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ABSTRACT

The Motion Compression framework for extended range tele-
presence applications consists of three functional modules:
path prediction, path transformation, and user guidance. This
paper presents a new path prediction module for known en-
vironments that exploits the property, that humans typically
walk on straight paths toward discrete goal objects. In order
to estimate the user’s goal object out of a set of possible goals,
we derived a Bayesian filter that gives this discrete estimate
based on continuous measurements of the user’s head pose.

1. INTRODUCTION

In the near future, humanoid robots will be omnipresent as
household appliances. These robots are designed to help peo-
ple with their everyday work. However, as household envi-
ronments are typically unstructured and variable, those robots
are likely to run into situations, where they cannot success-
fully finish their given tasks. In order to resolve these situa-
tions transparently for the owners of the robots, we proposed
a service center for telepresent robot control [1] and exception
handling.

In such a service center, also called the user environment,
the user’s head and hand motion is tracked. This motion data
is transferred to the robot, that replicates this motion. On the
other hand, the robot records sensory feedback of his environ-
ment, the target environment. This sensor information, e. g.
camera images, is transferred back to the user and displayed
on immersive displays like head-mounted displays. As a re-
sult, the user feels present in the target environment and can
now control the robot intuitively.

In order to complete the given tasks, the robot typically
needs to move freely in a large area. Most other systems use
additional input devices [2] for wide area motion, however
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Fig. 1. A user telepresently operating the humanoid robot of
the Collaborative Research Center SFB 588.

this leads to a loss of immersion as the user has no proprio-
ceptive feedback of this motion.

For this reason, the proposed system allows the user to
control the robot by walking naturally and thus providing him
with proprioception. However, the target environment is typi-
cally much larger than the user environment. Thus, the user’s
motion cannot be directly mapped into the target environ-
ment. The algorithmic framework of Motion Compression [3]
provides an optimal nonlinear transformation between the ro-
bot’s path in the target environment and the user’s path in the
user environment in such a way, that the user does not leave
the user environment while controlling the robot through the
target environment.

The Motion Compression framework consists of three mo-
dules, which are briefly explained in the following.

The first module is path prediction. Path prediction aims
at predicting the user’s desired path in the target environment
based on his motion and, if available, additional information
on the target environment. Currently, path prediction is only
based on the user’s view direction. This paper presents a



new method for predicting the user’s desired path in a known
environment with a number of given goal objects.

Path transformation then transforms the predicted path in
such a way that it fits into the target environment. As this is
achieved by only modifying the path’s curvature, path length
and turning angles are preserved. This is important to guar-
antee a high degree of immersion. Path transformation is for-
mulated as a dynamic optimization problem, that minimizes
the curvature difference between the transformed path and the
predicted path, under the given geometric constraints.

The final module user guidance guides the user on the
transformed path, while he has the impression of walking
on the original path. This is achieved by introducing small
deviations into the robot’s motion. The user unknowingly
compensates for these deviations and, as a result, follows the
transformed path.

One of the biggest challenges in this system is to give a
good prediction of the user’s desired path. However, there is
only few work on prediction of human walking paths. The
authors of [4] focus on realistic looking paths, which can be
used in simulations. However, they do not give an analytical
descriptions of these paths, which renders them useless for
Motion Compression. In addition, the user’s goal still has to
be known.

Human users typically walk toward a goal based on visual
cues [5]. This fact is used in the approach presented in [3].
This work assumes, that the user always walks toward tem-
porary goal objects in straight lines, an assumption that was
shown to work very well for Motion Compression. However,
it uses heuristic methods for goal prediction.

The performance of the goal prediction can be enhanced
by using a more sophisticated approach, originally designed
for intention recognition [6]. As this system is designed to
deal with many different sensor inputs, which are not avail-
able in the given application, this approach cannot be directly
used here. However, the key idea of using hybrid probabil-
ity densities, i. e., mixed discrete and continuous densities, is
used to systematically derive a new method for goal predic-
tion. The path is then assumed to be a straight line toward the
estimated goal.

The remainder of this paper is structured as follows. Sec-
tion 2 formulates the problem. A Bayesian filter algorithm,
for the specific problem is derived in section 3. Section 4
looks into finding the models needed for the filter. An experi-
mental evaluation of the system is given in section 5. Finally,
section 6 draws conclusions.

2. PROBLEM FORMULATION

Humans moving in a goal directed way, walk in almost stra-
ight line paths toward goal objects. Thus, it is sufficient for
path prediction to recognize the user’s current goal object.
This object is then assumed to be the next waypoint. The
path is now predicted as a straight line from the user’s current

position to this goal object. Arbitrary paths are by constantly
recalculating the goal estimation.

As we focus on the household scenario, we deal with a
known environment. In these environments, there are typ-
ically a number of a priori known, discrete goal objects like
doorways, furniture, or other landmarks. The objective is now
to chose the actual goal object out of those possible goals,
based on the head motion in the target environment.

In a Bayesian filter setup, the posterior probability density
fe for the state of the goal x has to be calculated based on a
measurement of the head pose in the target environment ŷ and
a prior probability density fp for the goal as

fe
k(x) = ckf(ŷ|x)fp

k (x) , (1)

where ck is a normalization factor. The actual goal position
can then be estimated by maximizing the posterior density.

The conditional density fk(y|x) describes the stochastic
measurement model. This density is fixed, but unknown. Thus
it has to be identified.

With a system model xk+1 = a(xk) + vk the prediction
step of the Bayesian filter is given as

fp
k+1(xk+1) =

∫
f(xk+1|xk)fe

k(xk)dxk , (2)

where the conditional density f(xk+1|xk) is the stochastic
system model, which is also to be identified.

3. BAYESIAN FILTER

In order to use such a Bayesian approach, a filter step and a
prediction step specialized for the given application, have to
be derived from the generic filter shown in figure 2.
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ŷ

f(ŷ|x)

Fig. 2. Structure of the Bayesian filter as used for estimation
of the user’s goal.

3.1. Filter Step

This section derives a filter step for the given setup, based on
the generic filter from above.



In the setup described above, the goal x ∈ {1, . . . , n} is
a discrete variable, where P (x = i) gives the probability that
x = i, i. e., the user’s current goal is the goal object number
i. Thus, f(x) is a discrete probability density, which can be
written as dirac mixture

f(x) =
n∑

j=1

δ(x− j)P (x = j) . (3)

As the conditional density f(y|x) describes the density
of a continuous variable y depending on a discrete variable,
it is a hybrid conditional density. Assuming the conditional
density to be time-invariant, it can be written as

f(y|x) =
n∑

j=1

δ(x− j)f(y|x = j)

=:
n∑

j=1

δ(x− j)f (j)(y) .

(4)

Inserting the discrete density from (3) and the hybrid like-
lihood as in (4) into the filter step as given in equation (1)
results in

n∑
j=1

δ(x− j)P e
k (xk = j) =

ck

n∑
l=1

δ(x− l)f (l)(ŷ)
n∑

m=1

δ(x−m)P p
k (xk = m) . (5)

It can be easily seen, that the posterior probability for each
goal i can be calculated separately as

P e
k (xk = i) = ck · f (i)(ŷ) · P p

k (xk = i) . (6)

A maximum a posteriori estimation of the user’s goal is
then given as the goal object with the highest posterior prob-
ability P e

k .

3.2. Prediction Step

This section now derives the prediction step for the given
setup. Inserting the discrete density over x from (3) into the
prediction step of equation (2) leads to

n∑
j=1

δ(xk+1 − j)P p(xk+1 = j) =

n∑
l=1

n∑
m=1

δ(xk+1 − l)δ(xk −m)P (xk+1 = l|xk = m)·

n∑
i=1

δ(xk − i)P e(xk = i) .

(7)

As f(x) is a discrete density, it is also possible to use its
vector notation

P (x) =

 P (x = 1)
...

P (x = n)

 . (8)

This allows to write the prediction step as vector-matrix-mul-
tiplication

P p
k+1(xk+1) = AP e

k(xk) , (9)

where the elements αi,j of the transition matrix A are given
as

αi,j = P (xk+1 = i|xk = j) . (10)

4. MODEL BUILDING

The stochastic measurement model given as the conditional
density f(y|x) models the relation between the user’s goal
and the observed user data. In order to simplify this model,
features derived from the observed user data are used rather
than raw tracking information. These features include user
position, view direction, and walking direction, as a discrete
derivative of the user position.

However, the relationship between those features and the
actual goal is still unknown. For this reason, we assume a
parametric model for the conditional density and identify the
parameters based on training data gathered from annotated
data of real users.

As shown above, it is sufficient to model each component
f (j)(y) of the conditional density separately, in order to ob-
tain the complete conditional density f(y|x). Modeling the
components by means of a Gaussian mixture model as

f (j)(y) =
L∑

i=1

wiN (y − µ
i
, Ci) , (11)

where L is the number of mixture components, results in a
general parametric model. The parameters to be estimated
are the weights wi, the means µ

i
, and covariance matrices Ci

of each Gaussian.
However, it is hard to acquire enough training data to pa-

rameterize a separate model for each goal. In addition, such
a procedure would not allow to add new goals at run time, as
for those goals there is no training data available.

Under the assumption that the human’s behavior is the
same independent of the goal object, it is possible to use rel-
ative, goal-independent features, rather than the absolute fea-
tures given above. That means, a new feature vector

ỹ = g(y, x) (12)

is calculated as a function of the absolute features y and each
goal x. The new features are now distance to the goal, rela-
tive view direction, and relative walking direction as shown
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Fig. 3. Relative features used for goal estimation. Distance
to goal object (a), relative view direction (b), and relative
walking direction (c).

in figure 3. The conditional density

f (j)(ỹ) = f(ỹ) (13)

is now the same for every goal x = j. However, the relative
features ỹ are now goal-dependent.

As a result, it is only necessary to identify the parame-
ters of one single conditional density. These parameters can
be estimated with standard procedures, like expectation max-
imization.

As the work presented here concentrates on the measure-
ment step, the prediction matrix A was set with a simple
heuristic. It is assumed, that the user stays at his current goal
with a probability p at every time step. If he changes the goal,
all other goals are equally possible. Thus, the matrix A is
given by

αi,i =p

α i,j

i6=j
=

1− p

n− 1
, (14)

where n is the number of possible goals.

5. EXPERIMENTAL RESULTS

In order to obtain experimental data, unaffected by issues aris-
ing from robot control or robot localization, all experiments
were conducted with a real user in a real user environment
and a virtual target environment. In such a scenario, the user
navigates an idealized robot through a virtual reality.

We designed one large room with a size of 20 × 30 m2.
The room includes several walls and has some images on the
walls. As shown in figure 4, two types of possible goals were
identified: wall corners and images.

In order to gather training data for the measurement mo-
del, three different users each walked about the virtual en-
vironment for several minutes and stated their current goal
verbally. This goal was protocoled and fused with the track-
ing information. Of course, this procedure leads to lots of
wrongly classified data points, especially when users switch
from one goal to another.

Using the three relative features, described earlier, and
planning for good generalization of the results, we trained the
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Fig. 4. Virtual target environment with all possible goal
objects, including eleven images and 18 corners.

conditional density as a single Gaussian. The training was
conducted with an expectation maximization algorithm [7].

As humans typically only walk toward visible goals, the
current goal is not chosen from the complete list of possi-
ble goals, but only from a smaller number of active goals as
shown in figure 5. Those active goals are the goals visible
from the user’s current position. This visibility relation is pre-
calculated. The current goal is then estimated from the active
goals with the method proposed in this paper.

...

...

possible goals active goals goal estimate

visibility estimation

Fig. 5. The current goal is estimated from the active goals.

In order to verify the proposed method, we conducted an
experiment where a user was walking in the virtual environ-
ment from above. During this test run the goal estimation was
calculated at an update rate of approximately 150 1

s and p was
set to p = 0.9. Figure 6 shows the user’s positions during the
experiment and the corresponding estimated goals. Note, that
for the clarity of presentation only every 150th data point is
shown.

The predicted paths for the user are shown as blue lines. It
is clear to see, that these are sound estimates for the user path.
Swapping between several goal objects, leads to a predicted
path directed in between those goals objects. A comparison
with the user’s real goal object is not necessary, as this work
did not aim at estimating the real goal, rather than finding a
good path prediction for Motion Compression.



Figure 7 shows the user’s path in the user environment
during the experiment. The user stays well inside the bounds
of the environment. This shows, that Motion Compression
works well together with the new path prediction module.

The most important criterion for the quality of this algo-
rithm is immersion. Unfortunately, there is no objective mea-
sure for immersion. However, the test person stated, that the
immersion was high during the whole experiment.
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Fig. 6. Overlay of the map of the target environment, the user
path (circles), estimated goals (diamonds), and temporarily
predicted paths (lines).
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Fig. 7. The path of the user in the user environment.

6. CONCLUSIONS

In order to handle exceptions in household robots, a service
center for telepresent robot control has been implemented.
By using Motion Compression, a nonlinear path transforma-
tion, the user is able to navigate the robot through vast tar-
get environments, even though he is located in a limited user
environment.

One important step of Motion Compression is path predic-
tion. This paper presented a new path prediction model based
on a hybrid Bayesian filter approach. A filter, that estimates
the current goal based on position and orientation of the robot

was derived systematically from the generic Bayesian esti-
mator. The conditional density of the measurement step was
modeled with a bank of Gaussian mixture models, which was
parameterized by means of expectation maximization. In or-
der to generalize this model, goal-independent features were
used.

First experiments show the feasibility of the new approach
as the new algorithm provides sound estimates of the user’s
current goal. A high degree of immersion was stated.

Future work will include investigation of more complex
measurement models. For example it could be useful to add
more features and train a Gaussian mixture model with more
components. Another interesting topic is the identification
of more sophisticated prediction models, that give a more
detailed model of the behavior of switching goals.

The proposed path prediction module is an important im-
provement to Motion Compression, that will eventually lead
to a system that allows intuitive robot teleoperation.
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