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ABSTRACT 
An efficient noniterative algorithm for active localization 

of objects is developed. It is based on intersecting elliptic 
curves defined by uncertain range-sum measurements be- 
tween a signal source, the objects, and a number of arbi- 
trarily located receivers. Measurement errors are modeled 
as being unknown but bounded in amplitude by a closed 
convex set. Based on this set-theoretic uncertainty model, 
an error propagation analysis is performed, that allows to 
accurately bound estimation errors. For discriminating ob- 
ject primitives and for discarding erroneous measurements, 
a hypothesis test is derived. The algorithm’s computa- 
tional load is much lower than for grid-based methods and 
iterative techniques. A recursive formulation is provided to 
support real-time applications. 

1. INTRODUCTION 
Much of the existing literature is devoted to the problem 
of passively locating signal sources. In many applications, 
however, it is of interest to illuminate a non-radiating scene 
and determine object positions based on range measure- 
ments. For one signal emitter and a linear array of receivers, 
closed-form solutions are given in [I], [ 2 ] ,  [3]. 

A more complex situation is encountered for N arbitra- 
rily located sensors, which receive the signal emitted by a 
detached source and reflected from distinct, solid objects. 
Such a configuration allows the treatment of hull-mounted 
conformal arrays, which are often found in practical loca- 
tion systems. Intersecting the elliptic curves which describe 
the solution loci, is done numerically on a grid in [4], resul- 
ting in a high computational load. In addition, grid-based 
schemes are not very efficient for the case of a few distinct 
reflectors. Analytic solutions are often based on a far-field 
approximation, that may not be accurate enough for certain 
applications. The straightforward least-squares solution of 
the exact analytic equations requires a costly iterative mi- 
nimization. 

This paper is concerned with eficient algorithms for loca- 
ting object primitives with an arbitrary array topology. Ba- 
sed on ideas for passive source location from range-difference 
measurements reported in [5], [6], [7], the non-linear mea- 
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surement equations are transformed to an error vector that 
may be minimized in closed form in a weighted least-squares 
sense. 

A-priori knowledge on the measurement uncertainties is 
modeled in a set-theoretic framework, i.e., ranging errors 
are assumed to be unknown but bounded in amplitude. 
This is a useful alternative to stochastic models when co- 
ping with real-world phenomena like correlated noise, un- 
known statistics, systematic errors, and errors which are not 
mutually independent for different sensors. Based on this 
uncertainty model, an error propagation analysis is perfor- 
med. A weighting matrix for the least-squares estimator is 
derived, that is optimal, when the ranging errors are within 
practical limits. For discrimination of different objects and 
for discarding erroneous measurements, a set-theoretic hy- 
pothesis test is provided. 

The efficient location estimator is presented in Sec. 2. A 
recursive formulation of the proposed algorithm is given in 
Sec. 3. Simulation results shown in Sec. 4 demonstrate the 
effectiveness of the proposed location algorithm. An appli- 
cation to obstacle detection and location with the multiso- 
nar system of a mobile robot may be found in [SI. 

2. EFFICIENT LOCATION ESTIMATOR 
N omnidirectional receivers at  arbitrary but known posi- 
tions C- = [C,”,C,”,C,Z], a = 1, 2, . .  . , N ,  are considered. 
A signal source located at the origin emits a signal that is 
reflected by illuminated objects. Objects are modeled as 
points or as specular reflecting planes similar to the discus- 
sion in [9]. Measurements E,  are obtained as the sum of 
the ranges source -+ object and object -+ receiver i. Let us 
first consider the measurement model for a point reflector 
depicted in Fig. 1 a). 

2.1. Point Reflector 
Let 9 = [$?, T ) ~ ,  $”IT and r = l l $ l l  denote the object posi- 
tion and distance respectively. FTom the figure it follows 

(R; - r)2 = 119- Gillz, i = 1, 2 , .  . . , N .  (1) 

For N > 3 this is an overdetermined system of equations. 
Given a noisy measurement vector 12 = [RI, Rz, . . . , R N ] ~ ,  
it would be desirable to select the estimated object posi- 
tion 4 such that some norm of the differences between the 
masurement vector 12 and the vector & of ranges given $ 
is minimized. However, even for a weighted L2 norm this 
approach calls for an iterative minimization, since & is a 
nonlinear function of - 4. 

- 
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Figure 1. Measurement model for  a )  po in t  reflector, b) plane reflector, c )  simulations in Sec. 4. 

Inspired by the treatment of hyperbolic location in [ 5 ] ,  It can be proved [8] ,  that the optimal weighting matrix 
an error vector e is derived from ( l ) ,  given by W in (6) is given by 

g = A+ 2r& - H& ( 2 )  w = { ( R D  + 2'?1)Sc(kD + 2'?1)}-'. ( lo )  

which may be minimized in closed-form. Before we obtain 
a position estimate from (2),  T has to be eliminated. For 
this purpose, the least-squares solution of - 4 in terms of r 
is written as 

- 4 -t 2 T p  (4) 

( 5 )  
with 

- a = GA, E =  G& 
and 

G = ( H ~ w H ) - '  H ~ W ,  (6) 

where W is a weighting matrix. Similar to ideas in [67], [7] 
for range-difference location, the relationship T = L 4 IS 

exploited to obtain a quadratic equation for r given by- 

(7) 

A positive root ' 7' of (7) now serves as an estimate for r in 
(2)  and a weighted least-squares estimate - I?, for the object 
position can be obtained. 

Before expressions for the weighting matrices are deri- 
ved, some assumptions concerning the measurement errors 
have to be made. Noise free values cf * are denoted as i in 
the sequel. The true range vector is assumed to be cor- 
rupted by additive errors during the measurement process 
according to 

- R=&+T;. 

After inserting a solution I' from (7) into (2), the error e is 
bounded by an ellipsoid gTE-'g 5 1 for "small" errors 2. 
E is given by E = DScDT, where 

D = { I  - &ZT G } (RD + 2FI) (11) 

(12) 

(13) 

with 

and 
RD = diag[RI, Rz, . . . , R N ]  

-1 i . = 2 ( 2 &  -T g - i )  x 4. 
- 

The optimal weighting matrix for the least-squares estimate 
of the object position given an estimate 1: is thus E-'. 

The matrices W, D contain true quantities, that are 
of course unknown. Some approximations are therefore 
necessary. The measured distances are _used to approxi- 
mate the unknown true distance vector B. In a first step, 
{RDScRD}-I is used instead of W to solve for cy, p. Once 
1: is calculated, it may serve to approximate '? in (IOT When 
calculating the least-squares estimate of the object position 
with (2) given i ,  in a first step W is used to approximate 
E-'. The obtained estimated values are then used as an ap- 
proximation of the true values in (11) to calculate D. The 
described process could be iterated to provide even better 
solutions. However, this does not lead to significant changes 
in practical situations. 

The set of all point reflector positions compatible with 
the error bounds is now given as an ellipsoidal set [lo] 

where 
S+ = dpoint ( H ~ E - ~ H ) - '  . (15) 

Furthermore, the measurement errors are assumed to be dPoent is given by 

(16) 
unknown but bounded by an ellipsoid, i.e., 

dpornt = 1 - aT($ )E- '~ ($ )  

and represents a measure for the distance of the actual error 
from the surface of the error ellipsoid defined by E. When 
dPoint is negative, the solution is not compatible with the 
error bounds. For 0 < dpornt 5 1, the solution is v&d and 
given as the ellipsoid defined by S+ and centered at  $. 

- CTSg1C 5 1 , 

where SE is a symmetric, positive definite matrix. 

'In the case of two positive roots, the ambiguity must be 
resolved by incorporating additional information. 
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2.2. Plane Reflector 
The measurement equation for a plane reflector is obtained 
from Fig. 1 b) as E 
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The error vector e is written as 

.2 

with 
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Similar considerations as for the point reflector lead to an 
efficient plane location estimator. 

The set-theoretic formulation naturally provides a hypo- 
thesis test for the type of reflecting object primitive. The 
hypothesis “point reflector” will be accepted, if the point 
condition is true, i.e., if 0 < dPoint  5 1. In analogy, the 
hypothesis “plane reflector” will be accepted, if the respec- 
tive condition is true, i.e., if 0 < dplone 5 1. No decision is 
possible, if both conditions are true. Both hypothesis are 
rejected, if no condition is true. 

3. RECURSIVE FORMULATION OF THE 

In many applications it is advantageous to update position 
estimates by sequential inclusion of measurements from dif- 
ferent sensors. This section is concerned with the derivation 
of a recursive version of the efficient batch location estima- 
tor derived in Sec. 2 .  We restrict attention to the point 
reflector model; similar arguments hold for a plane reflec- 
tor. 

The derivation of a recursive formulation is complicated 
by the fact that  E is not a diagonal matrix even if SE is of 
diagonal type. However, the inverse of D is given by 

EFFICIENT ESTIMATOR 

D-’ = (R, + 2?1)-’{1+ BfjTG} - 

- fj = [l - - 7 q - l  - ;U. 

(20 )  

(21) 
with 

For SE = diag(uf, U:, . . . , U & ) ,  ( 2 0 )  is used to convert the 
problem of estimating the object position with (2) given an 
estimated object distance i from (7) to a standard weighted 
recursive least-squares estimator 

for k = 1,  2 ,  ..., N ,  with W k  = (4(? - k k ) ’ a ; ) - ’ ,  = 
(0, 
mations 

& = ( O , O ) * ,  PO = €1, e . .  .large, and the transfor- 

= 2 c k  + h k 2  

- -T A; = & 
R; = k k  ( 2 3 )  
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Figure 2. top: Unweighted position estimates, bot- 
tom: Prior knowledge on noise bounds exploited. 

SJ, is calculated from PN = (HTE-’H)-l and a recur- 
sive formulation of d P o i n t  given by 

d p o l n t , k  = 1 - A k  - 4 i k B k  + 2 C k 2  - 4 i E D k  

+ 4 i k E k & - & T F k & ,  (24)  

k = 1, 2 ,  . . . , N with 

A 0  = 0, 
Bo = 0, 
CO = 0, c k  = C k - 1  + 2 W k A k c r  

Do = 0, 
Eo = 0, 

A k  = A k - 1  + w k A i  

B k  = B k - 1  + W k i i k A k  

D k  = D k - 1  + W k k :  

E k  = E k - 1  + 2 W k R k c r  

Fo = 0, F k  = F k - 1  + 4 W k G k C E .  ( 2 5 )  

In analogy to  the batch solutions, the recursion formulae 
include weighting terms that contain unknown true values. 
Similar approximations as in Sec. 2 are used. 

4. SIMULATIVE VERIFICATION 
The performance of the proposed object location algorithm 
is now demonstrated by Monte-Carlo simulations. The first 
simulation demonstrates the accuracy improvement obtai- 
ned when using the optimal weighting matrices compared 
to unweighted least squares estimates. The second simula- 
tion shows that bounds for the estimation errors are reliably 
predicted even for the high noise case. 
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Figure 3. Es t ima tes  for different noise levels compared w i t h  the p red ic t ed  set $2: k = 0.5, k = 2, k = 10, k = 50. 

The employed measurement topology is depicted in Fig. 1 Simulations demonstrate the performance of the propo- 
c). The receivers are located at C’, = [-300,300, O l T ,  C& = sed efficient location estimator. An application to  the pro- 
[-150,200, O I T ,  = [ O ,  300, 0IT, s = [150,200, 0IT,  % = blem of detecting and locating unknown obstacles with the 
[300,300, O l T .  A point reflector is placed a t  & = [500,3000, 0IT multisonar Of a mobile robot be found in [81. 
and Sa = k .  diag(100,5,5,500, 5 ) .  For k =lo, Fig. 2 com- 
pares unweighted least squares estimates with the estimate 
obtained when using the optimal weighting matrices. The 
accuracy improvement is obvious. 

In Fig. 3 the centers of the resulting estimation sets are 
plotted for 10000 trials with different noise levels. For com- 
parison purposes, the set $2 is drawn for perfect observa- 
tions. It may be seen from the figure that Cl provides a 
reliable bound for the estimation errors even for noise le- 
vels that  will not be encountered in practical applications. 

5 .  CONCLUSIONS 

A simple and efficient closed-form solution for active loca- 
tion estimation has been presented. It is based on range- 
sum measurements obtained with an arbitrary array topo- 
logy. The estimator yields more accurate results than grid- 
based or approximate schemes and offers a lower computa- 
tional load than grid-based or iterative techniques. Appli- 
cations include acoustic imaging, seismical sound explora- 
tion, and radar. 

The measurement errors are modeled as being unknown 
but bounded in amplitude by a closed convex set. This set- 
theoretic uncertainty model is particularly useful when the 
sensors suffer from strongly correlated noise or determini- 
stic errors and when the errors for different sensors are not 
mutually independent. A rigorous error propagation analy- 
sis has been performed. Rather than a point estimate, the 
estimator outputs a convex set of locations compatible with 
the a-priori error bounds. As a result, bounds for the esti- 
mation errors are accurately predicted for a measurement 
noise range far beyond pract.ica1 requirements. 

Two object primitives, i.e., points and planes, have been 
considered and treated in a unified framework. Discrimi- 
nating these objects given the measured range-sums and 
the a-priori error bounds is performed via a set-theoretic 
hypothesis test. 

This paper discussed the case of locating one single ob- 
ject. In the presence of multiple unknown objects, a search 
for the optimum association of measured ranges to  objects 
must be performed. To avoid unnecessary recalculations 
while testing candidate associations, a recursive formula- 
tion of the proposed location algorithm is provided. Fur- 
thermore, this recursive solution is useful for real-time ap- 
plications where measurements are obtained sequentially. 
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