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ABSTRACT

An algorithm for estimating the pose, i.e., translation and rotation, of
an extended target object is introduced. Compared to conventional
methods, where pose estimation is performed on the basis of time-
of-flight (TOF) measurements between external sources and sensors
attached to the object, the proposed approach directly uses the ampli-
tude values measured at the sensors for estimation purposes without
an intermediate TOF estimation step. This is achieved by modeling
the wave propagation by a nonlinear dynamic system comprising a
system and a measurement equation. The nonlinear system equation
includes a model of the time-variant structure of the object rotation
based on rotation vectors. As a result, the measured amplitude val-
ues at the sensors can be processed instantaneously in a recursive
fashion. Uncertainties in the measurement process are systemati-
cally considered by employing a stochastic filter for estimating the
pose, i.e., the state of the nonlinear dynamic system.

Index Terms— Acoustic signal processing, acoustic tracking,
inertial navigation, model-based signal processing, state estimation

1. INTRODUCTION

This paper is concerned with estimating the pose, i.e., translation
and rotation, of a target object with respect to an external coordinate
system. This kind of problem typically arises in indoor tracking sys-
tems, where sources placed in the environment emit signals that are
picked up by sensors attached to the target [1]. Based on the emit-
ted and the received signals, ranges are calculated that are used in
a second step to estimate the translation and the rotation. Transla-
tion and rotation describe the relationship between the static global
coordinate system and the coordinate system of the moving target
object. Indoor tracking systems can be used for example for oper-
ator tracking in a telepresence scenario [2]. Here, the position and
orientation of a head-mounted display is estimated, that is attached
to the operator‘s head.

The problem of localization or tracking is often approached by a
multi-step procedure. Conventional approaches first calculate the
range between sources and sensors by means of the well-known
matched filter where the data is processed block-wise. By doing so,
it is implicitly assumed that the TOF is constant over the data win-
dow and thus, a smearing effect of the estimate occurs if the object
is moving. An extended matched filter, which is more robust against
reflections, can be found in [3]. The ranges obtained can then be
used to estimate the pose of the object by employing a Kalman filter
or closed-from solutions [4].

A typical application for those algorithms is described in [1]. A
tracking system named WHISPER is introduced to track the hands
of a user. Thanks to wide-band signals, the system is much more
robust to shadowing effects. The algorithm utilizes these signals to

estimate the ranges by means of a matched filter. In a second step,
these ranges are used in a Kalman filter to estimate the position of
the hands. Based on the resulting estimate, range bounds are calcu-
lated to minimize the search space for the matched filter. Again, the
considered problem is split into two parts and uncertainties are not
considered systematically.

The approach proposed in this paper comprises two main con-
tributions. The first contribution is to model the wave propagation
by a nonlinear dynamic system (see Section 2 and Section 3, respec-
tively), where uncertainties are systematically considered. Similar
to [1], the proposed approach relies on wide-band signals in order to
obtain a distinct mapping to the sources, but instead of ranges, the
amplitude values at the sensors are directly exploited for estimation
purposes. Thus, the intermediate TOF estimation step can be omit-
ted, since the whole considered problem is mapped to the system and
measurement equation of the nonlinear dynamic system model. By
employing an appropriate state estimator, the state is estimated on
the basis of every received measurement, i.e., the proposed approach
estimates the pose in an instantaneous recursive manner. Compared
to standard approaches, where the processing is performed block-
wise, the assumption that the state is stationary over the block length
is not longer required.

The second contribution, presented in Section 3.2, is that rota-
tion vectors are used instead of quaternions or Euler angles. The
rotation matrix, which describes the relationship between two co-
ordinate systems, can be parameterized with quaternions [5], Euler
angles, or rotation vectors [6], [7]. For example in [5], quaternions
are used for orientation tracking. An unscented Kalman filter is used,
where the mathematical operations are adapted to quaternions space.
The main problem with quaternions results from the fact that the pa-
rameter vector is not minimal and the unit quaternions constraint can
lead to inaccurate state estimates. Rotation vectors instead are a min-
imal state representation. A further advantage of rotation vectors is
that the dynamic behavior can be described by means of a nonlin-
ear differential equation [6] and thus, it can be applied in the system
model of a Kalman filter [7].

2. MEASUREMENT MODEL

The proposed approach estimates the pose based on the amplitude
values measured at the sensors. In doing so, the wave propagation
from the sources to the sensors (e.g., microphones) has to be de-
scribed by a model.

2.1. Sensor - Microphone

To derive a measurement equation for the microphones, the wave
propagation between N sources and the sensors is considered. A



time signal emitted by a source i = 1, . . . , N at position xi is de-
scribed by the discrete-time sequence

sid(t) =

+∞∑
k=−∞

sik · δ (t− k · Ts) ,

where sik is the k-th data symbol and Ts is the sampling time interval.
The data sequence is weighted with a source impulse filter, which
results in a continuous-time signal

si (t) =

+∞∑
k=−∞

sik · hI (t− k · Ts) .

This continuous-time signal is transmitted through a partially un-
known time-variant channel

hi,j(t, τ) = 1

4π‖pj(t)−xi‖δ
(
t− τ − ‖p

j(t)−xi‖
c

)
to sensor j at the position pj(t). The channel model just delays and
attenuates the emitted signal. If only the path of one source and
sensor is considered, the received signal from one source is

yi,j(t) =

∫ t

0

si (τ)hi,j(t, τ)dτ .

The received signal at sensor j consists of the overlapping signals
from the N sources. The sensor discretizes the signal in such a way
that the amplitude value at each time step is given by

yj(n · Te) =

N∑
i=1

1

4π‖pj(n·Te)−xi‖s
i

(
n · Te − ‖

pj(n·Te)−xi‖
c

)
+ vj (n · Te) ,

(1)

where vj (n · Te) is the measurement noise. The sensor position
pj(n · Te) with respect to the global coordinate system is unknown.
However, the sensor position p̃j with respect to the target coordinate
system is known. To convert the position from the local coordinate
system to the global coordinate system, the relationship

pj(n · Te) = D (rn) p̃j + Tn (2)

is used. Tn is the translation vector and rn is the parameter vector,
which describes the rotation. D is the rotation matrix. In this paper,
the rotation matrix is described by the rotation vector

D (rn) p̃j =cos (‖rn‖) p̃
j +

sin(‖rn‖)
‖rn‖

rn × p̃
j

+
1−cos(‖rn‖)
‖rn‖2

(
rT
np̃
j
)
rn .

(3)

The direction of the rotation vector is the rotation axis and the length
of the vector is the angle of rotation.

The resulting measurement equation for the sensors is obtained
by combining the equations (1) to (3). Furthermore, an ideal low-
pass filter for the sources is assumed. Hence, the source impulse
filter is given by a sinc-function. If the sampling intervals of the
sources and the sensors are equal to T , the measurement equation is
given by

yjn =yj(n · T ) =

N∑
i=1

1

4π‖D(rn)p̃j+Tn−xi‖
n∑
k=0

sik · sinc
(

(n− k) · π − ‖D(rn)p̃j+Tn−x
i‖

cT

)
+ vjn .

2.2. Sensor - Gyroscope

The gyroscopes measures the angular velocity ωn of the object. The
measurement equation is given by

yω
n

= kG (A (ωn + b)) + vωn , (4)

where kG is a sensor-specific coefficient, A is a misalignment ma-
trix, b is the offset and vωn is the measurement noise. The distribution
of the measurement noise is assumed to be white, zero-mean, and
Gaussian.

3. SYSTEM MODEL

3.1. Translation

For the translation, a constant velocity model is assumed [8]. This
model is given by a linear differential equation, which is represented
in discrete time as

zn+1 = Azn + wzn , (5)

where A is given by

A =

[
I3,3 T I3,3

0 I3,3

]
and zn consists of the translation and the velocity. The process noise
is assumed to be white, zero-mean and Gaussian with the covariance

Qw
z
n

=

[
T3

3
q T2

2
q

T2

2
q Tq

]
, q = diag

([
q2wV,x

q2wV,y
q2wV,z

]T
)
.

3.2. Rotation

In a tracking scenario the rotation vector is typically time variant.
This dynamic behavior can be described by a nonlinear differential
equation

ṙ(t) =

{
a(ω(t), r(t)) for ‖r(t)‖ ∈ ]0, π]

ω(t) for ‖r(t)‖ = 0
, (6)

which depends on the angular velocity. The nonlinear function a(·)
is given by

a(ω(t), r(t)) = 1
2
‖r(t)‖ cot

(
‖r(t)‖

2

)
ω(t) + 1

2
r(t)× ω(t)

+
1− 1

2
‖r(t)‖ cot

( ‖r(t)‖
2

)
‖r(t)‖2

(
r(t)Tω(t)

)
r(t) ,

(7)

where cot(·) is the cotangent. In (6), the range of the norm of the
rotation vector lies in the interval zero to π. In this case, we assume
that the rotation vector moves in the open ball with radius π and if
the norm of the rotation vector is higher than π a forwards inference
is done by

rnew(t) = r(t)
(
1− 2π

‖r(t)‖

)
. (8)

The forward inference can be calculated by a prediction step, where
no process noise is assumed. The nonlinear differential equation (6)
is discretized by the Euler formula

ṙ(t) ≈ rn+1−rn

T

and the resulting discrete-time differential equation is

rn+1 = rn + T a(ωn, rn) . (9)
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Fig. 1. Simulation setup: The blue stars are the sources, the red
circles are the mirror image sources, the green point is the starting
point of the trajectory, the blue lines are the walls, and the red line is
the trajectory of the target object.

The angular velocity is modeled as a random walk according to

ωn+1 = ωn + wωn , (10)

where the process noise is white, zero-mean, and Gaussian with co-
variance

Qwω = diag
([
q2wω,x

q2wω,y
q2wω,z

]T
)
.

4. RESULTS

The approach is evaluated in both simulations and by means of a real
experiment. For estimating the state, the Gaussian estimator (GE) in-
troduced in [9] is applied. The estimator represents the state estimate
by means of a multivariate Gaussian density. The parameters of this
density are calculated on the basis of a deterministic sampling ap-
proach, where the sample points are represented by a Dirac mixture
density, whose deviation to the true density is minimized. Compared
to the popular unscented Kalman filter (UKF) [10], the sample points
of the GE are placed more systematically. Furthermore, the number
of sample points is adjustable, which in turn allows approximating
higher-order moments more accurately.

4.1. Simulation

In the simulation setup, a moving target object is simulated. Four
microphones, which are attached to the target, receive the signals
from four loudspeakers. The velocity and the angular velocity of the
object are assumed to be piecewise constant. Furthermore, an iner-
tial measurement unit consisting of three gyroscopes measures the
angular velocity with respect to the target coordinate system. The
measurement rate of the microphones and the gyroscopes are 48000
Hz and 480 Hz, respectively. The signals received at the micro-
phones are corrupted with noise. This noise is generated by mirror
image sources in order to model reverberations. The signals emitted
by the four loudspeakers are reflected at walls of the room, which
is modeled by 24 mirror image sources. The attenuation factor of
the walls is set to be 0.5, which results in an SNR of 4.247 dB. The
simulation setup is shown in Fig. 1.

The results of the simulation are shown in Fig. 2, where every
hundredth estimate is plotted. Only the translation in z, the rota-
tion vector in x, and the angular velocity related to the x-axis of the
gyroscope coordinate system are shown. In Fig. 3 and Fig. 4, the
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(a) Translation in z.
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(b) Rotation vector in x.
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(c) Angular velocity in x.

Fig. 2. The red line is the true trajectory of the target object, the
blue line is the estimated trajectory, and the black corresponds to the
three-σ-bound.

root mean square error of translation and rotation are shown. The
mean error in the translation is 2 mm. If the object moves very
fast, the error increases to 8 mm. The rotation error lies in the in-
terval from 0.0014 radians to 0.016 radians. The error peaks arise
from the simulation setup, where a constant angular velocity is sim-
ulated, which exhibits some discontinuities. Of course, this piece-
wise constant simulation model for generating the measurements is
not very realistic. Real scenarios are even simpler to handle as the
translational and angular velocities do not have points of discontinu-
ities. The approach provides accurate estimates in this colored noise
scenario, where the colored noise is generated by the mirror image
sources.

4.2. Experiment

The experimental setup is similar to the simulation setup. In the
experiment, five loudspeakers are used for periodically emitting
MC-CDMA signals to achieve a distinct mapping to the sources.
The measurement frequency of the gyroscopes is 200 Hz. In the
experiment, the object is moved ten times on a given trajectory
describing a half circle. The start and the end point are measured
with

[
−0.05 −0.75 1.16

]
meters and

[
−0.04 1.33 1.16

]
meters, respectively. The distance between start and end point was
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Fig. 3. RMSE in translation.
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Fig. 4. RMSE in rotation.

2.08 meters. In Fig. 5, the trajectory in xy view is shown. After
a transition time, the mean of the estimates of all test runs was[
−0.0653 −0.7653 1.1593

]
meters with a standard deviation

of
[
0.0482 0.0442 0.0259

]
meters. After arrival at the end

point, the mean of the estimates was
[
0.0253 1.3194 1.0557

]
meters with a standard deviation of

[
0.0207 0.0634 0.0902

]
meters. The distance based on the estimate was 2.0910 meters with
a standard deviation of 0.0599 meters.

5. CONCLUSIONS

This paper solves the problem of pose estimation based on raw sen-
sor data without explicit range calculation. The proposed approach
employs an end-to-end problem formulation in order to obtain an
integrated solution for estimating the pose of a target object from
delay and attenuation of time signals under consideration of both
model and measurement uncertainties, which are characterized in a
stochastic manner. This model-based approach considers the phys-
ical behavior of the wave propagation and the dynamics of the ob-
ject. Furthermore, the rotational motion of the object is described by
a nonlinear differential equation, which allows the systematic incor-
poration of the angular velocity measured by a gyroscope. In doing
so, the state estimator can process the measurements instantaneously
and thus, batch processing as in conventional methods employing
matched filters is not required.
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Fig. 5. Trajectories of the ten test runs.
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