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Abstract—Knowledge about human intention can be beneficial
in many disciplines of robotics, such as collaborative manufactur-
ing, prosthetics, or encountered-type haptics. Existing intention
estimation approaches are either traditional and rely on hand-
crafted features and heuristics, or learning-based and tailored
to very specific conditions. This paper attempts to combine
the best of both worlds by making recurrent neural networks
adaptable to different scenarios. To achieve this, the intention
estimation problem is formulated as a probabilistic classification
problem and two new data sets with real-world motion and eye-
tracking data are presented. Based on this data, three real-time
capable classifiers with different features regarding situational
awareness and additional outputs are designed and evaluated
against two competing approaches. The results show that two out
of three classifiers lead to improved or equivalent performance
compared to traditional approaches, while good generalization is
maintained.

Index Terms—intention estimation, intention recognition,
dataset, recurrent neural network, LSTM, machine learning,
mixed reality, XR, VR, AR

I. INTRODUCTION

Collaborative robots have become an important part of
state-of-the-art manufacturing processes. Although functional
safety is already on a sufficient level for many applications,
most measures are reactive, i.e., they minimize the collision
impact or perform an evasive action [1], [2]. A promising
approach to further minimize hazards in human-machine
collaboration is the adoption of predictive methods that try
to foresee the next human actions and proactively avoid
corresponding workspace regions. To achieve this, a suitable
estimation of the current human intention is required. Beyond
collaborative robots, intelligent prosthetics that can adapt to
the next object being grasped could benefit from knowledge
about human intention [3]. Regarding extended reality (XR)
applications, the estimation of the human intention serves as a
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core component for so-called redirected walking technologies
[4], [5]. Furthermore, a dynamic scenario adaptation is possible
if the user’s intention is known, e.g., to avoid the user leaving
the play area in the user environment.

Another use case for intention estimation is found in the
context of encountered-type haptics [6]. Imagine a user walking
within their user environment to a closed door in a virtual
(target) environment. When the user reaches for the handle of
the door to open it, they will actually reach out for the handle-
shaped end effector of a very large kinesthetic haptic interface,
such as [7], programmed to render the mechanical properties
of the door. If multiple handle-like objects allowing interaction
exist in the scene, either multiple haptic manipulators must be
available, which is costly, or the haptic manipulator must be
positioned at the next object the user is going to interact with.
This, in turn, requires the estimation of the current human
intention.

With these use cases in mind, the goal of this paper is
to present a novel, wearable intention estimation system. In
contrast to existing Bayesian or heuristic approaches, this
system does not rely on hand-crafted features or an extensive
set of hyperparameters due to the utilization of recurrent neural
networks. Based on two new data sets with real-world data,
we prove that the performance of our proposed estimators is
on par or even better than existing systems.

II. PROBLEM STATEMENT

In the considered scenario as illustrated in Fig. 1, a single
user can move around freely by natural locomotion in their
real (user) environment, which is statically mapped to a virtual
(target) environment. The user is equipped with a head-mounted
display (HMD) providing information about the user’s gaze
direction

¯
gH and the head pose H composed of translation

¯
xW

H
as well as rotation CW

H , whereas W denotes a fixed reference
coordinate system. In the user’s real or virtual environment,
there is a fixed number n < N of non-overlapping, point-like
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Fig. 1. 2D projection of the example scenario for intention estimation. The
potential objects are marked with colored crosses and the trajectory of the
user’s head is depicted in gray, whereas the black circle locates the starting
point. Gray circles mark samples that are 0.5 s apart and blue lines represent
the gaze direction. In this example, the user pursues the solid green cross.

objects, where N is an upper bound for the number of objects.
Each object with index i is fixed in space with the known 3D
coordinates

¯
xW
i .

With this information, a system shall be designed that esti-
mates the user’s intention

¯
p =

(
p1, . . . , pn

)
, where 0 ≤ pi ≤ 1

states the probability that the user is going to interact with
object i next. Optionally, the predicted intention vector can be
augmented with the value p∅ holding the probability that the
user is going to interact with none of the known objects next.
In both cases, the sum over

¯
p is 1. Beyond that, the system

must be able to produce online estimates of the user intention,
thus the resulting algorithm must be real-time capable, e.g.,
the frame rate must be ≥ 10 Hz.

III. RELATED WORK

The recognition of human intention is an active field of
research, appearing in various domains, including autonomous
driving, industrial robots, and neuroscience with a variety
of different techniques [8]. Furthermore, intentions can be
predicted on different abstraction levels. An example of a
very low level is given in [9], where an intention recognition
algorithm is presented to distinguish between a transportation
and a positioning phase. At the other end of the spectrum,
methods such as the one presented in [10] facilitate the
prediction of an intended high-level task. To obtain the intention
on an intermediate abstraction level (e.g., the user intends to
grab object A), neuronal networks (NNs) and probabilistic
algorithms are two groups of methods that are widely used [8].

A. Neural Networks

A recent noteworthy example from the first group is [11],
where a Long Short-Term Memory (LSTM) NN is used to
predict the object a user is going to grab next based on hand
pose information. Similar to our initially outlined use case
with encountered-type haptics, the intention information is
then used for a technique called haptic retargeting. Despite

this similarity, this method is not suitable for the problem in
Section II as the targets are hard-coded and the hand, which
is mostly not visible while walking, is the only considered
feature. Similar approaches that use LSTMs for predicting the
next object are [12] and [13]. Although these methods replace
hand pose information with gaze measurements, they still have
the limitation that the objects have predetermined positions
and that the user is not allowed to move freely.

To the best of our knowledge, no NN-driven approach exists
that is suitable to solve the stated intention estimation problem
with a moving user and variable object positions. However,
two probabilistic approaches were found in the literature. As
they will be used as references in our evaluation, they will be
explained briefly in the following.

B. Bayesian Estimator

In [14], the HMD instrumentation provides user position,
walking direction and gaze information that is processed using a
Wonham filter, which is a special recursive Bayesian estimator
for discrete-valued states. To achieve this, a hidden Markov
model (HMM) with a state for each possible object is deployed.
The transition matrix, used in the prediction step, is hand-
crafted with a single tunable hyperparameter describing the
probability of staying in that state. The measurements are not
processed directly but converted to features. These are distance,
relative gaze, and relative walking direction with respect to
the goal. This way, the update step of the Wonham filter
is independent of the actual object position, simplifying the
measurement model. The necessary conditional measurement
probability densities are modeled using Gaussian mixtures,
which are fitted to real-world data. As a result, the probability
for each potential goal is obtained. Other values, such as
the probability for a goal that is unknown to the intention
recognition, are not provided.

C. HAIR

Similar to the previous approach, the head-mounted AR
intention recognition (HAIR) method utilizes an HMM to esti-
mate the user’s intention while moving around in a warehouse
[15] or when standing in front of an industrial robot [16].
In addition to the hidden state for each potential object, two
states describing an irrationally acting user and a user without
intention are included, respectively. The transition matrix has
four hyperparameters and, as before, is tuned manually. To
incorporate measurement data from the head-mounted device,
including object position, gaze, and head or hand position, a
feature vector called motion validation vector is calculated:
For each object, the inner product of gaze and line of sight
to the object is multiplied with a hand-crafted quantity that
becomes 1 when the hand or the head is moving towards an
object and 0 when it is moving away from an object. This
vector is then used to calculate a likelihood vector based on
simple heuristics, which, in turn, is used as an emission matrix
for the HMM. Eventually, a Viterbi algorithm is applied to
predict the most probable state path in the HMM and therefore
the user’s current intention.



(a) Training data set. The green cube marks the intended goal, gray spheres
mark the other goals. The red axis of the coordinate frame marks the
forward direction of the subject’s head.

(b) Evaluation data set. Five distinguishable items (white box, brown box,
blue box, glass, and bottle) were placed at fixed positions in the room. The
obstacle in the middle (table) is meant to produce more diverse trajectories.

Fig. 2. Scenarios that were used for capturing the new data sets.

While both approaches, the Bayesian estimator and HAIR,
are proven to work, they rely on hand-crafted heuristics which
might limit their performance and their ability to generalize. At
the same time, current NN-powered approaches are not ready
to be used with the given problem class. For this reason, a
new intention estimator is needed.

IV. DATA SET

A data set, that contains head pose, gaze, and goal positions
together with the underlying human intention, is required to
evaluate the performance of any estimator that solves the above-
stated problem. Furthermore, the same kind of data is required
to fit the Gaussian mixture in Section III-B and to train the
proposed NN. While there exist some data sets that capture
head pose and gaze data, such as OpenNEEDS [17], none of
them contains information about the true user intention, which
is crucial for training a classifier. For this reason, we decided
to create two different time series data sets of approaches on
our own using a Microsoft Hololens v2 with a frame rate of
60 Hz. Both datasets are available online.1

1https://doi.org/10.5281/zenodo.7687774

A. Training Data Set

First, a data set for the training was created with seven
different subjects. Each of the subjects first got a short briefing
about the task, then the Hololens was introduced and calibrated.
After a short trial period to get comfortable with the holographic
projections, the subjects performed consecutive approaches to
different goals for 10 minutes. To achieve this, five virtual
point-like objects are randomly placed on a 4 m × 4 m grid
with 1 m resolution and a height that randomly varies up to
0.2 m around the participant’s head height as seen in Fig. 2(a).
For each approach, one object is randomly highlighted and the
time on a dial clock is presented as a directional cue to the
subject. While the subject approaches the given object, head
pose, gaze data, and object positions are stored together with
the highlighted object, which is considered to be identical to the
subject’s intention. As soon as the vicinity of the highlighted
object is reached, the goal is removed, a new object is randomly
spawned, and the process is repeated.

In a postprocessing step, temporarily missing gaze data is
filled with a sample and hold strategy. Furthermore, implausible
approaches (e.g., the subject fails to obey the given intention)
are discarded by selecting all approaches with a duration above
the 95 %-percentile. As a result, 763 out of 804 captured
approaches are included in the data set, resulting in about
one hour of time series in total.

B. Evaluation Data Set

While the previous data set contains good positional diversity
regarding the 2D placement of the potential goals or intentions,
it suffers from the very narrow field of view of the Hololens.
This yields a reduced height-placement diversity and extensive,
but unnatural seeking phases at the beginning of approaches,
which impair supervised learning processes and an unbiased
evaluation.

To overcome this issue and to prevent data leakage, another
data set with ten subjects was created for evaluation purposes.
For this data set, objects are now physically placed and fixed in
the room as depicted in Fig. 2(b), which means that the initial
seeking phase disappears once the subject is familiar with the
scene. The preparation of the subjects remains the same, except
that the initial warm-up phase is replaced with a room tour. As
a result, the goal heights vary more and the Hololens is just
used as a data recorder. During the capture process, which is
now 5 minutes per subject, the desired goal is commanded by
voice instead of HMD overlays to minimize visual distractions.
Additionally, a table is placed in the middle of the scene to
add more variety to the approaches. After applying the same
post-processing procedure as in the previous data set, 559 out
of 589 approaches with a total duration of 35 minutes remain.
Fig. 1 shows an example from the resulting data set.

V. INTENTION ESTIMATION WITH RECURRENT NEURAL
NETWORKS

In the following, three network architectures and the relevant
information about input encoding and training is presented for
the given problem.



A. Input Encoding

To achieve real-time inference, a recurrent network archi-
tecture is used, meaning that the time series data is fed
sample-wise into the network. All object positions

¯
xW
i are

transformed into ego-centric coordinates
¯
xH
i based on the head

pose information. As the user’s gaze direction
¯
gH is already

measured in head coordinates, the head pose can now be
entirely omitted in the input data because the scene in front
of the user is fully reconstructible at any time. As a result,
redundant input data is removed. Furthermore, it simplifies
the training of any NN because it does not need to learn the
necessary transformations.

B. Architecture

As discussed in Section III-A and [18], LSTMs are a rea-
sonable choice when it comes to the online processing of time
series data. Considering that the input data is low-dimensional,
standard LSTMs, as they are provided by TensorFlow, are used
in the following network architecture.

1) Binary Classififer: According to [19], a set of binary
classifiers can lead to better results for very specialized classi-
fication tasks than a jointly trained multi-class classifier. Since
all measurement data is available in ego-centric coordinates, it
is then obvious to replace a joint estimator for the intention
probability vector

¯
p with an estimator for each object. Hence,

a binary classifier is trained. As seen in Fig. 3(a), the network
gets the gaze information and the relative pose of the object i,
whose intention rating pi shall be estimated. The information
is processed in several cascaded LSTM layers before a fully
connected layer with a sigmoid function calculates the one-
dimensional classification result ŷ. Consequently, an output
value of 1 means that the user intends to interact with the
considered object, while 0 means that the user has no intention
for object i.

For the training, positive examples are created by taking an
approach to a goal and labeling it with 1. An equal amount
of negative examples can be easily created by replacing the
object’s position data in an approach with data from another
random object and labeling it with 0. To deploy the resulting
classifier for inference, the sigmoid function in the fully-
connected layer is removed first. Then, a stack of n binary
classifiers with identical weights is connected to a softmax
layer. This way, all binary outputs are normalized and combined
to the joint intention

¯
p.

2) Extended Binary Classififer: The presented binary clas-
sifier can be used to estimate the user’s intention for a given
set of objects. However, information describing the object’s
environment is not incorporated. To improve the resulting
isolated behavior (e.g., in a scenario where two objects are in
close vicinity), it is beneficial to include information about all
objects in the input data. A possible realization of this idea is
shown in Fig. 3(b), where N −1 auxiliary 3D inputs are added
in comparison to Fig. 3(a). Each of these inputs provides the
ego-centric position of one of the targets for which the binary
classifier is not making a prediction. The remainder of the
network architecture remains unaltered.

Classifier # LSTM layer # hidden states Dropout

Binary 3 36 0.4
Extended binary 3 64 0.2
Multi-class 1 64 0.2

TABLE I
HYPERPARAMETERS OF EACH ARCHITECTURE

The resulting classifier can be deployed for n ≤ N goals by
stacking n instances and replacing the sigmoid function with
a softmax layer as before. If less than N objects are to be
included, the position values of the additional unused inputs
are set to a value that does not occur in real data sets, e.g.,
(−10,−10,−10). During the training with the data set from
Section IV-A, n = N = 5 holds. To learn the handling of
unused inputs, the data set is augmented: With a probability of
5 %, each auxiliary position input is set to the above-mentioned
special value, while the remaining data of the example under
consideration is kept. In addition, the auxiliary inputs are
permuted randomly in each epoch.

3) Multi-Class Classififer: Although the extended binary
classifier is able to incorporate all available information into
its decision-making in theory, it still has no chance to output
that a user has no intention or an intention not associated with
a known goal. As stated in Section II, we summarize this as no
known target with the probability p∅. This can be interpreted
as an extra classification result. Thus, the introduction of
an additional output is promising. Unfortunately, this is not
feasible in the case of a binary classifier. Therefore, a multi-
class classifier with the architecture as depicted in Fig. 3(c) is
introduced. On the input side, the gaze vector and all object
positions in ego-centric coordinates are stacked. The output

¯
ŷ

is a N + 1 element vector, where the first N elements quantify
the probability of each object and the last entry equals p∅.

For the training, data augmentation steps are necessary. In
the first step, the object numbering during each approach is
permuted randomly. This way, the network is invariant towards
which input supplies the object information matching the user’s
intention. As the number of object inputs is now fixed to N ,
but fewer objects might occur during inference, the input value
of unused inputs can be set to a special value as done for the
previous classifier. For this reason, each object is set to the
special value with a probability of 5 % in each approach in a
second augmentation step. If the object position of the labeled
intention is deleted this way, the output label is adjusted to
no known target. The third augmentation step is required for
the last output because the training data itself does not contain
the label no known target. To still train the classifier, a goal
is removed randomly from the training data in each approach.
The remaining input data is kept and assigned with the desired
no known target label. As a consequence, the network can be
trained for a maximum number of N = 4 objects for the given
data set with five objects. If the no known target output is not
included in the estimation, the third augmentation step can be
omitted and N = 5 different intentions can be distinguished.
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ŷ

L
ST

M

L
ST

M¯
xH
i

(a) Binary classifier during training.

¯
xH
1:i−1

¯
gH

Extended binary classifier i

· · ·

fu
lly

-c
on

ne
ct

ed
(s

ig
m

oi
d)

ŷ
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(c) Multi-class during training and inference.

Fig. 3. All proposed network architectures utilize LSTM layers as the core building block. Only the multi-class classifier can be used directly for inference.
For the other classifiers, multiple instances need to be stacked and combined using a softmax layer for inference.

C. Training

For the training, the time series data from Section IV-A was
split in a 70/20/10 ratio for training, validation, and test. As
all subjects showed a seeking phase at the beginning of each
approach, which is not typical for intrinsic intention, the first
0.5 s were removed from each training sample. To improve the
performance, an automated hyperparameter tuning regarding
the number of LSTM layers between 1 and 5, the number of
hidden states between 8 and 64, and the dropout probability
ranging from 0.2 to 0.4 was performed for the three different
network architectures. Table II shows the final architectures for
every network. The networks with the best hyperparameters
were then retrained with relaxed stopping criteria. Since the
approaches are varying in length and TensorFlow requires
padded input data for implementation reasons, the custom
cross-entropy loss function

L = − 1

N

N∑
i=0

Ti∑
t=0

¯
yTit log

(
¯
ŷit
)

Ti
(1)

was created to ensure that each approach is weighted equally,
independent of duration. Here, N is the number of examples
and Ti is the number of samples in example i. The desired
output vector of example i at time t is

¯
yit. The actual output

vector is marked with a hat. Analogously, the custom accuracy
function

A =
1

N

N∑
i=0

Ti∑
t=0

δ
(
maxind

(
¯
ŷit
)
− maxind

(
¯
yit
))

Ti
, (2)

was defined. In this expression, maxind(·) returns the index
of the maximum element and δ(·) is the discrete Dirac delta
function.

VI. EVALUATION

In the following, the proposed intention estimators are
evaluated on the data sets from Section IV and some example
situations are discussed. In addition, the special case of no
known target is analyzed.

A. Estimator Performance

For comparison, the multi-class classifier from Section V-B3
was first trained without the no known target output, hence
N = 5. Beyond that, all NNs were trained according to
Section V-C. The resulting numbers of parameters are listed in
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Fig. 4. Average estimation accuracy with respect to the relative time of an
approach based on the test data in the data set from Section IV-A.

the last column of Table II. For comparison with the Bayesian
approach from Section III-B, a Gaussian mixture with 50
components was fitted on the training data of the NNs. Despite
the high number of components, overfitting was not observed
in combination with the validation data. In the HAIR method
from Section III-C, the Viterbi-algorithm was replaced with a
Wonham filter and the parameters from [15] were used because
this combination resulted in the highest accuracy.

The first five rows of Table II separately quantify the
performance on the test part of the training data set (test
data) and the evaluation data set (evaluation data). In general,
the evaluation data set yields higher accuracy and smaller
performance variations among the different estimators, which
is caused by the simpler but more realistic evaluation scenario.
Although the accuracy measure is subject to noise due to
the comparatively small data set, it can be seen that the
binary and the binary extended classifier are outperforming the
Bayesian approach on the test data. On the evaluation data, no
outperformance is observed, but the binary extended classifier
is on par with the Bayesian classifier. The HAIR approach
is significantly worse in all scenarios and therefore will not
be further discussed. In Fig. 4, the accuracy of all estimators
is plotted with respect to the relative time progress of the
approaches on the test data. During the first 20 % to 30 %, all
estimators except for the binary classifier seem to be guessing.

Another perspective on the estimator performance can be
obtained when Tcorrect, the average remaining time of an



Training Data Set (Test Part) Evaluation Data Set Processing
Time in ms

Number of NN
parameters

Accuracy in % Tcorrect in s Accuracy in % Tcorrect in s

HAIR 48 2.08 68 2.49 0.17 –
Bayes 61 2.28 78 2.62 0.45 –
Binary classifier 66 2.67 76 2.48 1.24 27253
Binary Extended classifier 64 2.58 78 2.73 1.12 87361
Multi-class classifier w/o no known target 59 2.39 75 2.60 0.66 21573
Multi-class classifier with no known target 58 2.16 72 2.34 0.53 20805

TABLE II
METRICS OF THE PROPOSED NN FOR INTENTION ESTIMATION ON TWO DIFFERENT DATA SETS.

approach, in which the predicted goal is correct and stable, is
evaluated. The corresponding columns with Tcorrect in Table II
reveal that the extended binary classifier is superior to the
Bayesian classifier for both data sets. Interestingly, the Tcorrect-
values of the multi-class classifier are better than or on par
with the Bayesian classifier. This indicates, that it tends to
produce more stable estimates than the Bayesian classifier at
the end of an approach, despite its reduced accuracy.

The confusion matrices depicted in Fig. 5 provide insights
into the information utilized by the NNs. Specifically, the first
two columns/rows and the subsequent two align with adjacent
objects in Fig. 2. This also explains the slightly increased
confusion when one of these objects is the target.

All of the presented methods can be considered real-time
capable with frequencies beyond 100 Hz based on the average
processing times in Table II, which were measured on an Intel
Core i7-11800H CPU without utilizing a GPU. The binary
classifiers take more time than the multi-class classifiers, as
multiple binary instances must be calculated in each iteration.

B. Example Situations

With the (extended) binary classifier performing better than
the Bayesian classifier, the multi-class classifier seems to be
uninteresting based on the accuracy metrics. However, we
found that the behavior of the different estimators is not entirely
reflected by the selected metrics as illustrated in the exemplary
approach from Fig. 6. Since the example is selected from the
data set Section IV-A, it takes about 1.5 s till the subject has
understood the command and found the target to approach.
Regardless of this seeking phase, the Bayesian estimator in
Fig. 6(c) immediately strongly predicts the blue goal, which is
not among the intention. After 1.5 s, the Bayesian estimator
continues to predict the correct goal until the prediction is
shifted abruptly to the pink goal and back to the red one
after 2.0 s and 2.3 s, respectively. This jumpy behavior is
explained by the very particular likelihood regarding the relative
motion to the target and the parameter-induced tendency of
the Markov chain to change its state. In practice, this is very
unsuitable for downstream systems trying to take advantage of
the probability information. In contrast to that, the proposed
intention estimators are much less certain about their predictions
at the beginning.

Furthermore, it should be noted, that the binary classifier in
Fig. 6(d) already predicts the right object very early, when the
user is still looking towards the blue object. Although this is
beneficial for high accuracy, it is probably not the behavior a

human supervisor would expect in the given situation. Similarly,
the result from the extended binary classifier in Fig. 6(e) seems
to be erratic during the first 1.5 s. In contrast to that, the result
from the multi-class classifier in Fig. 6(f) is more plausible as
the probability for the red goal is increased, but not dominating
at the beginning.

C. No Known Target

In contrast to the binary and extended binary classifier,
the multi-class approach can handle a user without (known)
intention, which was defined as no known target above. The
last line of Table II indicate a performance drop regarding
the accuracy and Tcorrect. Nevertheless, the representative
example in Fig. 7 shows, that the intention estimation produces
reasonable results: In the beginning, the user is facing the green
object and not moving, hence the probabilities for green and no
known target are highest. For a short period, the user is facing
the red object while turning counterclockwise, making the
system predict red as the most probable intention. Afterwards,
the probability for no known target becomes highest as desired.
Furthermore, the probabilities for the remaining objects in
front of the user (i.e., orange and blue) are increased, which
seems plausible as the user suddenly may get the intention to
approach these.

In the example from Fig. 8, the same network is used when
a user approaches a known goal. Interestingly, the network
predicts no known intention at the beginning, although the
corresponding initial seeking phase never has been labeled that
way in the training data. This behavior can be considered a
successful generalization because the seeking phases of the
approaches contain no intrinsic intention and therefore might
be interpreted as labeled incorrectly.

VII. CONCLUSIONS

From the proposed recurrent networks for intention esti-
mation, the binary and the binary extended classifier have
demonstrated their capability to outperform the existing al-
gorithms regarding the examined quantitative measures on a
challenging test data set. Further experiments on a separate, less
challenging evaluation data set prove that both approaches are
able to generalize, although the clear outperformance regarding
a Bayesian approach is lost due to the simplicity of the scenario.
Therefore, especially the extended binary classifier architecture
seems to be a promising solution. The resulting benefits are that
the positions of adjacent goals are automatically incorporated
and that there is no longer a need for manual feature design
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Fig. 5. Confusion matrices of the proposed estimator architectures on the evaluation dataset.

as is the case for the Bayesian approach. From a quantitative
point of view, the multi-class classifier failed to outperform
the state-of-the-art. Nevertheless, the handling of no known
target becomes feasible and the results look more plausible
from a qualitative point of view. This raises the question of
whether the chosen accuracy measure is the most suitable for
the given problem or whether more appropriate metrics exist.

In future work, we will be dealing with improving the
network architecture, especially regarding the multi-class
classifier. Since all information is available to the multi-class
NN, it should be possible to reach the same accuracy as
the binary (extended) classifier in theory. In this context, we
also consider the adoption of transformer-based architectures.
Additionally, we intend to integrate the proposed intention
estimation into our currently developed encountered-type haptic
interface. In the long run, the inclusion of additional input
data sources, such as hand pose, posture, and locomotion
information is conceivable.
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(a) 2D projection of the example. The symbols
follow the scheme in Fig. 1.
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(b) HAIR. The solid and dashed gray lines quantify the probability for no
known target and irrational user, respectively.
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(c) Bayesian Estimator.
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(d) Binary classifier.
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(e) Extended binary classifier.
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(f) Multi-class classifier.

Fig. 6. The behavior of all estimators in an exemplary scenario, where the
user pursues the red object. Here, the multi-class classifier was trained without
the no known target output.

−3 −2 −1 0 1 2 3

x in m

−2

−1

0

1

2

3

y
in

m

(a) 2D projection of the example. The symbols
follow the scheme in Fig. 1.
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(b) Predictions of the multi-class classifier. The grey line quantifies the
probability of no known intention p∅.

Fig. 7. The behavior of the multi-class classifier in an exemplary scenario
where the user follows an intention that is not among the known targets.
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(a) 2D projection of the example. The symbols
follow the scheme in Fig. 1.
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(b) Predictions of the multi-class classifier. The grey line quantifies the
probability of no known intention p∅.

Fig. 8. The behavior of the multi-class classifier in an exemplary scenario
where the user has an initial seeking phase causing the multi-class network to
predict no known intention.


