

...
. . .

...
H̄

Nk
k Q(tk, t

Nk
k )(H̄1

k)T · · · R
Nk
k + H̄

Nk
k Q(tk, t

Nk
k )(H̄

Nk
k )T

.
(25)

In addition, the discrete-time process noise w(tk, tk−1) of
(5) is correlated with the measurement error vk of (22). Thus
the cross-covariance between w(tk, tk−1) and vk is

Uk = cov(w(tk, tk−1),vk)

= [−Q(tk, t
1
k)(H̄1

k)T , · · · ,−Q(tk, t
Nk

k )(H̄Nk

k )T ]T .
(26)

So far all the nonlinear measurements {zik}
Nk
i=1 obtained by

asynchronous multi-rate radars during time interval (tk−1, tk]
have been converted into an augmented linear measurement yuk
at time tk. As a result, considering the discrete-time dynamic
model (5), the original asynchronous nonlinear fusion problem
has been transformed into a linear filtering problem. Assuming
that the first two moments of vik are known quantities in
filtering, under the LMMSE estimation framework, the batch
time-aligned asynchronous fusion with unbiased converted
measurements can be easily obtained.

Let1

Y u
k = [(yu1 )T , (yu2 )T , · · · , (yuk )T ]T ,

x̂bk|k = E∗[x(tk)|Y u
k ], P b

k|k = MSE(x̂bk|k).
(27)

1The LMMSE estimator of x given measurement Y (see [20, pp.123-128])
is denoted as E∗[x|Y ].



Theorem 1: Given the fused state estimate x̂bk−1|k−1 and
its MSE matrix P b

k−1|k−1 at time tk−1, the batch time-aligned
asynchronous fusion with unbiased converted measurements at
time tk can be computed recursively by

x̂bk|k = E∗[x(tk)|Y u
k ] = x̂bk|k−1 +Kb

k(yuk − ŷuk|k−1),

P b
k|k = MSE(x̂bk|k) = P b

k|k−1 −K
b
kS

b
k(Kb

k)T ,
(28)

where
x̂bk|k−1 = Φ(tk, tk−)x̂

b
k−1|k−1,

P b
k|k−1 = Φ(tk, tk−)P

b
k−1|k−1Φ

T (tk, tk−) +Q(tk, tk−1),

ŷuk|k−1 = Hkx̂
b
k|k−1 + µk,

Kb
k = Cb

k(Sbk)−1,

Cb
k = P b

k|k−1H
T
k +Uk,

Sbk = HkP
b
k|k−1H

T
k +Rk +HkUk +UT

k H
T
k .

Proof: See Appendix A.
Note that the above batch asynchronous fusion algorithm

is not optimal in the sense of LMMSE, although it adopts
the LMMSE estimation framework. The error covariance (15)
is computed conditioned on the measurements. This results
in a correlation between the measurement error covariance
and the measurement itself. In the batch asynchronous fusion
algorithm, this correlation is neglected. Next, we will present
an optimal LMMSE asynchronous fusion algorithm.

B. Sequential LMMSE Asynchronous Fusion with Converted
Measurements

Converting the raw radar measurements into Cartesian co-
ordinates yields

xmi

k = (rik + r̃ik) cos(bik + b̃ik) = x(tik) cos b̃ik − y(tik) sin b̃ik

+ r̃ik cos bik cos b̃ik − r̃ik sin bik sin b̃ik,

ymi

k = (rik + r̃ik) sin(bik + b̃ik) = y(tik) cos b̃ik + x(tik) sin b̃ik

+ r̃ik sin bik cos b̃ik + r̃ik cos bik sin b̃ik,
(29)

where i = 1, 2, · · · , Nk.
Let

ymi

k = [xmi

k , ymi

k ]T ,

ymk = [(ym1

k )T , (ym2

k )T , · · · , (ymNk

k )T ]T ,

Y m
k = [(ym1 )T , (ym2 )T , · · · , (ymk )T ]T ,

Y i
k = [(Y m

k−1)T , (ym1

k )T , · · · , (ymi

k )T ]T .

(30)

From (5), the state x(tk) at time tk can be represented as

x(tk) = Φ(tk, t
i
k)x(tik) +w(tk, t

i
k) (31)

and

x(tk) = Φ(tk, t
i−1
k )x(ti−1

k ) +w(tk, t
i−1
k ). (32)

Substituting (32) into (31), then it follows that

x(tik) = Φ−1(tk, t
i
k)x(tk)− Φ−1(tk, t

i
k)w(tk, t

i
k)

= Φ−1(tk, t
i
k)Φ(tk, t

i−1
k )x(ti−1

k )

+ Φ−1(tk, t
i
k)w(tk, t

i−1
k )− Φ−1(tk, t

i
k)w(tk, t

i
k).
(33)

Without loss of generality, we define

x̂ik|k = E∗[x(tik)|Y i
k ], P i

k|k = MSE(x̂ik|k), (34)

x̂sk|k = E∗[x(tk)|Y m
k ], P s

k|k = MSE(x̂k|k). (35)

It can be seen from (33) and (34) that the state estimate xik|k
at time tik can be easily obtained if x̂i−1

k|k and P i−1
k|k at time

ti−1
k are given. Then from (35), the fused estimate x̂sk|k at time
tk can be obtained.

In view of this, we assume that the estimate x̂i−1
k|k and its

MSE matrix P i−1
k|k at time ti−1

k are given. Then for system
(33) and converted measurements (29), the LMMSE estimator
x̂ik|k of state x(tik) is

x̂ik|k = E∗[x(tik)|ymi

k ,Y i−1
k ]

= x̂i−k|k +Ki
k(ymi

k − ŷ
mi

k|k),

P i
k|k = MSE(x̂ik|k) = P i−

k|k −K
i
kS

i
k(Ki

k)T ,

(36)

where

x̂i−k|k = E∗[x(tik)|Y i−1
k ] = Φ−1(tk, t

i
k)Φ(tk, t

i−1
k )x̂i−1

k|k ,

P i−
k|k = Φ−1(tk, t

i
k)Φ(tk, t

i−1
k )P i−1

k|k (Φ−1(tk, t
i
k)Φ(tk, t

i−1
k ))T

+ Φ−1(tk, t
i
k)Q(tk, t

i−1
k )(Φ−1(tk, t

i
k))T

− Φ−1(tk, t
i
k)Q(tk, t

i
k)(Φ−1(tk, t

i
k))T ,

ŷmi

k|k = E∗[ymi

k |Y
i−1
k ] = λi1[x̂i−k|k(1), x̂i−k|k(3)]T ,

Ki
k = Ci

k(Sik)−1,

Ci
k = cov((x(tik)− x̂i−k|k), (ymi

k|k − ŷ
mi

k|k))

= λi1[P i−
k|k(:, 1), P i−

k|k(:, 3)]

and

Sik = cov((ymi

k|k − ŷ
mi

k|k)), (37)

Sik(1, 1) =λi2P
i−
k|k(1, 1) + λi3P

i−
k|k(3, 3)

+ (λi2 − (λi1)2)E[(x̂i−k|k(1))2] + λi3E[(x̂i−k|k(3))2]

+ λi2(σir)
2E[cos2 bik] + λi3(σir)

2E[sin2 bik],

Sik(2, 2) =λi2P
i−
k|k(3, 3) + λi3P

i−
k|k(1, 1)

+ (λi2 − (λi1)2)E[(x̂i−k|k(3))2] + λi3E[(x̂i−k|k(1))2]

+ λi2(σir)
2E[sin2 bik] + λi3(σir)

2E[cos2 bik],

Sik(1, 2) =Sik(2, 1) = (λi2 − λi3)P i−
k|k(1, 3)

+ (λi2 − (λi1)2 − λi3)E[x̂i−k|k(1)x̂i−k|k(3)]

+ (σir)
2(λi2 − λi3)E[cos bik sin bik].

Note that x̂i−k|k(i) stands for the i-th element of x̂i−k|k, and
P i−
k|k(:, i) stands for the i-th column vector of P i−

k|k.
At the fusion center, the prior estimate given at time tk

is x̂sk−1|k−1 rather than x̂i−1
k|k , and the fused estimate needed

is x̂sk|k. Using the LMMSE estimator (36), the remaining
measurements during time interval (tk−1, tk] can be fused
similarly.



Considering all these Nk measurements collected according
to time sequence t1k ≤ t2k ≤ · · · ≤ t

Nk

k during the time interval
(tk−1, tk], we define

t0k = tk−1,

x̂0
k|k = x̂sk−1|k−1,

P 0
k|k = P s

k−1|k−1.

(38)

Then, given x̂sk−1|k−1 and P s
k−1|k−1 at time tk−1, the se-

quential LMMSE asynchronous fusion with converted mea-
surements at time tk can be obtained.

Theorem 2: Given the fused state estimate x̂sk−1|k−1 and its
MSE matrix P s

k−1|k−1 at time tk−1, the sequential LMMSE
asynchronous fusion with converted measurements at time tk
can be computed recursively as follows:

Starting from the prediction to tk from tk−1,

t0k = tk−1, x̂0
k|k = x̂sk−1|k−1, P 0

k|k = P s
k−1|k−1,

the sequential updates is repeated for i = 1, 2, · · · , Nk,

x̂i−k|k = Φ−1(tk, t
i
k)Φ(tk, t

i−1
k )x̂i−1

k|k ,

P i−
k|k = Φ(tik, t

i−1
k )P i−1

k|k Φ
T (tik, t

i−1
k ) + Φ−1(tk, t

i
k)

× (Q(tk, t
i−1
k )−Q(tk, t

i
k))(Φ−1(tk, t

i
k))T ,

ŷmi

k|k = λi1[x̂i−k|k(1), x̂i−k|k(3)]T ,

Ki
k = Ci

k(Sik)−1,

x̂ik|k = x̂i−k|k +Ki
k(ymi

k − ŷ
mi

k|k),

P i
k|k = P i−

k|k −K
i
kS

i
k(Ki

k)T .

Finally,

x̂sk|k = Φ(tk, t
Nk

k )x̂Nk

k|k,

P s
k|k = Φ(tk, t

Nk

k )PNk

k|kΦ
T (tk, t

Nk

k ) +Q(tk, t
Nk

k ).
(39)

Proof: See Appendix B.
The above proposed sequential asynchronous fusion algo-

rithm is optimal in the sense of minimizing the mean square
error in the class of all linear estimators. Compared with
the batch time-aligned asynchronous fusion algorithm that
requires the first two moments of the unbiased converted
measurement errors, the sequential LMMSE asynchronous
fusion algorithm computes the predicted measurement error
covariance Sk needed in filtering directly. When tk−1 <
t1k = t2k = · · · = tNk

k = tk, the parallel filtering algorithm
for LMMSE sequential synchronous fusion in [16] can be
easily obtained because Φ(tk, t

i
k) = I and Q(tk, t

i
k) = 0 for

i = 1, · · · , Nk in such a case.

IV. ILLUSTRATIVE EXAMPLES

Numerical examples are provided in this section to demon-
strate the effectiveness of the proposed two asynchronous
fusion algorithms with converted measurements. For compar-
ison, the extensions of nonlinear filters using deterministic
sampling, e.g., DDF in [5] and UKF in [4], available for
asynchronous multi-radar tracking problem, are implemented

in this numerical example. The raw radar measurement (3) is
modeled by

zik = g(x(tk),w(tk, t
i
k)) + vik, (40)

where

g(x(tk),w(tk, t
i
k)) = h(Φ−1(tk, t

i
k)(x(tk)−w(tk, t

i
k)))

and h(·) is the nonlinear measurement function given by
(4). Then similar to Theorem 1, by simply stacking all the
measurements (40) up, the nonlinear filters using determinis-
tic sampling with cross-correlated process and measurement
noises at one time step apart can be applied.

We compare performance of the proposed batch time-
aligned asynchronous fusion with unbiased converted mea-
surements (BAF-UCM), the proposed sequential LMMSE
asynchronous fusion (SLMMSEAF) with the batch time-
aligned asynchronous fusion using the DDF and UKF
(BAF-DDF, BAF-UKF). The performance evaluation matrices
adopted are root mean squared error (RMSE), noncredibility
index (NCI) [21], and inclination indicator (II) [21]. All results
below are averaged over 500 Monte Carlo runs.

Consider the following continuous-time motion model of a
target

ẋ(t) = Ax(t) +Dw̃(t), w̃(t) ∼ N (0, q̃(t)), (41)

where
x = [x, ẋ, y, ẏ]T , x(0) ∼ N (x̄0,P0).

The target motion is observed by three radars independently
with sampling periods T1 = 0.5s, T2 = 1s, T1 = 1.2s,
and initial sampling time instants t01 = 0.2s, t02 = 1s,
t03 = 0.6s, respectively. Therefore they are multi-rate and
asynchronous. The fusion center performs fusion operation
with period Tf = 1s and initial time instant t0f = 1s.

Two scenarios differing in target motion model and mea-
surement accuracy are considered. In the first scenario, the
target moves with a constant velocity (CV) motion model with

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , D =


0 0
1 0
0 0
0 1


and the standard deviations of range and bearing measurement
errors of three radars are

σ1
r = 500m, σ1

b = 300mrad,

σ2
r = 300m, σ2

b = 200mrad,

σ3
r = 200m, σ3

b = 250mrad

and all fusion algorithms are initialized with
x̄0 = [−1000m, 50m/s,−1000m, 100m/s]T , P0 =
diag

(
105m2, 103m2/s2, 105m2, 103m2/s2

)
.

Figs 2-5 shows comparison results for scenario 1. It can
be seen that the proposed batch time-aligned asynchronous
fusion with unbiased converted measurements outperforms the
batch asynchronous fusion algorithms using DDF and UKF
significantly both in position and velocity RMSEs. In terms of
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Fig. 2: Position RMSE (m) in scenario 1.
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Fig. 5: II in scenario 1.

filter credibility, the batch asynchronous fusion with unbiased
converted measurements is more credible than those using
DDF and UKF. Moreover, the proposed sequential LMMSE
asynchronous fusion algorithm has better performance than
the batch asynchronous fusion with unbiased converted
measurements no matter what metric is used for evaluation.
The main reason is that the sequential LMMSE asynchronous
fusion minimizes the mean square error among all linear
estimators.

In the second scenario, the target moves with a constant
turn (CT) motion model with

A =


0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0

 , D =


0 0
1 0
0 0
0 1

 , ω = −3o/s

and the standard deviations of range and bearing measurement
errors of three radars are

σ1
r = 250m, σ1

b = 200mrad,

σ2
r = 220m, σ2

b = 180mrad,

σ3
r = 150m, σ3

b = 150mrad

and all fusion algorithms are initialized with
x̄0 = [−1000m, 50m/s,−800m, 80m/s]T , P0 =
diag

(
105m2, 103m2/s2, 105m2, 103m2/s2

)
.

As shown in Figs. 6-9 for scenario 2, the proposed
batch time-aligned asynchronous fusion with unbiased
converted measurements has better performance than the
batch asynchronous fusion using DDF and UKF significantly
in terms of both estimation accuracy and filter credibility.
As expected, the proposed sequential LMMSE asynchronous
fusion algorithm performs the best no matter what metric is
used for comparison. This also demonstrates the effectiveness
of the sequential LMMSE asynchronous fusion with converted
measurements and the batch time-aligned asynchronous fusion
with unbiased converted measurements.

V. CONCLUSIONS

In this paper, the problem of target tracking with asyn-
chronous multi-rate multi-radar measurements is investigated.
Two asynchronous fusion algorithms are proposed using con-
verted measurements. By aligning measurements collected at
different time instants to a common fusion time instant, a batch
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time-aligned asynchronous fusion algorithm is developed. By
constructing a state-transition model to the measurement time
instant according to the discretized continuous-time target dy-
namics, a sequential LMMSE asynchronous fusion algorithm
is developed, which is optimal in the sense of minimizing
the mean square error among all linear estimators. During
the sampling period of the fusion center, the former performs
the tracking operation in a batch manner, and the latter per-
forms the tracking operation in a sequential manner. They are
both centralized fusion algorithms. Numerical examples have
shown that in terms of accuracy and credibility the proposed
two asynchronous fusion with converted measurements are
both preferred.

APPENDIX A
PROOF OF THEOREM 1

Given x̂bk−1|k−1 and P b
k−1|k−1 at time tk−1, the predicted

state and its MSE matrix are

x̂bk|k−1 = E∗[x(tk)|Y u
k−1] = Φ(tk, tk−)x̂

b
k−1|k−1,

P b
k|k−1 = E[(x(tk)− x̂bk|k−1)(x(tk)− x̂bk|k−1)T ].

The predicted measurement is

ŷuk|k−1 = E∗[yuk |Y u
k−1] = HkE

∗[x(tk)|Y u
k−1] + E∗[vk|Y u

k−1]

= Hkx̂
b
k|k−1 + µk.

The predicted measurement error covariance is

Sbk = E[(yuk − ŷuk|k−1)(yuk − ŷuk|k−1)T ]

= E[(Hk(x(tk)− x̂bk|k−1) + (vk − µk))(·)T ]

= HkE[(x(tk)− x̂bk|k−1)(·)T ]HT
k + E[(vk − µk)(·)T ]

+ E[(x(tk)− x̂bk|k−1)(vk − µk)T ]

+ E[(vk − µk)(x(tk)− x̂bk|k−1)T ]HT
k

= HkP
b
k|k−1H

T
k +Rk +HkUk +UT

k H
T
k ,

where (·) means the term right before it, and

E[(x(tk)− x̂bk|k−1)(vk − µk)T ]

= E[w(tk, tk−1)(vk − µk)T ] = Uk.



The cross-covariance is

Cb
k = E[(x(tk)− x̂bk|k−1)(yuk − ŷuk|k−1)T ]

= E[(x(tk)− x̂bk|k−1)(x(tk)− x̂bk|k−1)T ]HT
k

+ E[(x(tk)− x̂bk|k−1)(vk − µk)T ]

= P b
k|k−1H

T
k +Uk.

This completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

The sequential LMMSE asynchronous fusion from ti−1
k to

tik, i = 1, 2, · · · , Nk, has been given by (36).
From (31) the state x(t1k) at time t1k can be rewritten as

x(t1k) = Φ−1(tk, t
1
k)x(tk)− Φ−1(tk, t

1
k)w(tk, t

1
k). (42)

Substituting (5) into (42), then it follows that

x(t1k) = Φ−1(tk, t
1
k)Φ(tk, tk−1)x(tk−1)

+ Φ−1(tk, t
1
k)w(tk, tk−1)− Φ−1(tk, t

1
k)w(tk, t

1
k).
(43)

Let t0k = tk−1. Then the above equation (43) becomes

x(t1k) = Φ−1(tk, t
1
k)Φ(tk, t

0
k)x(t0k)

+ Φ−1(tk, t
1
k)w(tk, t

0
k)− Φ−1(tk, t

1
k)w(tk, t

1
k).

This is consistent with the discrete-time system (33) for i = 1.
For the final update x̂sk|k, given x(tNk

k ) and PNk

k|k , we have

x̂sk|k = E∗[x(tk)|Y m
k ] = Φ(tk, t

Nk

k )E∗[x(tNk

k )|Y m
k ]

= Φ(tk, t
Nk

k )x̂Nk

k|k

and its MSE matrix is

P s
k|k = E[(x(tk)− x̂sk|k)(x(tk)− x̂sk|k)T ]

= Φ(tk, t
Nk

k )E[(x(tNk

k )− x̂Nk

k|k)(·)T ]ΦT (tk, t
Nk

k )

+ E[w(tk, t
Nk

k )wT (tk, t
Nk

k )]

= Φ(tk, t
Nk

k )PNk

k|kΦ
T (tk, t

Nk

k ) +Q(tk, t
Nk

k ).

Note that if tNk

k = tk, Φ(tk, t
Nk

k ) = I , Q(tk, t
Nk

k ) = 0, then
it follows that

x̂sk|k = x̂Nk

k|k, P
s
k|k = PNk

k|k .

This completes the proof of Theorem 2.
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