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Abstract—We aim to approximate the distribution of the first-
passage time of a particle moving according to a Gaussian
process with increasing trend, i. e., the distribution of the first
time a particle described, e. g., by a state-space model such as
a constant-velocity or constant-acceleration model, arrives at a
fixed location. Since the known approaches from the literature
either consider processes from different families or lead to highly
complex approximations, we seek a fast-to-compute method for
the problem. Motivated by an engineering particle transport task
for which we can assume that once a particle has arrived at this lo-
cation it cannot move back, we derive an analytic approximation
for the first-passage time probabilities and calculate its inverse
cumulative distribution function analytically and the moments
numerically. Furthermore, we propose a Gaussian approximation
based on a linearization approach. The strengths and limitations
of our methods are discussed and by comparison with Monte
Carlo simulations, we show that in particular, the first one
satisfies the requirements of engineering problems in terms of
accuracy and computation time.

Index Terms—First passage, Gaussian process, probabilistic
motion model, absorbing boundary, kinematic model.

I. INTRODUCTION

The problem of finding the distribution when a particle
moving according to a stochastic process hits a fixed, moving,
or curved boundary for the first time is called a first-passage
or first-hitting time problem [1], [2]. Such problems are
typically encountered in the study of diffusion processes in
physics and biology but also arise, for example, in psychology,
economics, signal processing, or engineering (see e. g. [3]–[5]
and references therein).

In our example, we are originally motivated by the technical
application of particle sorting [6], in which particles are
transported by a conveyor belt while being tracked using a
Kalman filter. We aim to predict the first-passage time w.r.t.
an array of nozzles that is located close behind the end of
the belt and ejects particles that are not of the desired class
with jets of compressed air (see Fig. 2). As the filter provides
us with estimated particle positions, velocities, and possibly
accelerations at the end of the belt and we assume a constant
velocity (CV) or constant acceleration (CA) motion model in
transport direction, mathematically, this can be seen as a first-
passage time problem w.r.t. a fixed boundary under stochastic
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Fig. 1. Approximate first-passage time distribution and CDF for our technical
transport problem using a CA model and the proposed approximation methods.
Dashed-dotted vertical lines represent mean, and mean plus/minus one standard
deviation. The dashed lines represent first, second, and third quantiles. The
black solid vertical line illustrates the solution of the deterministic model.

initial conditions for a non-stationary, non-centered stochastic
process.

Similar scenarios, where the motion of a particle or an
agent is modeled by a Gaussian stochastic process with an
increasing trend, i. e., an increasing mean function, are prevalent
in science and engineering. One reason is that kinematic motion
models perturbed by Gaussian random noise, such as CV or
CA models, are still a core part of almost all applications
involving state estimation or prediction. For example, such
models are usually found in the field of target tracking and
navigation [7], [8], autonomous driving and pedestrian motion
prediction [9], or robot navigation and odometry [10]. First-
passage time problems may arise there naturally, e. g., when
trying to predict the time of arrival of an agent or the remaining
time until a collision, where additional uncertainty information
can be crucial.

Although first-passage time problems have been studied
since the early 1900s, they still remain a class of challenging
problems and analytic solutions are only known for some
special combinations of mainly basic processes and boundaries,



e. g., Brownian motion with a fixed boundary. For general
linear Gaussian state-space models (LGSSM), such as CV and
CA models, no analytic solutions are known. Furthermore,
the known approximation schemes for the first-passage time
distribution (FPTD) and its moments are mostly designed for
diffusion processes and often only available for special kinds
of processes (e. g., one-dimensional, stationary, centered, or
Markov). Even with the known approaches to related problems,
it is our understanding that for most engineering applications,
it is hard to obtain moment or quantile information within a
reasonable computational time, so they do not provide a viable
solution from an engineering perspective, either. Moreover, they
do not take into account the characteristics typical for many
motion models in engineering, such as 1) the increasing trend
in the mean function and 2) the (compared with diffusion
processes) generally weakly-stochastic short-time behavior.
Both characteristics may allow for further approximations to
achieve a good balance between approximation accuracy and
computation time.

We propose two methods to tackle the problem in our
engineering example: The first uses a linearization approach
and assumes a Gaussian density for the FPTD whose mean
and variance are calculated from the linearization. The second
one exploits that particles are very unlikely to move back after
passing the nozzle array, since otherwise efficient sorting would
not be possible. Under this assumption, we can work with
the formulas for first-passage time problems with absorbing
boundaries and calculate a simple, analytic approximation for
the first-passage time probabilities (see Fig. 1) without any
further linearizations or assumptions on the type of distribution.

Contribution: First, we propose a simple Gaussian approx-
imation scheme to the FPTD of LGSSMs with an increasing
trend called Gauß–Taylor approximation. Second, we clarify the
mathematical requirements that the process-boundary pair must
satisfy to ensure the assumption of non-returning particles.
Using this assumption, we then propose a simple analytic
approximation to the FPTD called No-return approximation
that is applicable to Gaussian processes with an increasing trend.
Third, we derive the analytic solution for the corresponding
quantile/percent point function (PPF) and propose a fast
numerical method to obtain the moments of the approximate
FPTD. We evaluate our methods for CV and CA models by
comparison with Monte Carlo simulations.1

Notation: Vectors will be indicated by underlined letters,
e. g., x, and boldface capital letters, e. g., A, will indicate
matrices. We use boldface letters, x, to represent random
variables and time t dependencies of (random) variables, x(t),
will be written in parentheses. As abbreviations, we use x̂ for
the expected value of x, i. e., x̂ = E{x} and the upper index
t0 to denote initial values (at time t0), e. g., xt0 = x(t0).

1Our source code is available at https://github.com/KIT-ISAS/Approx
FPTD for Motion Models/tree/Fusion23
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Fig. 2. Our particle sorting problem. Particles are transported to a nozzle
array by a conveyor belt while being observed by an area scan camera. We
assume CV or CA motion behavior and track the particles on the belt with a
Kalman filter. Using the last estimated state in the camera’s field of view, we
aim to estimate the distribution of the particle’s first-passage time T a at the
nozzle array.

II. PROBLEM STATEMENT

The first-passage time is defined as the first time a (con-
tinuous) random process x(t) reaches a (potentially time-
dependent) value a(t), i. e., T a = inf{t > t0 : x(t) = a(t)},
when starting at a time t0 at x(t0) with x(t0) < a(t0) almost
surely.2 Our goal is to calculate the probability P(T a < t),
i. e., the CDF of T a or its PDF (the FPTD) pT a(t), if they
exist. The latter requires that the first passage is an almost sure
event, which might not be guaranteed for any arbitrary pairing
of processes and boundaries. In this paper, we focus on fixed
boundaries a(t) = a ∈ R, ∀t and continuous-time Gaussian
processes with an increasing trend, i. e., with a continuously
increasing mean function x̂(t) in t.

In particular, we consider time-invariant continuous-time
LGSSMs without input, i. e., Markov dynamic systems that
are described by the Langevin equation

ẋ(t) = Ax(t) + Dv(t) . (1)

Here, v(t) is a continuous, stationary, zero-mean white noise
process with power spectral density V, A is called the system
matrix, D is the noise gain, and x(t) is the state of the LGSSM.
(1) has the solution

x(t) = Φ(t− t0)x(t0) +

t∫
t0

Φ(t− τ)Dv(τ) dτ , (2)

where Φ(τ) = exp(Aτ) is the state transition matrix [7,
Chapter 4]). Thus, x(t) is given by the Gaussian process that
is fully described by its mean x̂(t) = Φ(t− t0)x̂t0 , covariance

Φ(t− t0)Σt0Φ>(t− t0) +

t−t0∫
0

Φ(τ)DVD>Φ>(τ) dτ ,

2The case where x(t0) > a(t0) almost surely is defined analogously.



and autocovariance Φ(t− s)Cov{x(s)}, t0 ≤ s ≤ t with Σt0

the initial covariance, i. e., Σt0 = Cov{x(t0)} (assuming x(t0)
to be independent of the noise) [11]. Throughout this paper, we
assume w.l.o.g. that (the position) x(t) is the first component
of the LGSSM’s state x(t).

Example 1 (CV Model). The continuous-time CV model, also
known as the white noise acceleration model, is the LGSSM
with state x(t) =

[
x(t) ẋ(t)

]>
, and system matrix and noise

gain

A =

[
0 1
0 0

]
, D =

[
0 1

]>
,

where we have used x(t) and ẋ(t) to denote the particle’s posi-
tion at time t and its first temporal derivative, respectively. The
system noise v(t) is therefore scalar-valued with power spectral

density S. Calculation of Φ(τ) yields
[
1 τ
0 1

]
. The mean of the

process evolves according to x̂(t) =
[
x̂t0 + ˆ̇xt0 (t− t0) ˆ̇xt0

]>
and the evolution of the covariance is given by

S

[
(t−t0)3

3
(t−t0)2

2
(t−t0)2

2 t− t0

]
+[

Σt0xx + 2Σt0xẋ (t− t0) + Σt0ẋẋ (t− t0)
2

Σt0xẋ + Σt0ẋẋ (t− t0)
Σt0xẋ + Σt0ẋẋ (t− t0) Σt0ẋẋ

]
,

with Σt0xx, Σt0xẋ, and Σt0ẋẋ denoting the respective entries of Σt0 .

III. BACKGROUND AND RELATED WORK

We now briefly summarize the basics of first-passage time
problems and the related work for process-boundary pairs that
are closest to our problem statement. For some classical results
on first-passage time problems and a general review, we refer
the reader to the surveys [1] and [2].

A. Background on First-Passage Times

We can find a starting point by writing the event {T a < t}
as the union of {x(t) > a} and {T a < t,x(t) ≤ a}, that is,
to have a first-passage time T a less than t, a particle must be
located either above a at time t or, if it is below a, its path
must have crossed the boundary at a time T a < t [12]. As
both events are disjoint, it follows

P(T a < t) = P(x(t) > a) + P(T a < t,x(t) ≤ a) . (3)

Note that the first term on the right-hand-side of (3) is easy to
compute for Gaussian processes, whereas the second term can
only be computed in some special cases.

1) Method of Images: The method of images can be used
to find the FPTD for Markov processes that are symmetric
around the boundary [5], such as the Brownian motion b(t)
with a fixed boundary. When restarting the Brownian motion at
the first-passage time T a, it is equally likely that the process
ends at time t below or above a, thus P(T a < t, b(t) ≤ a) =
P(T a < t, b(t) > a) = P(b(t) > a). This is also known as

the reflection principle and follows from the strong Markov
property of Brownian motion (see [13], [14] for a proof). Thus,

P(T a < t) = 2P(b(t) > a) = 2− 2Φ

(
a

σ
√
t

)
, (4)

where Φ(·) is the standard Gaussian CDF and σ2 is the diffusion
constant of Brownian motion. From (4), we can calculate the
FPTD pT a(t) by taking the derivative w.r.t. t, which results in
the Lévy distribution. Note that as t → ∞, P(T a < t) → 1,
which means that the first passage with an arbitrary boundary
a is a sure event in case of Brownian motion.

2) Renewal Theory: For Markov processes, an integral
equation can be formulated that must be satisfied by the FPTD.
Let us suppose that a particular sample path crosses the border
at least once between time t0 and t, i. e., x(t0) ≤ a ≤ x(t).
We denote the sample path’s first-passage time by θ. It follows
x(θ) = a. Then, due to the Markov property,

p(x(t)|x(t0)) =

t∫
t0

pT a(θ|x(t0))p(x(t)|x(θ)) dθ , (5)

if x(t) ≥ a. This integral equation is often referred to as
renewal equation [1]. For some special process-boundary
combinations, it is possible to solve (5) analytically (see, e. g.,
[1] for the Brownian motion and a fixed boundary). Since
the integral of the right-hand-side of (5) is a convolution
integral, (5) can be solved in Laplacian space. However, the
inverse Laplace transform rarely exists, and in general, it is
not possible to solve (5) for arbitrary Gauß–Markov processes.
Using the Laplace transform of the renewal equation, it is,
e. g., possible to find the FPTD for the Wiener process with
drift w(t) = vt+ b(t), which results in the Inverse Gaussian
distribution [15].

3) Absorbing Boundaries: Until now, we considered free
particle motion, which means that the presence of the boundary
does not affect particle motion. Opposed to that, at an absorbing
boundary, a particle immediately stops moving. It thus imposes
an additional boundary condition the process PDF has to fulfill
(for Markov processes, one can enforce these implications
when deriving the PDF via the Fokker–Planck equation). For
absorbing boundary conditions and Markov processes, one can
again find a renewal integral equation [3]

a∫
−∞

p(x(t)|x(t0)) dx(t) = 1−
t∫

t0

pT a(θ|x(t0)) dθ . (6)

This follows from the observation that with an absorbing
boundary, the probability of not having passed the boundary
by time t is equal to the probability that the first-passage time
is greater than t.

B. Related Work

Here, we restrict ourselves to the related work in the field
of first-passage time problems for the integrated Brownian

motion b(−1)(t) = x0 +
t∫

0

v(τ) dτ with v(t) = v0 + b(t)



and deterministic initial values x(0) = x0 and v(0) = v0.
This is because integrated Brownian motion is closest to

LGSSMs since with the state x(t) =
[
b(−1)(t) v(t)

]>
one

can find a state-space representation known as the Kolmogorov
diffusion [16]. In particular, the CV model can be seen as a
(more general) version of the integrated Brownian motion with
stochastic initial conditions (note that both follow exactly the
same Langevin equation and thus also the transition density
and the autocovariance match). Furthermore and not restricted
to integrated Brownian motion, we outline some approximation
methods for estimating FPTDs.

1) Integrated Brownian Motion: Early studies on the in-
tegrated Brownian Motion with initial values x0 = 0 and
v0 > 0 are the ones from McKean [17] and Goldman [18],
who studied the first return-time to the origin. In 1985, Marshall
and Watson [19] succeeded in finding the Laplace transform
of the FPTD for general x0, v0, which allows studying the
short and long-time behavior of the FPTD. However, until
now, no analytic solution is known to the inverse Laplace
transform. For a more comprehensive review of the relevant
literature in this field, we refer the reader to the survey [20].
More recently, [21] proposed a method for finding approximate
moments of the FPTD for the integrated Brownian process
with x0 = 0, v0 > 0, a ≥ 0 by the help of martingale methods,
stopping-time arguments, and a power series approach.

2) Approximation Methods: As first-passage time problems
are generally hard to solve analytically, much effort has been in-
vested in the development of approximation methods. However,
these methods are mostly designed for one-dimensional, station-
ary Gaussian processes. We only point out a few directions here
and refer the reader to the surveys [22], [23]. One possibility
is to make use of the expected number of up-crossings and
express the desired probability by means of a series, often
called Rice series [24]. Another approximation, especially
popular in physics, is to assume that the time intervals between
crossings are independent, known as the independent interval
approximation (see, e. g., [5]). Another class of approximation
schemes transfers the original problem to a first-passage time
problem of a Wiener process with a curved boundary and
approximates it by piecewise linear functions [25]. For example,
[4] used this approach in combination with a series expansion
to approximate the FPTD for Gauß–Markov processes.

IV. GAUSS–TAYLOR APPROXIMATION

We now present our first approach that uses error propagation
in combination with a simple Gaussian approximation for the
FPTD of LGSSMs. It consists of the steps:

1) Calculate θd as the first-passage time of the underlying
deterministic motion model, i. e., θd is the solution of
the equation E{x(t)} = a for t. θd will yield the mean
of our Gaussian approximation for the FPTD.

2) Set up the motion equation

x(t) = Φ(t− t0)x(t0)|t0=θd,t=T a,x(T a)=a

at this point and solve it for T a as a function of x(θd).

3) Linearize T a(x(θd)) at E{x(θd)} with a first order
Taylor series expansion. This yields T a(x(θd)) ≈

T a(x(θd))|E{x(θd)} +∇T a(x(θd))|E{x(θd)}

· (x(θd)− E{x(θd)}) .

4) Determine the variance of the linearization and employ
it as the variance of our Gaussian approximation for the
FPTD.

All steps combined result in the approximations E{T a} ≈ θd
and Var{T a} = ∇T a(x̂(θd))

>
Cov{x(θd)}∇T a(x̂(θd)).

Example 1 (CV Model, continued). The mean of our approxi-
mation for the CV model is given by θd = t0 + (a− x̂t0) /ˆ̇xt0 .
The motion equation in the vicinity of θd is

T a(x(θd), ẋ(θd)) = θd +
a− x(θd)

ẋ(θd)
.

The linearization yields T a(x(θd), ẋ(θd)) ≈ θd + a−x(θd)
ˆ̇x(θd)

.

Finally, the error propagation results in Var{T a} ≈ Var{x(θd)}
ˆ̇x
2
(θd)

.

Note that in addition to the approximations by the Gaussian
assumption and the linearization, this approach includes another
approximation: When setting up the motion equation in the
vicinity of θd, we neglect additional noise stemming from the
particular solution (second term) of (2) in the time interval
between θd and T a. Moreover, its only relation to first-passage
time problems is the use of θd as the point of linearization.

V. NO-RETURN APPROXIMATION

Our second proposed approximation relies on the assumption
that particles are unlikely to move back once they have
passed the boundary. For this, in the first part, we formalize
the requirements, specify the assumption, and present our
approximation. In the second part, we show how we can obtain
an expression for the quantile function. Third, we propose a
method for fast numerical calculation of the moments. Finally,
we introduce a method for one or multidimensional Markov
processes that can be used to spot-check the initial assumption.

A. Approximate First-Passage Time Probabilities

Let x(t) be a Gaussian process and a ∈ R a fixed boundary
with a > x(t0) almost surely, so that ∃tc ∈ (t0,∞] with

1) P(x(t) > a) a monotonically increasing function in
[t0, tc],

2) P(x(tc) > a) ≈ 1, with tolerance ε, and
3) P(T a < t,x(t) ≤ a) ≈ 0, ∀t ∈ [t0, tc).

The second requirement ensures that the first passage is an
almost sure event since the true first-passage time probability
for t → ∞ is higher than P(x(tc) > a). The last point
encodes our assumption that particles are unlikely to return
to a level lower than a within the interval [t0, tc). Because of
the symmetry of a Gaussian process, all three requirements
together can be read such that the mean is primarily responsible
for the first passage.



Our approximation then is

P(T a < t) ≈

P(x(t) > a) = Φ

(
E{x(t)}−a√

Var{x(t)}

)
t < tc

P(x(tc) > a) t ≥ tc .
(7)

Taking the derivative with respect to t for t < tc yields an
approximation for the FPTD

pTa(t) =

 d
dtE{x(t)}√
Var{x(t)}

+
(a− E{x(t)}) d

dtVar{x(t)}

2
√

Var3{x(t)}


1√
2π

exp

(
− (a− E{x(t)})2

2Var{x(t)}

)
. (8)

Note that if P(x(t) > a) is monotonically increasing to 1 for
t → ∞, the formulas describe a valid probability density.
Nevertheless, if ε 6= 0, but is small enough, we may regard (7)
as a good approximation of the first-passage time CDF, although
it may not reach 1 exactly and therefore is not a valid CDF
in the strict sense. Note that (7) is a lower bound to the true
first-passage time probability as it, according to the assumption,
neglects the second term of (3) for t < tc. Moreover, for t < tc,
(7) is essentially the same as the renewal equation for absorbing
boundaries (6), and thus, the approximation can be seen as
treating the boundary as an absorbing boundary, even though
the stochastic process does not fulfill the implications of an
absorbing boundary.

To determine tc, we can use that P(x(t) > a) has a
maximum if and only if the first factor of (8) vanishes for a
real t > t0. Thus, one needs to solve

2Var{x(t)} d

dt
E{x(t)}+ (a− E{x(t)}) d

dt
Var{x(t)} = 0 ,

for t > t0, which, e. g., for the CV model, is a cubic polynomial
and can be solved using Cardano’s formula.

While the first two requirements of our method are easy to
verify, the third one needs to be examined more cautiously,
since the full evaluation of P(T a < t,x(t) ≤ a) would require
the true but unknown FPTD. We propose a fast method to
spot-check this assumption in Sec. V-D.

B. Quantile Function

To derive the quantile function (also known as inverse CDF
or PPF), we start with (7) and denote the target probability by
q. Straightforward manipulations for t < tc lead to(

Φ−1 (1− q)
)2

Var{x(t)} = (a− E{x(t)})2
,

where Φ−1 denotes the PPF of the standard Gaussian.
It remains to solve the equation for t. In general, this is

a challenging task, as it requires solving a polynomial of
degree max

(
dE2{x(t)}, dVar{x(t)}

)
, with dE2{x(t)} denoting

the polynomial degree of E2{x(t)} in t and dVar{x(t)} the
polynomial degree of Var{x(t)} in t, respectively. For some
special cases, e. g., the CV model, the equation can be solved in
closed form, but in general, numerical root solvers are required.
For the median, i. e., q = 0.5, one directly obtains a = E{x(t)}.

Thus, the median of our approximation corresponds to solving
the process’ deterministic counterpart E{x(t)} = a for t.

C. Moments

For computing the moment of order m, in general, it is
necessary to evaluate the Riemann integral

∫∞
t0
tmpT a(t) dt,

where pT a(t) is the approximate FPTD according to (8). For
the CV or CA model, this integration cannot be performed
in closed form. Moreover, we have to pay attention to the
integration limits, which have to be restricted to [t0, tc] in
order to avoid divergent integrals.

With these restrictions, it is possible to compute the moments
numerically. For this purpose, we propose to use the CDF
to accurately measure the actual probability mass in each
sub-interval [tj , tj+1], resulting in the approximation

E{Tm
a }[ta,tb] ≈

n−1∑
j=0

tmj (P(T a < tj+1)− P(T a < tj)) ,

with integration limits ta, tb ∈ R, integration points tj = ta +
j∆t, ∆t = tb−ta

n , and a sufficiently large n ∈ N. Note that we
could also approximate the moments using upper sums (tmj+1)
instead of lower sums (tmj ), and are thus directly provided with
a natural measure of integration error by comparing both. It
remains to find sufficient integration limits ta and tb. We can
use the PPF to find the locations where the probability mass is
located, rather than just integrating from t0 to tc, to construct
an efficient algorithm for finding the moments.

D. Estimate of Returning Probabilities

We propose a fast-to-calculate method that indicates whether
we can assume that particles are unlikely to return to the
boundary after a crossing. Therefore, we calculate a time
interval for which the process is highly certain to remain
above the limit once it has reached it.

In the following, suppose we know the time θ of a crossing,
i. e., x(θ) = a. The probability of returning below a at time
θ+τ after a crossing at time θ, P(x(θ + τ) < a|x(θ)), is then
given by

a∫
−∞

p(x(θ + τ)|x(θ)) dx(θ + τ) . (9)

For multivariate Markov processes, we can find an expression
for p(x(θ + τ)|x(θ)) by writing the (full) state x(θ) =[
x(θ) xR(θ)

]>
as a combination of the first state compo-

nent x(θ) and all remaining state components xR(θ). Then,
p(x(θ + τ)|x(θ)) is given by∫

ΩxR(θ+τ)

∫
ΩxR(θ)

p(x(θ + τ), xR(θ + τ)|x(θ), xR(θ))

· p(xR(θ)|x(θ)) dxR(θ) dxR(θ + τ) ,

where ΩxR(θ) denotes the domain of xR (θ). As all densities
involved are Gaussians, the integration can be performed in
closed form (for LGSSMs, see Appendix A).



We can now study the asymptotic behavior of
P(x(θ + τ) < a|x(θ)). When lim

τ→∞
E{x(θ+τ)|x(θ)}−a√

Var{x(θ+τ)|x(θ)}
= ∞,

that is, the conditional mean increases faster than the
conditional standard deviation, the probability of not
returning to a goes to 1. On the other hand, when
lim
τ→∞

E{x(θ+τ)|x(θ)}−a√
Var{x(θ+τ)|x(θ)}

= 0, the probability of not returning

shrinks to 1
2 for τ → ∞. This implies that returning below

the boundary is likely within a (small) time interval after the
crossing for a process of the first class (e. g., a Wiener process
with drift), whereas for the processes of the second class (e. g.,
a CV and CA model), the probability of returning increases
when waiting long enough.

For finite τ , the probability P(x(θ + τ) < a|x(θ)) depends
on the time θ itself. For an intuition, we could use the
deterministic solution for the first-passage time θd, i. e., θd
is set to the solution of E{x(t)} = a for t. We now can
again find the PPF of x(θd + τ) < a|x(θd) or use a graphical
method to plot the probability over the length of the time
interval. If the probability falls below a desired confidence q
within a time relevant to our technical process, this is a strong
indicator that condition 3) is invalid and one may consider
changing the technical process or the model describing it.

Example 1 (CV Model, continued). For the CV model, the
process mean is given by E{x(t)} = x̂t0 + ˆ̇xt0 (t− t0) and the
variance by Var{x(t)} = Σt0xx +2Σt0xẋ (t− t0)+Σt0ẋẋ (t− t0)

2
+

S (t−t0)3

3 . Thus, d
dtE{x(t)} = ˆ̇xt0 and d

dtVar{x(t)} = 2Σt0xẋ +

2Σt0ẋẋ (t− t0)+S (t− t0)
2. To determine tc, one needs to solve

the cubic polynomial

−1/3Sˆ̇xt0 t̃3+S
(
a− x̂t0

)
t̃2+2

(
ˆ̇xt0Σt0xẋ +

(
a− x̂t0

)
Σt0ẋẋ

)
t̃

+ 2
(

ˆ̇xt0Σt0xx +
(
a− x̂t0

)
Σt0xẋ

)
= 0

with t̃ = t − t0 for t. Likewise, the calculation of the PPF
results in

1/3Sq2t̃3 +
(

Σt0ẋẋq
2 − ˆ̇xt0

2
)
t̃2

+ 2
(

Σt0xẋq
2 +

(
a− x̂t0

)
ˆ̇xt0
)
t̃+ Σt0xxq

2 −
(
a− x̂t0

)2
= 0 .

In particular, the median of our approximation is t0 + a−x̂t0
ˆ̇xt0

.
p(x(θ + τ)|x(θ)) is given by (inserting x(θ) = a)

N
(
a+ τ

(
ˆ̇xt0 + Σẋx(θ)Σ

−1
xx (θ) (a− x̂(θ))

)
,

τ2
(
Σẋẋ(θ)− Σxẋ(θ)Σ

−1
xx (θ)Σxẋ(θ)

)
+
S

3
τ3

)
,

with Σxx(θ), Σxẋ(θ), and Σt0ẋẋ(θ) denoting the respective entries
of Cov{x(θ)}.

VI. EVALUATION

We compare our two proposed approaches with Monte Carlo
simulations for CV and CA models. First, we describe the
properties of the processes. Second, we explain the Monte
Carlo simulation. Third, we present different examples showing
the strengths and limitations of the approaches.

A. Processes Used for the Evaluations

For all evaluations, we chose the following common parame-
ters taken from a typical particle from our particle sorting
application. Particles start at x̂t0 = 29 mm with velocity
ˆ̇xt0 = 600 mm/s at time t0 = 0. The boundary is located
at a = 62.5 mm. For the CA model, the acceleration is
ˆ̈xt0 = 425 mm/s2.

B. Monte Carlo Simulations

We first discretize the continuous-time motion models with
a sufficiently small time-increment ∆t using the analytic
solution (2) as described in [7, Chapter 6.2]. We then let
each particle run until it has crossed the boundary a for the
first time. Next, we compute the first-passage time using linear
interpolation between the last position before and the first
position after the boundary. Finally, we use histograms with
100 equally-distributed bins in the plot range to illustrate the
distribution. The histograms also take into account particles that
have not reached the boundary within the maximum number of
time steps used, but these particles are not displayed explicitly.
For all of our evaluations, we use 100 000 particles and a
time-increment of 0.001 s.

C. Results

The plots show the FPTDs and corresponding CDFs for our
approaches. The histograms illustrate the results of the Monte
Carlo approach. Vertical lines visualize the mean, variance,
and the first and third quantiles of the methods, respectively.
The black solid vertical lines illustrate the solutions of the
deterministic model.

Fig. 3 shows the results of our method for three CV models
with increasing power spectral density. For relatively low noise,
i. e., for processes with a short-time behavior dominated by
the mean, our methods are very close to the results of the
Monte Carlo simulation. For low noise levels, the Gauß–Taylor
approximation works surprisingly well. However, for higher
noise levels, it fails to capture the distribution’s shape correctly,
while the No-return approximation still yields good results. In
general, compared with the Gauß–Taylor approximation, the
No-return approximation is more accurate, since it, e. g., also
captures the distribution’s skewness and kurtosis.

Except for the process displayed in Fig. 3c, which has an
ε ≈ 0.29, all considered processes meet the requirements 1) and
2), i. e., P(x(t) > a) approximately reaches 1 while increasing
monotonically. For the latter process, also depicted in slightly
transparent color, one can observe that P(x(t) > a) decreases
for t > tc ≈ 0.104 s. For the process in Fig. 3b, ε ≈ 2× 10−8.
For all other processes, ε is too small to be calculated. The
same qualitative behavior as for CV models can be observed
for CA models. We refer to Fig. 1 for an example with a power
spectral density of S = 9 364 045 mm2/s5.

Fig. 4 visualizes the returning probability for θ = θd for the
CV model displayed in Fig. 3a. Here, to achieve a confidence
of not returning higher than 95 %, the time difference τ after
a crossing at θd must be smaller than 42.58 s. This means the
technical process and its model should be such that returning
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Fig. 3. FPTD (first row) and example tracks (second row) for three CV models with different power spectral densities (one per column). Dashed-dotted vertical
lines in the first row represent mean, and mean plus/minus one standard deviation. The dashed lines represent first, second, and third quantiles. The plots in the
second row show example tracks and the process mean (EV) and standard deviation (Stddev). The process in the first column represents a typical example of
our application, the one in the middle an example with high noise, and the one in the right-hand column an artificial extreme case for which our approximations
are not valid. For this process, we additionally displayed P(x(t) > a) in slightly transparent color, which is visible at the right edge of the upper right plot.
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Fig. 4. Valid region of the No-return approximation for the CV model with
S = 9364mm2/s3. The green region corresponds to the time difference τ
for which P(x(θd + τ) > a|x(θd)) > 0.95, with θd being the solution of
the deterministic motion model.

after τ is impossible or irrelevant in order for the No-return
approximation to be applicable. For the CV model with S =
93 640 mm2/s3, τ must be smaller than 4.2 s, and for the CV
model with S = 936 400 mm2/s3, τ < 0.000 77 s must hold.

The calculation times of our Python implementation averaged
over 10 runs are compared in Tab. I.3 The computation times

3Evaluated with an Intel Core i7-6700HQ CPU, 8 × 2.60 GHz and an
NVIDIA RTX 2080 Ti.

TABLE I
COMPARISON OF COMPUTATIONAL TIMES IN ms.

MC simulation Gauß–Taylor No-return

PDF 2774 0.318 10.066
CDF 3153 1.156 3.53
PPF 2971 0.361 3.727

E{T a} 2733 0.051 5.084
Var{T a} 2774 0.056 6.129

include all required operations for initializing distribution
classes and calling the respective methods. The MC simulation
is by far the slowest method, requiring up to about 3 s. The
Gauß–Taylor approximation performs best with calculations
times up to approximately 1.2 ms, followed by the No-return
approximation with between 3.5 ms and 10 ms. Note that calls
to methods of already initialized classes will result in much
faster calculation times.

VII. CONCLUSION

We proposed two methods for approximating first-passage
time probabilities of Gaussian processes with an increasing
trend, such as CV and CA models. The first method yields
a simple Gaussian approximation by an error propagation
approach. For the second method, we showed how the as-
sumption that particles are unlikely to return to a level lower



than the boundary once they have crossed it can be used to
obtain an analytic approximation for the first-passage time
CDF. We then derived an expression for the PDF and its
quantile function that only depends on the standard Gaussian
PPF. Furthermore, we proposed a numerical method based
on Riemann sums to compute the first-passage time moments.
While the first approach yields reasonable results for low noise
levels, empirical evaluations for the CV and the CA model
prove the validity and robustness of the second method. It is
thus particularly suitable for motion models from engineering,
also in terms of required computation time.

APPENDIX A
TRANSITION DENSITY OF LGSSMS CONDITIONED ON ONE

STATE COMPONENT

Our goal is to evaluate p(x(θ + τ)|x(θ))

=

∫
ΩxR(θ+τ)

∫
ΩxR(θ)

p(x(θ + τ), xR(θ + τ)|x(θ), xR(θ))

· p(xR(θ)|x(θ)) dxR(θ) dxR(θ + τ) , (10)

where all densities involved are from an LGSSM. Furthermore,
we have written the (full) state x(θ) =

[
x(θ) xR(θ)

]>
as a

combination of the first state component x(θ) and all remaining
state components xR(θ). Because x(θ) is jointly Gaussian,
p(xR(θ)|x(θ)) is again Gaussian with mean E{xR(θ)|x(θ)} =
x̂R(θ) + ΣxRx

(θ)Σ−1
xx (θ) (x(θ)− x̂(θ)) and covariance

Cov{xR(θ)|x(θ)} = ΣxRxR
(θ) − ΣxRx

(θ)Σ−1
xx (θ)ΣxxR

(θ).
Here, we used ΣxRxR

(θ), ΣxRxR
(θ), and Σxx(θ) to denote

the respective entries of Cov{x(θ)}. The LGSSM’s transition
density p(x(θ + τ)|x(θ)) is given by the Gaussian process
with mean Φ(τ)x(θ) and covariance

Cov{x(θ + τ)|x(θ)} =

τ∫
0

Φ(t)DVD>Φ>(t) dt .

Now, evaluating the inner integral of (10), incorporating that

x(θ) =


1
0
...
0


︸︷︷︸

S1∈{0,1}nx×1

x(θ) +


0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

. . . . . .
...

0 . . . 0 1


︸ ︷︷ ︸
S2∈{0,1}nx×nx−1

xR(θ)

and exploiting that both processes are Gaussian, yields
p(x(θ + τ)|x(θ)), which again is a Gaussian process with
mean and covariance

E{x(θ + τ)|x(θ)} = Φ(τ)S1x(θ) + Φ(τ)S2E{xR(θ)|x(θ)}
Cov{x(θ + τ)|x(θ)} = Φ(τ)S2Cov{xR(θ)|x(θ)}S>2 Φ(τ)>

+ Cov{x(θ + τ)|x(θ)} .

p(x(θ + τ)|x(θ)) is the first component of p(x(θ + τ)|x(θ)).

REFERENCES

[1] I. Blake and W. Lindsey, “Level-Crossing Problems for Random
Processes,” IEEE Transactions on Information Theory, vol. 19, no. 3,
pp. 295–315, May 1973.

[2] A. G. Nobile et al., “A Note on First-Passage Time and Some Related
Problems,” Journal of Applied Probability, vol. 22, no. 2, pp. 346–359,
1985.

[3] A. Buonocore et al., “A New Integral Equation for the Evaluation of First-
Passage-Time Probability Densities,” Advances in Applied Probability,
vol. 19, no. 4, pp. 784–800, 1987.

[4] E. Di Nardo et al., “A Computational Approach to First-Passage-Time
Problems for Gauss-Markov Processes,” Advances in Applied Probability,
vol. 33, no. 2, pp. 453–482, 2001.

[5] M. Nyberg et al., “A Simple Method to Calculate First-Passage Time
Densities with Arbitrary Initial Conditions,” New Journal of Physics,
vol. 18, no. 6, p. 063019, Jun. 2016.

[6] F. Pfaff, Multitarget Tracking Using Orientation Estimation for Optical
Belt Sorting, ser. Karlsruhe Series on Intelligent Sensor-Actuator-Systems.
Karlsruhe Institute of Technology, 2019, no. 22.

[7] Y. Bar-Shalom et al., Estimation with Applications to Tracking and
Navigation. John Wiley & Sons, Inc., 2001.

[8] X. R. Li and V. P. Jilkov, “Survey of Maneuvering Target Tracking. Part
I. Dynamic models,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 39, no. 4, pp. 1333–1364, Oct. 2003.
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