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Abstract—We present a new deterministic sampling method for
arbitrary densities, unnormalized densities, and likelihoods. Our
rejection-free and kernel-free method uses dense equal sphere
packing of the volume under the density function (PoVuD). In
order to obtain an ensemble that is better than independent
random particles, we enforce some local homogeneity.

I. INTRODUCTION

A. Context

Deterministic sampling methods provide sets of samples or
particles, ensembles, nodes, abscissas, or “point clouds” that
approximate a given density function. These discrete density
approximations can be used, e.g., to approximate expected
values of nonlinear functions of random variables that could
not be computed in closed form. Common application scenarios
are nonlinear filtering and control, where deterministic samples
produce better results (for the same number of samples)
than the often used independent identically distributed (iid)
random samples. Deterministic sampling methods for, e.g.,
Gaussian densities include the unscented transform [1], [2],
Gauss-Hermite quadrature [3], samples based on the Localized
Cumulative Distribution (LCD) [4], [5], [6], and the projected
cumulative distribution (PCD) [7], [8]. If the density function
is known to be e.g. Gaussian and also the nonlinear weighting
function (such as the likelihood in a Bayesian state estimation
setting [9], [10]) is known to be polynomial of some degree,
then a tabulated cubature rule with weighted samples can
give guaranteed results [11]. Various methods of unweighted
deterministic sampling are known for the uniform distribution,
most notably quasi-random or low-discrepancy sequences [12],
[13]. They can also be transformed to Gaussian samples if
certain constraints are met [14], [15].

All these methods generally work well only for certain
densities such as the normal density, the uniform density, or
for sample reduction with the Dirac mixture density. In the
following, we will focus on methods for arbitrary density
functions.

B. State-of-Art

One of the basic methods for sampling from arbitrary
densities is rejection sampling [16], [17]. It involves sampling

(a) Rejection Sampling

(b) PoVuD Sampling

(c) PoVuD Sampling with Smoothing (proposed)

(d) Inverse Transform Sampling of Equidistant Samples

Fig. 1: Four methods to draw 50 univariate samples (purple)
from an arbitrary density function (blue line): classical rejection
sampling (a), our proposed methods (b,c), and inverse transform
sampling (d) of equidistant samples as “gold standard”. Note
that random samples as in (a) can also be obtained via Markov
Chain Monte Carlo sampling methods for arbitrary density
functions. Note also that inverse transform sampling (d) for
arbitrary densities is only available in the univariate case. See
Fig. 7 for the corresponding cumulatives.



Fig. 2: Given the state space x, some density function u = f(x),
and the joint space ξ = [x, u]⊤, we obtain the area B under
the density function, i.e., the area between the x axis and f(x).
Now we draw samples from 1B, i.e., the indicator function of
that area interpreted as density. After projection to the x axis,
we obtain the desired samples from f(x) (not shown here).

from a proposal density and accepting them with a probability
proportional to the local density function value. Equivalently,
the proposal samples can be augmented with a uniform random
value in an auxiliary dimension and accepted if that value is
smaller than the density function value, see Fig. 1a. The samples
can also be stratified in this setting, i.e., made more locally
homogeneous via quasi-random or low-discrepancy sequences
[18]. However, the number of samples that have to be rejected
for each accepted sample increases exponentially with the
number of dimensions. Thus, the method is not applicable
to arbitrarily high dimensions. Markov Chain Monte Carlo
(MCMC) methods also obtain samples from arbitrary density
functions [19]. This does work in higher dimensions, but the
samples are again rather random and not locally homogeneously
distributed. Finally, if the given density function is expensive
to evaluate, it can also be approximated or interpolated via a
suitable surrogate model that can be used for both sampling
and computation of the desired results [20], [21]. Our method,
on the other hand, does without kernel approximation.

C. Key Idea

Our scope is obtaining deterministic samples xi ∈ RD

from an arbitrary, not necessarily normalized density function
f(x), x ∈ RD. In a first step, we compute augmented
uniform samples ξ

i
∈ RD+1 from under the density function

as shown in Fig. 2. Therefore we solve the corresponding equal
hypersphere packing problem, hence the name “Packing of
Volume under Density” (PoVuD). After a simple projection,

(a) Electric Energy Distance (1)

(b) Nearest Neighbor Distance (4)

(c) Packing with distance to vertical boundaries (17)

Fig. 3: Simple example: uniform packing of 50 samples in
a rectangular region. Space can either be filled completely
(a,b) or with some distance to the vertical boundaries (c). Note
that minimizing the electric energy distance (a) results in a
somewhat higher point density on the boundary.

the resulting samples will have a higher density in regions
with higher density function values and vice versa, see Fig. 1c.
In total, the samples represent a discrete and deterministic
approximation of f(x).

This principle can potentially be applied to arbitrarily high di-
mensions and arbitrary density functions as well as likelihoods
with finite integral. Computational burden is the computation
of an approximate close packing of equal hyperspheres under
the density function, i.e., a constrained optimization problem.
Note that rejection sampling and Markov Chain Monte Carlo
sampling can draw from arbitrary densities as well, but the
former is limited to lower dimensions, and the latter to random,
unsmoothed samples.

II. UNIFORM PACKING

Close-packing or dense ball-packing of equally sized circles
(D = 1), spheres (D = 2), or hyperspheres (D > 2) in the
infinite space or in certain bounded regions has been researched
mainly in very specific configurations such as circles in squares
[22], while we require general nonlinear boundaries for our
purposes. We define an optimality measure for uniformity, so
we can obtain a sufficiently optimal solution with constrained
nonlinear optimization.



A. Optimality Measures

The first idea that may come to mind is minimizing the
electric or Coulomb energy of equal point charges

xopt,el
1:L = argmin

x1:L


L∑

i=1

L∑
j=1

1∥∥xi − xj

∥∥
 , (1)

x1:L = {x1, x2, . . . , xL} ,

xi ∈ RD .

However, it turns out that the resulting points are located
somewhat more densely on the boundaries than in the interior,
see Fig. 3a. This would lead to systematic errors in density
approximation, so we continue with other optimality measures.
The gold standard is to maximize the minimum distance
between any two samples [23], [24]

xopt,gs
1:L = argmax

x1:L

min
i, j
i ̸=j

{∥∥xi − xj

∥∥} , (2)

which is equivalent to optimizing the dispersion [25, p. 524].
This measure is however not very well suited for gradient-based
optimization, as it focuses only on one single pair of points at
a time. It can be relaxed by using the electric energy distance
with an additional exponent p

xopt,rel
1:L = argmin

x1:L


L∑

i=1

L∑
j=1
j ̸=i

(
1∥∥xi − xj

∥∥
)p

 , (3)

where for p → 1, we obtain (1), and for p → ∞ it is equivalent
to (2). A different way to avoid the electric energy measure
populating the boundaries more than the interior is by taking
into account the nearest neighbors only

xopt,nn
1:L = argmin

x1:L


L∑

i=1

1

min
j

j ̸=i

{∥∥xi − xj

∥∥}
 . (4)

This is the optimality measure we will be using in the following.
It is good for numerical optimization and yields uniform
distributions in the entire region, see Fig. 3b.

B. Uniform Sampling in Arbitrary Domain

We define the distance measure

Θ(x1:L) =

L∑
i=1

1

min
j

j ̸=i

{∥∥xi − xj

∥∥} . (5)

By minimizing this distance measure according to

xopt
1:L = argmin

x1:L

{Θ(x1:L)} (6)

w.r.t xi ∈ B ∀ i ,

we obtain a distribution of samples xopt
1:L uniformly populating

the domain B ⊂ RD. See Fig. 3b for an example with L =

(a) Sampling right up to the boundary (6), (14)

(b) Keeping distance to lower boundary (15)

(c) Keeping distance to upper boundary (16)

(d) Half distance to upper and lower boundary, respectively (17)

Fig. 4: Various ways to keep some distance to the boundary
while packing samples under a density function, see section IV.

50 samples where B is a simple rectangle. For solving the
nonlinear constrained minimization problem (6), we used the
sequential quadratic programming (SQP) algorithm from the
Matlab optimization toolbox [26, Chapter 18].

III. DETERMINISTIC SAMPLING

A. Univariate Densities (D = 1)

In the univariate case, D = 1, we augment the scalar sample
space x ∈ R with a second auxiliary dimension u, yielding a
vector ξ,

ξ = (u, x) ∈ R2 , (7)

u = γ · f(x) . (8)

The auxiliary variable u accounts for the sample’s density
function value. Note that scaling factor γ can be chosen
arbitrarily for now. This means also that f(x) does not need
to be normalized, i.e., it can be either a likelihood (with finite
integral) or a density (with unit integral by definition).

Now define the domain B as the region under the (scaled)
density function or likelihood

B =
{
ξ | u ≤ γ · f(x)

}
(9)

and compute uniform samples ξopt
1:L

for this area using the
distance function (5)

ξopt
1:L

= argmin
ξ
1:L

{
Θ(ξ

1:L
)
}

(10)



Fig. 5: Pareto front of two objectives Θ(ξ
1:L

) and Θ(x1:L). Approximate null space of uniform ξ
1:L

(vertical left area, yellow
marking) and corresponding single-objective optimization result for α → 0 in (18) (top middle). Null space of uniform
“over-smoothed” x1:L (horizontal lower area), with single-objective optimization result for α → ∞ (right, rotated 90°). Best
choices in the lower left corner, corresponding optimization result shown rotated by 45°.

w.r.t ξ
i
∈ B ∀ i .

See Fig. 4a for a visual example. After projection, which
is equivalent to removing the auxiliary variable u in ξ by
marginalization, we obtain the resulting samples x1:L that
represent f(x).

B. Multivariate Densities

The same principle can be applied to higher dimensions
D > 1. For x ∈ RD, we define

ξ = (u, x) ∈ RD+1 , (11)

B =
{
ξ | u ≤ γ · f(x)

}
, (12)

then compute a packing of samples ξ
1:L

covering the volume B
under the (scaled) density function γ ·f(x) uniformly (PoVuD),
and obtain x1:L being a discrete approximation of f(x).

IV. DISTANCE TO BOUNDARY

Consider the classical rejection sampling, see Fig. 1a. The
proposal samples are placed randomly without knowing where
the boundary between rejected and accepted samples runs.

Therefore, not many samples are placed right on that boundary.
Now, packing samples equally into the area under the density
function as in Fig. 4a does however cause a significant number
of samples to be placed right at the boundary, i.e., the density
function. This would introduce a systematic error.

To mitigate this, we augment the Euclidean distance term
(14) inside the objective function (5), (13) to include a distance
to the boundary, yielding variants (15), (16), and (17)

Θ(ξ
1:L

) =

L∑
i=1

1

Θi
, (13)

Θnone
i = min

j
j ̸=i

{∥∥xi − xj

∥∥} , (14)

Θlower
i = min

min
j

j ̸=i

{∥∥xi − xj

∥∥} , ui

 , (15)

Θupper
i = min

min
j

j ̸=i

{∥∥xi − xj

∥∥} , f(xi)− ui

 , (16)



(a) PoVuD Sampling

(b) PoVuD Sampling with Smoothing

Fig. 6: Uniformly packed points (red dots) in area (yellow) under density function (blue line). Projections, i.e., the desired
samples of the blue density function, are shown in purple.

Θboth
i = min

min
j

j ̸=i

{∥∥xi − xj

∥∥} , f(xi)− ui

2
,
ui

2

 .

(17)

This causes the samples to keep the same distance that they have
between each other also to the lower boundary (15), the upper
boundary (16), or half the distance to both (17), respectively.
For visual examples of all the described variants, see Fig. 4.
For a visual example including the resulting projected samples,
see Fig. 6a and its cumulative in Fig. 7a.

V. SMOOTHING

We can see in Fig. 6a that the projected points are not
distributed locally homogeneously. Often, several samples come
to lie very close to each other. This is to be expected, as
the point set ξ

1:L
is solely optimized to fill the area under

the density as smoothly and uniformly as possible, with no
requirements on any projections. A similar effect has also been
observed with optimal deterministic Gaussian samples [27,
Fig. 4a+5a].

A. Two Objectives

It is evident that many configurations of ξ
1:L

are nearly
equally uniformly distributed under the density function, and
out of that approximate null space, we want to choose a
solution where the projection x1:L is locally homogeneous

as well. Therefore we introduce a second objective Θ(x1:L)
that accounts for the smoothness of the projection x1:L only.
We can solve this multi-objective problem via a new objective
function Θ̃(·) that includes both objectives

Θ̃(ξ
1:L

) = Θ(ξ
1:L

) + α ·Θ(x1:L) . (18)

The parameter α must now be chosen small enough that the
uniformity of ξ

1:L
is not significantly affected, and large enough

that x1:L is adequately smoothed.

B. Pareto Front

By trying different choices of α, we can inspect the
resulting Pareto front, see Fig. 5. It shows how the two
objectives interact. In the top left corner, the augmented samples
ξ
1:L

are most equidistant but their projection x1:L is very
inhomogeneous. The lower right corner holds samples where
x1:L is entirely uniform and not distributed according to f(x)
anymore. The desired solutions where x1:L is relatively smooth
and distributed according to f(x) are in the lower left corner.

C. Normalization

In general, Θ(x1:L) attains larger values than Θ(ξ
1:L

) due
to the different average distance between points. Therefore, we
want to normalize (18) such that we do not need to search for
an optimal smoothing factor for every new density, dimension,
or number of samples.
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(a) PoVuD Sampling
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(b) PoVuD Sampling with Smoothing (proposed)
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(c) Random Rejection
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(d) Inverse Transform

Fig. 7: Cumulatives of reference density (blue) and Dirac mixture approximation (yellow). This figure serves as a simple
evaluation of our proposed sampling method (b). Note that rejection sampling (c) is available only for lower dimensions, and
inverse transform sampling (d), at least for arbitrary density functions, only for univariate ones. The corresponding samples and
density functions are shown in Fig. 1 and, for the PoVuD samples, also bigger in Fig. 6.

We can always compute, without having to specify a smooth-
ing factor, the two single-objective endpoints representing
α → 0 and α → ∞, respectively. They are visualized in
Fig. 5 as red vertical and green horizontal line, respectively.
With the rule of three, we can now level out the different
scaling of both objectives in (18) according to

Θ̃(ξ
1:L

) = Θ(ξ
1:L

) + β ·
minξ

1:L

{
Θ(ξ

1:L
)
}

minx1:L
{Θ(x1:L)}

·Θ(x1:L) .

(19)

In other words, we divide α into a universal smoothing factor

β and a normalization factor η

α = β · η , (20)

η =
minξ

1:L

{
Θ(ξ

1:L
)
}

minx1:L
{Θ(x1:L)}

,

where β represents the actual weighting of the smoothing
part. Choosing β = 1 would give the same weight to the
smoothing as to the accuracy of the density. However, we put
more emphasis on accurate density representation and consider
smoothing as a rather minor objective to make optimal use
of the remaining degrees of freedom from the null space. In
our experiments, β = 0.2 was, by inspecting the cumulatives,



a good choice to apply some smoothing without significantly
distorting the cumulative distribution of the samples. Refer to
Fig. 6b for a visual example of the resulting samples, and, as
evaluation, Fig. 7b for the cumulatives.

VI. CONCLUSION

The beauty of our method is its simple, intuitive rationale
and that it uses two widely available tools, of which there is a
wide selection, namely constrained optimization, where many
software implementations exist, and a uniformity measure,
that can be taken, e.g., from works in close sphere packing.
The method allows for drawing locally homogeneous deter-
ministic samples from arbitrary density functions. Other than
rejection-based methods, the computational complexity does
not increase exponentially with the dimension, and other than
iid random samples or MCMC samples, our ensembles are
locally homogeneous and smooth.

However, the constrained optimization problem to be solved
is not quite simple. One should try different solvers and
parameters to get good results. Furthermore, the probability
density shape has an influence. Multiple modes are a problem if
the density goes near zero somewhere between them. Narrow
peaks only provide space for a “tower” of samples, while
wide, flat areas provide space for only one “layer”, which
may lead to inaccuracies if the number of samples is rather
small. To summarize, computation is rather complex and slow,
but not exponentially increasing with higher dimensions, and
does not require closed-form solutions of any integrals as with
kernel-based methods.

VII. FUTURE WORK

For optimization, we so far employed sequential quadratic
programming (SQP) [26, Chapter 18] as ships with Matlab.
However, it is tedious to manually implement the gradients
of the objective functions. In order to easily try different
configurations of optimality measures and solvers, we will
implement the algorithm in Julia [28] and use its automatic
differentiation features [29], [30] in the optimization. We also
plan to try probabilistic solvers like Simulated Annealing
[31]. We will replace the boundary constraints of the volume
under the density with a soft repulsion to simplify the
constrained optimization problem to an unconstrained one.
Poisson Disc Sampling also provides an interesting alternative
to obtain uniform samples that are locally homogeneous in
given domains [32], even in higher dimensions [33]. We are
going to implement our method in higher dimensions, as
described in section III-B, and perform extensive simulations
on the accuracy. Additional constraints ensuring exact moment
matching of mean and covariance could improve the results
further. Finally, in a progressive optimization setup, we can
start with, e.g., the 10th root of the wanted density function,
which flattens narrow peaks [34, Figure 3]. Over the course
of the optimization, the density function is then progressively
adapted until it reaches the wanted density function in the end
[35].

The authors acknowledge support by the state of Baden-
Württemberg through bwHPC.
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