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Abstract. This paper presents an algorithm for absolute localization of mobile robots , which 
are equipped with an onboard-device making angular measurements on the location of known but 
undistinguishable landmarks. A simple linear solution for the robot position given N ;::: 3 angle 
measurements is derived. The associated uncertainties in both landmark positions and angle mea­
surement are modeled as unknown but bounded in amplitude. Experiments with the set theoretic 
estimator demonstrate its simplicity and effectiveness in real-world applications. 
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1. INTRODUCTION 

This paper introduces an approach for estimat­
mg the absolute posture (position z, y; orienta­
tion .,p) of a fast mobile robot on a planar surface. 
The algorithm processes onboard measurements 
of angular locations of known landmarks. Both, 
initialization of the robot posture and recursive 
in-motion posture estimation is considered. 

For initialization purposes, a set of angles mea­
sured with respect to the robot coordinate system 
needs to be paired with a subset of the undistin­
guishable landmarks. In (Wiklund et al., 1988), 
an enumerative scheme has been reported for pair­
ing the first three angles with landmarks. The 
remaining angles are used for plausibility tests. 
Several solutions for calculating the posture given 
the correct association of measured angles with 
landmarks have been reported. Sutherland and 
Thompson (1994), Tsumura et al. (1993), and 
Wiklund et al. (1988) consider only triples ofland­
marks. For the case of more than three land­
marks some authors average triple solutions, oth­
ers use iterative techniques. Betke and Gurvits 
(1994) supply a closed-form solution for N an­
gles, which does not consider uncertainties. In 
this paper, a more efficient association algorithm 
is developed. It discards false measurements, is 
fast, and is further accelerated by incorporating 
prior knowledge. Furthermore, it takes advantage 
of a simple closed-form solution, which consists 
of a set of N - 1 linear equations for the vehicle 
position, Sect. 3. An error propagation analysis 
may be performed, which considers uncertainties 
in both landmark positions and angle measure­
ment. 
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If the vehicle velocity is high compared to the 
angle measurement rate, posture estimates can 
be sequentially updated by newly incoming bear­
ing measurements. In (Wiklund et al., 1988), a 
Kalman filtering scheme is introduced for this pur­
pose, which is based on a kinematic vehicle model. 
White Gaussian random processes are used as un­
certainty models; no dead-reckoning information 
is considered. Nishizawa et al. (1995) also use a 
statistical method to fuse sensor data with dead­
reckoning data. In this paper, a set theoretic mod­
eling of the predominantly arising non-random 
uncertainties is presented. A recursive set theo­
retic estimator is proposed for the fusion of every 
measured angle with a posture prediction that is 
obtained by propagating the previous estimate by 
means of dead-reckoning data. Sect. 4 suggests an 
implementation with real-time capabilities. Ex­
periments demonstrate the benefits of the devel­
oped localization algorithm in Sect. 5. 

2. PROBLEM FORMULATION 

Consider a pool of M u.ndistingu.ishable landmarks 
in a two-dimensional world or map. The positions 
of the landmarks zrM, yrM, i = 0, 1, ... , M-I 
in a reference coordinate system are assumed to 
be known with additive bias errors, which are of 
course unknown. 

ir :.! = zrM + ~zrM 
!It:.! = firM + ~yr:.! 

(1) 

True values of * will be denoted as *, nominal or 
estimated values as *. The errors of every land­
mark are assumed to be confined to an ellipsoidal 



set given by 

Possible correlation of errors for different land­
marks is ignored. The robot is capable of deter­
mining the angular locations of these landmarks 
with respect to its coordinate system. Individual 
landmarks do not necessarily have to be distin­
guished. The angle measurements are corrupted 
by additive noise, i.e., a = a + .::la, where .::la 
is assumed to be bounded in amplitude accord­
ing to l.::lal < 80 • To account for possible occlu­
sion oflandmarks in non-convex rooms, partition­
ing walls are added to the map. The landmarks 
are ordered in the map so that the robot detects 
the subset of unoccluded landmarks in that order 
when scanning counterclockwise. 

3. DETERMINING THE INITIAL POSTURE 

This section is concerned with (re-) initializing 
the robot posture ~ = (z, y, 1/;)T when only very 
little prior knowledge is available. A priori infor­
mation is specified by confining the posture to an 
ellipsoidal set .{l.-priori. M landmarks are available 
and 3 < N < M angles ai, i = 0, 1, ... , N - 1 
have been measured. The association, i.e., the 
list of pairings of measured angles to landmarks is 
initially unknown. Inspired by the interpretation­
tree (IT) method in (Drumheller, 1987), the asso­
ciation search is kept from becoming intractable 
by approaching it in two steps: In the first step, 
for every measured angle ai the set of visible land­
marks from {l.-priori is determined. In the second 
step, these visibility constraints are exploited for 
pruning the IT. Thus, only a small portion of all 
associations needs to be generated and tested. 

Step 1: The projection of (l.-priori onto the z/y­
plane is examined at polar grid points z(r,8), 
y(r,8) for some r, 8. We define a visibility matrix 
V with dimensions N by M. The elements Vij are 
boolean variables which are TRUE, if the single 
measured angle ai may be caused by landmark j. 
A visibility test is performed for every grid point 
z(r, 8), y(r, 8). If the landmark j is visible, i.e., 
when the straight line from the considered grid 
point z(r, 8), y(r, 8) to zjM, yjM does not intersect 
any partitioning walls, a hypothetical angle ahyp 

is calculated. The minimum and maximum angles 
at z(r,8), y(r,8) within {l.-priori are denoted as 
tPLOW, tPHIGH respectively. ai may then be caused 
by landmark j, if ai + tPLOW < ahyp < ai + tPHIGH· 
If row i of V does not contain any TRUE value, 
ai has been identified as false measurement. Row 
i is then removed from V and the number of mea­
surements N is decremented. 
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Step 2: Only those candidate associations are 
generated that do not violate the visibility con­
straints represented by V and that also follow the 
ordering assumption. Erroneous measurements 
are handled efficiently by adopting the "least 
bad data" constraint proposed in (Grirnson and 
Lozano-Perez, 1985). For a specific association, a 
tentative position ZT, YT is calculated and checked 
for compatibility with the error bounds, the pos­
ture constraint (l.-priori, and the requirements for 
joint visibility of all landmarks involved. 

Tentative postures are quickly calculated by use of 
a closed-form solution. The corresponding set of 
N - 1 linear equations for the position is derived 
next. Define 'Yi as the difference between two con­
secutive angles ai and ai+1, i.e., 'Yi = ai+1 - ai 

or 

'Yi = atan2(ztt\ - z, ytt\ - y) 
- atan2(ztM - z, ytM 

- y) . 
(3) 

Application of trigonometric identities leads to 

tan('Y;) = (4) 

which may be rewritten as 

for i = 0, 1, ... , N - 1. Index operations are per­
formed modulo-N, i.e., i + 1 = ° for i = N - 1. 
Subtracting from every equation its follower equa­
tion yields a system of N - 1 equations that are 
linear in z and y, i.e., ~ = H(z, y)T + ~ with ~ = 
(ZO,Zb ••. ,ZN-2f, H = (g,l!r,···,l!~-2f, 
l!i = (hf,hnT, and error ~= (eo,eb ... ,eN-2f· 
The corresponding elements are given by 

hx t()[ LM LM 1 LM i = co 'Yi Yi - Yi+l +:l: i (6) 
t( )[ LM LM 1 LM - co 'Yi+1 Yi+1 - Yi+2 - :l:i+2 

Once :1:, Y are known, tP can be obtained immedi­
ately. To enhance the quality of the solution, an 
error propagation analysis is performed, which is 
outside the scope of this paper. 



4. IN-MOTION LOCALIZATION 

The robot is assumed to be equipped with an 
odometry which mainly suffers from amplitude­
bounded noise sources, that may be strongly cor­
related or even deterministic. A dead-reckoning 
system calculates sets of relative posture compat­
ible with the a priori given error bounds. Recur­
sive set theoretic estimation is performed by com­
bining information from an angle measurement at 
time k with a propagated version of the previ­
ous posture estimate at time k - 1. Ellipsoidal 
bounding sets (EBS) are used for all operations 
to achieve real-time capabilities. 

4.1. Propagation 

The result of the fusion process at time k - 1 is 
represented by the EBS 

Ot-1 = {4-1 : (7) 

(4-1 - ~-1f (ct-1f
1 

(4-1 - ~-1) ~ I}. 

The dead-reckoning system supplies the set of rel­
ative postures with respect to 4-1' henceforth 
denoted as 

ot = {~: 
(~-~f (Ctf1(~ -~) ~ I} 

(8) 

The exact set of absolute postures predicted by 
the dead-reckoning system is then given by 

nP _ { p. P _ lzE B 6} HI; - ~ . ~ - ~-1 + I;~ , (9) 

with 4-1 E Ot-1' ~ E ot, I the identity ma­
trix,and 

Unfortunately, Or is not in general an ellipsoid. 
Linearizing (9) around the nominal values yields 

P -P JE( E -E) B- (6 -6) (11) ~ - ~:::::: I; ~-1 - ~ + I; ~ - ~ 

with the lacobian 

o 
1 
o 

(12) 

Or may then be approximated as the EBS for the 
Minkowski sum of the two ellipsoids in (11) 

nP ""' {zp . HI; ""' ~ . 

( p _ p) ( P) -1 (p _ P)T } 
~ - ~ Cl; ~ - ~ ~ 1 , 

(13) 
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with cent er ~ and Cr given by 

P E - 6 :::1; rl; 
~ =~_1+BI;~, Cr=--+- ,(14) 

I-It It 

with :::1; = JfCt-1(Jf?, rl; = SI;Cf"SI. for 
o < It < 1 (Schweppe, 1973). It may be selected 
such that a measure of the "size" of Or is mini­
mized. An appropriate "size" measure is the vol-

ume of nr, which is proportional to Vdet(Cn. 

Minimizing the volume in three dimensions leads 
to the problem of determining the unique root of a 
fourth-order polynomial in [0,1]. The trace mea­
sure tr(Cn, i.e., the sum of the main-diagonal 
elements of Cr, is mathematically most conve­
nient. It leads to the problem of determining the 
unique root of a second-order polynomial in [0,1] 
irrespective of the problem dimensionality. Un­
fortunately, its meaning is questionable for the 
problem at hand, where zr, yf' and 1fJr differ by 
some orders of magnitude. A more meaningful 
"size" measure leading to a minimization proce­
dure of intermediate complexity is given by the 
trace measure of the projection of nr onto the 
zy--plane multiplied by the square of half of the 
projection of nr onto the 1fJ-axis. This is equiva­
lent to McpcP with 

• • 

where projss(C) is defined by eliminating those 
rows and columns from C that are not associated 
with the considered subspace SS. The minimizing 
It is given by the unique root of 

in [0, 1] where 

K2 = 3[M:=:.r. + Mr.:=:. - 2Mr.r.] 

K1 = 6Mr.r. - M:=:.r. - Mr.:=:. 

Ko = - 2Mr.r • . 

(16) 

(17) 

The proof is straightforward and consists of dif­
ferentiating the "size" measure with respect to It 
and setting the result to zero. 

4.2 . Afeasurenlent 

The measurement equation for a single al; at time 
k and an associated landmark at ZLM, if M 

sin(al; + 1/Jr-HzLM - zr-} 

= cos(al; + 1/Jr-HyLM - ~} (18) 

is linearized around the predicted posture ~, the 
measured angle QI;, and the nominal landmark po­
sition ZLM , fjLM. This yields rl; = ill ~ +el; with 



(19) 

The constants are defined as cl = sin(& + ;j;f), 
c~ = cos(& + ;j;f), and c~ = cH:i L M 

- :in + 
CHyr-M - Yf} . e" can thus be bounded, i.e. , 
le" I < ek'ax with 

.-----------------
ek'ax ( ~~l ) T e L M ( ~~l ) + Ic~ Iba {20) 

Two equivalent representations of the measure­
ment set will be given in the following. The first 
consists of two boundary planes given in normal­
ized Hesse form as 

N T M 1 NT M 2 
~ ~ + t" = 0, ~ ~ + t" = 0 (21) 

with 

N _ _ ~ 1 T + emax 2 T - emax 

-" - 1114.11' t" = 1114.11 ,t" = 1114.11 

The second representation is 
(22) 

(23) 

They may be converted into each other via 6 = 
2N ,,/(t~ - to, b" = -(t~ + tl)/(t~ - tl)· 

4.3. Robust Combination of Information 

Conceptionally, fusion just consists of calculating 
the intersection of the sets Or, or. or is the el­
lipsoidal set of predicted postures, Or is the mea­
surement strip. The intersection of the two sets 
or, or is not in general again an ellipsoid. To 
arrive at a recursive scheme, an ellipsoid circum­
scribing the intersection is required. A bounding 
ellipsoid is given by (Sabater and Thomas, 1991) 

of = {4 : (4 -~) (Cf) -1 (~f - ~ff} 

Cf =K"e~ 
CO = eP _ >. er 6& er 
"k 1 + >'Gk 

~ = ~ + >'C~Afk (24) 

b A T . P 
fl; = ,,-~~ 

for all >. ~ o. This set has the interesting prop­
erty that it both contains the intersection of the 
measurement and the prediction set and is itself 
contained in their union, i.e., 

(25) 
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plane intersecting ellipsoid 
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, , 
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~ ~ CD ® tangential planes 

Fig. 1. 1: Configurations for strip and ellipsoid (2D) . 
2: Definitions for assessing consistency. 

The non-linear fusion comprises 4 cases: 

• No uncertainty reduction: The actual 
measurement is of no help in reducing the 
uncertainty, Fig 1.1 a). 

• Consistency: Both planes defining the mea­
surement set intersect the ellipsoidal predic­
tion set, Fig. 1.1 b). 

• Partial consistency: Only one plane inter­
sects the prediction set, Fig. 1.1 c) . 

• Inconsistency: Prediction set Or and mea­
surement set Or do not share a common 
point , Fig. 1.1 d). 

For the case of (partial) consistency of ellipsoid 
and strip, the volume of the bounding ellipsoid in 
(24) may be minimized by selecting the weight >. 
as the most positive root of the quadratic equation 
given by (Sabater and Thomas, 1991) 

(N - 1)Gi>.2 + (2N - 1 + fi - Gk)G,,>. 

+N(l - f~) - Gk = 0 , (26) 

where N is the dimension, here N = 3. This 
result is now generalized to obtain an EBS with 
a minimum volume projection onto an arbitrary 
subspace. >'OPT is the positive real root of 

>.3(G" -Hk)G~L+>.2 {L(3G" -2H,,) - Hk}G" 

+ >.{[3G" - H" + €i(Hk - Gk)]L (27) 

- GkHk - H" + fiHk } + L(l - €i) - H" , 

with L the subspace dimension and 

er is obtained from Cr by eliminating the rows 
not associated with the considered subspace. The 
proof is patterned after the one in (Deller J rand 
Luk, 1989) and is sketched in the appendix. Ap­
plication of this concept to the localization prob­
lem leads to a tailor-made bounding operation. 
The inherently high precision of the orientation 
estimate 1/JE compared to the position estimate 
xE , yE is considered by minimizing the projection 
of the EBS onto the x , y subspace. The resulting 
EBS is more conservative in 1/JE , but tight for the 
more critical position estimate xE , yE . 

Using the optimal EBS is successful as long as the 
model is exact. However , modeling errors may 



Fig . 2. EBSs for the intersection of ellipsoid and strip. 
Top: Co=on scheme. Bottom: Extension 
employing consistency measures. 

lead to an unreasonably small estimation set of. 
Enhanced robustness is achieved by imposing a 
higher priority on the set of predicted states Or 
since it contains the information obtained from 
all the past measurements. This priority should 
depend on the degree of consistency of the two 
sets Or and or. Roughly speaking, the idea is 
to select the set Of such that it exhibits a grow­
ing tendency towards the prediction set Or with 
falling degree of consistency of the sets Or and or. Referring to Fig. 1.2, a reasonable consis­
tency measure is given by the intersection width 
WE divided by the geometric mean of the strip 
width W M and the ellipsoid width W p 

A in (24) is selected from [0 , AOPT] as an appropri­
ate function of the consistency measure. A shifted 
logistic function 

A = AoPT/[l + exp( -S(CM - M))] , (30) 

is used with 5, M chosen as 5 = 10, M = 0.5 . 
The influence of this extension on the fusion result 
is demonstrated in Fig. 2 by comparing it with the 
common approach for four cases. For the common 
approach, the volume of the resulting EBS of 
experiences large changes when the measurement 
set just changes slightly. Single (unmodeled) mea­
surement outliers lead to an extremely small EBS. 
On the other hand, the new approach calculates 
Of by modifying Or depending on its consistency 
with Or. Thus, single erroneous measurements 
have a reduced impact on the fusion result . 

A schematic overview of the proposed scheme for 
localization during fast motion based on angle 
measurements is depicted in Fig. 3. The feedback 
of ~ to the process for determination of Or de­
serves some attention. It may replace ~ to itera­
tively refine the linearization of (18) . The scheme 
may easily be parallelized into three tasks: The fu­
sion loop, the determination of landmarks not oc­
cluded by partitioning walls, and dead-reckoning. 
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Fig. 3. Scheme of set theoretic recursive estimator. 

5. EXPERIMENTAL VALIDATION 

The effectiveness of the new approach is demon­
strated by navigating a fast (2 m/sec) omnidi­
rectional service robot (Hanebeck and Schrnidt, 
1994) through an office environment. An on­
board laser-based goniometer takes angular mea­
surements on retra-reflecting tape strips attached 
to the walls as artificial landmarks. 20 horizon­
tal 360°-scans per second are performed; abso­
lute accuracy is about 0.02°. Thus, the predom­
inant uncertainties result from inaccurate know­
ledge about the positions of the fixed landmarks. 
A map contains nominal positions of 22 identical 
landmarks and partitioning walls, Fig. 4. The full 
scale robot is equipped with three independently 
steerable drive wheels. Dead-reckoning based on 
these wheels suffers from error sources like imper­
fect wheel coordination and uncertain wheel/floor 
contact points. The usual white Gaussian noise 
model is not appropriate here. The amplitude­
bounded nature of the correlated error sources 
suggests the proposed set theoretic treatment. 
Once initialized with the algorithm introduced in 
Sec. 3, the robot performs 10 cycles ofa predefined 
course, Fig. 4. The localization estimate based on 
the fusion of goniometer data and dead-reckoning 
is compared with data from dead-reckoning only. 
The highly correlated nature of the accumulating 
dead-reckoning errors is obvious. On the other 
hand, the vehicle is kept very accurately on track 
with the localization estimate. Absolute accuracy 
has found to be about ±2 cm and ±0.5°. 

y/mm 

4000 

2000 
localization 

estimate It 

·2000 
landmarl<s~ 

=,,1./"" 

-4000 partitioning walls 

-6000 f !'<~~""" "< 
I / ':- --. -' 

-8000 i dead.reckonin~~nIY 
-4000 ·2000 0 2000 4000 xlmm 

Fig. 4. Experimental in-motion localization. 



6. CONCLUSION 

Set theoretic concepts have been applied to pos­
ture estimation of fast-moving mobile robots 
which perform angular measurements on the lo­
cation of known but undistinguishable landmarks. 
In this context, four main results are presented: 
1) A simple closed-form solution for the robot 
position given angular locations of N known land­
marks is derived, which consists of N -1 equations 
linear in the position. 
2) Consistency measures for assessing the consis­
tency of candidate posture sets are introduced to 
design set theoretic estimators which are robust 
to modeling errors. 
3) The common minimum volume EBS algo­
rithms for the intersection of an ellipsoid and a 
strip are extended to obtain the EBS with min­
imum volume projection onto an arbitrary sub­
space. Application to the localization problem al­
lows consideration of the inherently higher preci­
sion in orientation .,p by selecting the EBS with 
minimum volume projection onto the zy-plane. 
This EBS bounds the exact estimation set more 
tightly in z, y and is more conservative in .,p. 
4) A scheme for approximate propagation of an el­
lipsoidal posture set with set valued data from an 
uncertain dead-reckoning system is given, which 
just involves finding the roots of a third-order 
polynomial. 
The effectiveness of the proposed set theoretic es­
timator has been demonstrated by experiments 
with a fast omnidirectional service robot. The 
full scale robot is equipped with a laser- based go­
niometer which makes angular measurements on 
the location of tape strips attached to the wall as 
artificial landmarks. Navigation in an office en­
vironment revealed a high absolute accuracy of 
about ±2 cm and ±0.5°. 
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8. APPENDIX 

Proof of (27): The projection of cf onto a cer­
tain subspace is denoted as proj(Cf) and may be 
written as 

K '(CP)'K proj(CrAA:AIcf) .(31) 
I< proJ I< - I< 1 + )'GI< 

The volume of proj(Cf) is proportional to 

where er is defined as Cr with the rows not as­
sociated with the subs pace eliminated. Applying 
the matrix identity (Deller Jr and Luk, 1989) 

where L is the subspace dimension, (32) becomes 

L 1 +)'(GI<-HI<) 
KI< 1 + )'GI< ' 

(34) 

with HI< from (28). Differentiating with respect 
to ). and setting the result to zero yields (27) . 


