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Abstract—For multi-sensor centralized fusion with linear
measurements, simply stacking all measurements up and then
applying the Kalman filter at the fusion center can give the
optimal estimation performance. This optimal performance is
independent of how the measurements from different sensors are
stacked up. However, for centralized fusion with multiple radar
measurements under the recursive LMMSE filtering framework,
the performance really matters as to how to stack the measure-
ments from different radars. In [1], we have shown that central-
ized fusion with stacked recombined multi-radar measurements
outperforms the one with stacked original measurements under
the recursive LMMSE filtering framework. In this paper, we
further develop a new multi-radar centralized fusion approach
by compressing all measurements first and then applying the
recursive LMMSE filter with single radar measurements at the
fusion center. Numerical examples show that the new centralized
fusion with compressed measurements has better estimation
accuracy and smaller noncredibility than the ones with stacked
measurements.

I. INTRODUCTION

In tracking applications, target motion is usually modeled
in Cartesian coordinates while the radar measurements are
available in polar or spherical coordinates. It is obvious target
tracking with radar measurements is a nonlinear filtering
problem due to the nonlinear relationship between the radar
measurements and the target motion state, whether the target
motion model is linear or nonlinear. Many existing nonlinear
filters are available for this problem, e.g. extended Kalman
filter (EKF), unscented filter (UF) [2], cubature Kalman filter
(CKF) [3], and particle filter (PF) [4]. However, since the
nonlinear relationship between radar measurements and target
motion state is known explicitly, specifically designed nonlin-
ear filters may perform better.

The converted measurement Kalman filter [5]–[8] is such
a popular specifically designed filtering approach. It converts
the measurement model from polar/spherical coordinates into
Cartesian coordinates so that the converted model is pseudo
linear. Then the standard Kalman filter (KF) can be applied
because the standard KF can only be applied to linear models.
However, the converted measurement errors have the following
mismatch with the assumptions of the standard KF: 1) the
converted measurement errors are dependent on state; 2) the
converted measurement noise sequence is not white; 3) the
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covariances are estimated conditioned on the measurement
or state [1], [9], [10]. Many ways have been proposed to
debias the converted measurements by using additive debiasing
[5], multiplicative debiasing [6], and decorrelated converted
measurements [7], [8]. Extension of debiased conversion to
the case when range rate measurements [6], [11] are also
available. In contrast, a recursive LMMSE filter was proposed
in [10] using the converted measurements directly in Cartesian
coordinates. This recursive LMMSE filter is free of the above
three mismatches of the converted measurement Kalman filter.

For multi-sensor centralized fusion [12] with linear mea-
surements, optimal estimation performance can be achieved
by simply stacking all measurements up and then applying the
Kalman filter at the fusion center. This optimal performance
stays the same no matter how the measurements from different
sensors are stacked up. However, for centralized fusion with
multiple radar measurements under the recursive LMMSE
filtering framework, the performance depends on how the mea-
surements from different radars are stacked up. It is shown in
[1] that centralized fusion with stacked recombined multi-radar
measurements outperforms the one with stacked original mea-
surements under the recursive LMMSE filtering framework.
In this paper, we propose a new multi-radar centralized fusion
approach under the recursive LMMSE filtering framework. The
key idea of this new approach is to compress the measurements
from all radars at the fusion center first and then apply the
recursive LMMSE filter to the single radar measurements. Due
to the reduction of uncertainty and nonlinearity associated with
the compressed single radar measurements, the new central-
ized fusion with compressed measurements outperforms the
ones with stacked measurements in terms of both estimation
accuracy and credibility.

The rest of the paper is organized as follows. Section II
formulates the problem. In Section III, we summarize recursive
LMMSE centralized fusion with stacked original measure-
ments and with recombined measurements. New recursive
LMMSE centralized fusion with compressed measurements
is presented In Section IV. Section V provides experimental
results. Section VI gives conclusions.

II. PROBLEM FORMULATION

Consider the following typical linear target motion model
in Cartesian coordinates

xk = Fk−1xk−1 + Gk−1ωk−1, k = 1, 2, · · · (1)



where xk = [xk, ẋk, yk, ẏk, zk, żk]′ is the target motion state
at time k. 〈ωk〉 is the process noise sequence which is white
Gaussian and zero-mean with covariance E[ωkω

′
k] = Qk. It

is assumed that x0 ∼ N (x̄0,P0) and cov(x0,ωk) = 0.
In this paper, we assume that M radars are mounted at

the origin of the Cartesian coordinates and the measurements
of M radars are mutually independent. Thus, in spherical
coordinates, the measurements of the i-th radar at time k are
range rik, bearing bik, and elevation eik. Assume that they are
generated asrikbik

eik

 =

[
rk
bk
ek

]
+

r̃ikb̃ik
ẽik

 . i = 1, · · · ,M (2)

where

rk = (x2k + y2k + z2k)1/2

bk = tan−1(yk/xk)

ek = tan−1(zk/(x
2
k + y2k)1/2)

and 〈r̃ik〉, 〈b̃ik〉, 〈ẽik〉 are the corresponding measurement noise
sequences. It is further assumed that measurement noise se-
quences, process noise sequences and x0 are mutually inde-
pendent. Each of the measurement noise sequences is assumed
as a zero-mean white Gaussian sequence, and σir, σ

i
b, σ

i
b are the

corresponding standard deviations.
For comparison purpose, we summarize two existing cen-

tralized fusion approaches with multi-radar measurements un-
der the recursive LMMSE filtering framework next.

III. SUMMARY OF TWO EXISTING APPROACHES

Recursive LMMSE centralized fusion with stacked original
measurements and with stacked recombined measurements are
summarized in this section.

A. Centralized Fusion with Stacked Original Measurements

The basic idea of centralized fusion with stacked original
measurements is to stack the measurements from M radars
first and then use the stacked measurements for estimation.
First, the original measurements need to be converted from
the spherical coordinates to the Cartesian coordinates as

xik = rik cos eik cos bik
yik = rik cos eik sin bik
zik = rik sin eik

Define

zik = [xik, y
i
k, z

i
k]′

λi1 = E[cos b̃ik] = e−(σ
i
b)

2/2

µi1 = E[cos ẽik] = e−(σ
i
e)

2/2

Ωi = diag(λi1µ
i
1, λ

i
1µ
i
1, µ

i
1)

Next we stack the measurements from M radars up and
apply recursive LMMESE filtering [1].

Let zk = [(z1k)′, (z2k)′, · · · , (zMk )′]′, Zk = {zj}kj=1.
Given x̂k−1|k−1 = E∗[xk−1|Zk−1] and Pk−1|k−1 =
MSE(x̂k−1|k−1|Zk−1), then one cycle of centralized fusion
with stacked original measurements is

x̂k|k−1 = Fk−1x̂k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F
′
k−1 + Gk−1Qk−1G

′
k−1

ẑk|k−1 = [(ẑ1k|k−1)′, · · · , (ẑMk|k−1)′]′

Ck|k−1 = [C1
k|k−1, · · · ,C

M
k|k−1]

Sk =


S1
k S1,2

k . . . S1,M
k

S2,1
k S2

k . . . S2,M
k

...
...

. . .
...

SM,1
k SM,2

k . . . SMk


Si,jk = ΩiPk|k−1([1, 3, 5], [1, 3, 5])Ω′j ,

i 6= j, i, j = 1, · · · ,M

Pk|k−1([1, 3, 5], [1, 3, 5])

=

Pk|k−1(1, 1) Pk|k−1(1, 3) Pk|k−1(1, 5)
Pk|k−1(3, 1) Pk|k−1(3, 3) Pk|k−1(3, 5)
Pk|k−1(5, 1) Pk|k−1(5, 3) Pk|k−1(5, 5)


x̂k|k = x̂k|k−1 + Ck|k−1S

−1
k (zk − ẑk|k−1)

Pk|k = Pk|k−1 −Ck|k−1S
−1
k C′k|k−1

where ẑik|k−1, Ci
k|k−1 and Sik can be referred to the recursive

LMMSE filter in [10].

B. Centralized Fusion with Recombined Measurements

The “recombination” in [1] means to reshuffle the mea-
surements from all radars according to the measurement noise
covariances dimension by dimension. And the core idea of
recursive LMMSE centralized fusion with recombined radar
measurements is that measurements from the j-th “virtual
sensor” have the j-th smallest standard deviations of range,
bearing, and elevation. Because of this, the performance of
centralized fusion with recombined stacked measurements is
better than the one with stacked measurements. This approach
is summarized as follows.

First, we order the standard deviations of all M radars at
the fusion center

σ(1)
r ≤ σ(2)

r ≤ · · · ≤ σ(M)
r

σ
(1)
b ≤ σ(2)

b ≤ · · · ≤ σ(M)
b

σ(1)
e ≤ σ(2)

e ≤ · · · ≤ σ(M)
e

Suppose that σ(i)
r = σlir , σ(i)

b = σmi

b , σ(i)
e = σni

e , λ(i)h = λmi

h ,
and µ

(i)
h = µni

h , where li,mi, ni = 1, 2, · · · ,M and h =
1, 2, 3. Then the i-th recombined converted measurements can
be obtained as

x
(i)
k = rlik cos eni

k cos bmi

k

y
(i)
k = rlik cos eni

k sin bmi

k

z
(i)
k = rlik sin eni

k

Correspondingly, the i-th recombined measurements z
(i)
k and

the recombined stacked measurements zrk are

z
(i)
k = [x

(i)
k , y

(i)
k , z

(i)
k ]′

zrk = [(z
(1)
k )′, (z

(2)
k )′, · · · , (z(M)

k )′]′



Given x̂rk−1|k−1 = E∗[xk−1|Zk−1,r] and Pr
k−1|k−1 =

MSE(x̂k−1|k−1|Zk−1,r), where Zk,r = {zrj}kj=1, then one
cycle of centralized fusion with recombined measurements is

x̂rk|k−1 = Fk−1x̂
r
k−1|k−1

Pr
k|k−1 = Fk−1P

r
k−1|k−1F

′
k−1 + Gk−1Qk−1G

′
k−1

ẑrk|k−1 = [(ẑ
(1)
k|k−1)′, · · · , (ẑ(M)

k|k−1)′]′

Cr
k|k−1 = [C

(1)
k|k−1, · · · ,C

(M)
k|k−1]

Srk =


S
(1)
k S

(1),(2)
k . . . S

(1),(M)
k

S
(2),(1)
k S

(2)
k . . . S

(2),(M)
k

...
...

. . .
...

S
(M),(1)
k S

(M),(2)
k . . . S

(M)
k


S
(i),(j)
k = Ω(i)P

r
k|k−1([1, 3, 5], [1, 3, 5])Ω′(j),

i 6= j, i, j = 1, · · · ,M
Ω(i) = diag(λ

(i)
1 µ

(i)
1 , λ

(i)
1 µ

(i)
1 , µ

(i)
1 )

x̂rk|k = x̂rk|k−1 + Cr
k|k−1(Srk)−1(zrk − ẑrk|k−1)

Pr
k|k = Pr

k|k−1 −Cr
k|k−1(Srk)−1(Cr

k|k−1)′

From [1], we know that, for centralized fusion with multi-
radar measurements under the recursive LMMSE filtering
framework, the performance really matters as to how to stack
the measurements from different radars. Also, centralized
fusion with stacked recombined multi-radar measurements
outperforms the one with stacked original measurements.

IV. NEW RECURSIVE LMMSE CENTRALIZED FUSION
WITH COMPRESSED MEASUREMENTS

The two existing approaches in the above section stack
all measurements in two different ways first and then apply
the recursive LMMSE filtering framework. Next we present a
new recursive centralized fusion approach. The key idea of this
new approach is to compress all measurements from different
radars into a pseudo single radar measurement first and then
apply the recursive LMMSE filtering with this single radar
measurement.

For recursive LMMSE centralized fusion with compressed
measurements, first and foremost, we need to compress the
range measurements, bearing measurements, and elevation
measurements from all radars, respectively.

Define

rsk = [r1k, r
2
k, · · · , rMk ]′

bsk = [b1k, b
2
k, · · · , bMk ]′

esk = [e1k, e
2
k, · · · , eMk ]′

Hr
k = Hb

k = He
k = [1, 1, · · · , 1︸ ︷︷ ︸

M

]′

r̃sk = [r̃1k, r̃
2
k, · · · , r̃Mk ]′

b̃sk = [b̃1k, b̃
2
k, · · · , b̃Mk ]′

ẽsk = [ẽ1k, ẽ
2
k, · · · , ẽMk ]′

where rsk,b
s
k, e

s
k are the stacked measurements of range,

bearing and elevation, and r̃sk, b̃
s
k, ẽ

s
k are their measurement

noises.

From Eq. (2), the stacked measurement equation at the
fusion center can be written as

rsk = Hr
krk + r̃sk

bsk = Hb
kbk + b̃sk

esk = He
kek + ẽsk

Since 〈r̃ik〉, 〈b̃ik〉 and 〈ẽik〉 are white Gaussian sequences
and mutually independent, the covariances of r̃sk, b̃sk, ẽsk are

Rr
k = cov(r̃sk) = diag((σ1

r)2, (σ2
r)2, · · · , (σMr )2)

Rb
k = cov(b̃sk) = diag((σ1

b )2, (σ2
b )2, · · · , (σMb )2)

Re
k = cov(ẽsk) = diag((σ1

e)2, (σ2
e)2, · · · , (σMe )2)

Then the optimal WLS estimates [13] of rk, bk, ek and their
corresponding MSE matrices are

r̂OWLS
k = ((Hr

k)′(Rr
k)−1(Hr

k))−1(Hr
k)′(Rr

k)−1rsk
P rk = ((Hr

k)′(Rr
k)−1(Hr

k))−1

b̂OWLS
k = ((Hb

k)′(Rb
k)−1(Hb

k))−1(Hb
k)′(Rb

k)−1bsk

P bk = ((Hb
k)′(Rb

k)−1(Hb
k))−1

êOWLS
k = ((He

k)′(Re
k)−1(He

k))−1(He
k)′(Re

k)−1esk
P ek = ((He

k)′(Re
k)−1(He

k))−1

Thus we have the following compressed measurement equation
at the fusion center

rck = Hr,c
k rk + r̃ck

bck = Hb,c
k bk + b̃ck

eck = He,c
k ek + ẽck

where

rck = r̂OWLS
k

bck = b̂OWLS
k

eck = êOWLS
k

Hr,c
k = Hb,c

k = He,c
k = 1

And the covariances of r̃ck, b̃
c
k, ẽ

c
k are

Rr,ck = cov(r̃ck) = P rk

Rb,ck = cov(b̃ck) = P bk
Re,ck = cov(ẽck) = P ek

We can see that the compressed measurement [rck, b
c
k, e

c
k]′ at

time k is a 3×1 vector, while the stacked original measurement
at time k is a 3M×1 vector. It is obvious that the compressed
measurement has smaller nonlinearity than the stacked original
measurement with respect to the system state. In addition,
covariances of compressed measurements are smaller than the
ones of the measurements of each radar, whether recombined
or not. Thus recursive LMMSE centralized fusion with com-
pressed measurements is guaranteed to perform better than
the two existing centralized fusion approaches using stacked
measurements.

Next, we apply the LMMSE filtering framework at the fu-
sion center. By treating the compressed measurement equation
as the pseudo measurement equation of a single radar, we
have the following converted measurements from the spherical
coordinates into the Cartesian coordinates

xck = rck cos eck cos bck



yck = rck cos eck sin bck
zck = rck sin eck

Define

zck = [xck, y
c
k, z

c
k]′

λc1 = E[cos b̃ck] = e−R
b,c
k /2

λc2 = E[cos2 b̃ck] = (1 + e−2R
b,c
k )/2

λc3 = E[sin2 b̃ck] = (1− e−2R
b,c
k )/2

µc1 = E[cos ẽck] = e−R
e,c
k /2

µc2 = E[cos2 ẽck] = (1 + e−2R
e,c
k )/2

µc3 = E[sin2 ẽck] = (1− e−2R
e,c
k )/2

Ωc = diag(λc1µ
c
1, λ

c
1µ
c
1, µ

c
1)

Given x̂ck−1|k−1 and Pc
k−1|k−1, one cycle of centralized fusion

with compressed multi-radar measurements can be summa-
rized as

x̂ck|k−1 = Fk−1x̂
c
k−1|k−1

Pc
k|k−1 = Fk−1P

c
k−1|k−1F

′
k−1 + Gk−1Qk−1G

′
k−1

ẑck|k−1 = Ωc[x̂
c
k|k−1(1), x̂ck|k−1(3), x̂ck|k−1(5)]′

d̄c = ([x̂ck|k−1(1)]2 + [x̂ck|k−1(3)]2 + [x̂ck|k−1(5)]2)1/2

d̄c1 = ([x̂ck|k−1(1)]2 + [x̂ck|k−1(3)]2)1/2

αck = µc2R
r,c
k /(d̄c)2 + µc3[x̂ck|k−1(5)]2/(d̄c1)2

+ µc3R
r,c
k [x̂ck|k−1(5)]2/(d̄cd̄c1)2

βck(1) = [λc2µ
c
2 − (λc1µ

c
1)2][x̂ck|k−1(1)]2

+ λc3µ
c
2[x̂ck|k−1(3)]2

βck(2) = [λc2µ
c
2 − (λc1µ

c
1)2][x̂ck|k−1(3)]2

+ λc3µ
c
2[x̂ck|k−1(1)]2

βck(3) = [µc2 − (µc1)2][x̂ck|k−1(5)]2 + µc3(d̄c1)2

βck(4) = [µc2(λc2 − λc3)− (λc1µ
c
1)2]x̂ck|k−1(1)x̂ck|k−1(3)

βck(5) = [λc1(µc2 − µc3)− λc1(µc1)2]x̂ck|k−1(5)

Sck(1, 1) ≈ λc2µc2Pc
k|k−1(1, 1) + λc3µ

c
2P

c
k|k−1(3, 3)

+ αck(λc2[x̂ck|k−1(1)]2 + λc3[x̂ck|k−1(3)]2) + βck(1)

Sck(2, 2) ≈ λc2µc2Pc
k|k−1(3, 3) + λc3µ

c
2P

c
k|k−1(1, 1)

+ αck(λc3[x̂ck|k−1(1)]2 + λc2[x̂ck|k−1(3)]2) + βck(2)

Sck(3, 3) ≈ µc2Pc
k|k−1(5, 5) + µc3[Pc

k|k−1(1, 1) + Pc
k|k−1(3, 3)

+ µc2R
r,c
k [x̂ck|k−1(5)]2/(d̄c)2

+ µc3R
r,c
k (d̄c1)2/(d̄c)2 + βck(3)

Sck(1, 2) = Sck(2, 1) ≈ (λc2 − λc3)[µc2P
c
k|k−1(1, 3)

+ αckx̂
c
k|k−1(1)x̂ck|k−1(3)] + βck(4)

Sck(1, 3) = Sck(3, 1) ≈ λc1(µc2 − µc3)[Pc
k|k−1(1, 5)

+Rr,ck x̂ck|k−1(1)x̂ck|k−1(5)/(d̄c)2] + βck(5)x̂ck|k−1(1)

Sck(2, 3) = Sck(3, 2) ≈ λc1(µc2 − µc3)[Pc
k|k−1(3, 5)

+Rr,ck x̂ck|k−1(3)x̂ck|k−1(5)/(d̄c)2] + βck(5)x̂ck|k−1(3)

Sck = [Sck(m,n)]3m,n=1

Cc
k|k−1 = [Pc

k|k−1(:, 1),Pc
k|k−1(:, 3),Pc

k|k−1(:, 5)]Ω′c

x̂ck|k = x̂ck|k−1 + Cc
k|k−1(Sck)−1(zck − ẑck|k−1)

Pc
k|k = Pc

k|k−1 −Cc
k|k−1(Sck)−1(Cc

k|k−1)′

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we compare the performance of recursive
LMMSE multi-radar centralized fusion with stacked original
measurements (CF-o), with stacked recombined measurements
(CF-r), and with compressed measurement (CF-c) to verify
that CF-c performs better than the other two.

For Eq. (1), we use the discrete-time NCV kinematic model
for target motion. The involved parameters are set as

Fk = diag(F,F,F)

Gk = diag(G,G,G)

F =

[
1 T
0 1

]
G = [T 2/2, T 2/2]′, T = 1s
ωk ∼ N ([0, 0, 0]′,Qk)

Qk = diag((0.01m/s2)2, (0.01m/s2)2, (0.01m/s2)2)

x̄0 = E(x0)

= [10km, 100m/s, 1km, 100m/s, 10km, 100m/s]′

P0 = cov(x̄0)

= diag(106m2, 202m2/s2, 106m2, 202m2/s2,
106m2, 202m2/s2)

In the following numerical examples, we assume that there
are 3 radars mounted at the origin of the Cartesian coordinates,
and σir, σ

i
b, σ

i
e, i = 1, 2, 3 are the standard deviations of

r̃ik, b̃
i
k, ẽ

i
k. We use root mean-squared (RMS) position and

velocity errors to evaluate the filter’s accuracy [13], and
noncredibility index (NCI) [14] and inclination indicator (II)
[14] to evaluate the filter’s credibility.

A total of 1,000 Monte Carlo runs are performed. And we
initialize all the filters as follows.

x̂0|0 = x̄0, P0|0 = P0

Two cases are considered to compare the performances of
the three approaches. In Case 1,

σ1
r = 10m, σ1

b = 10mrad, σ1
e = 80mrad

σ2
r = 100m, σ2

b = 1mrad, σ2
e = 10mrad

σ3
r = 400m, σ3

b = 80mrad, σ3
e = 1mrad

Figs. 1-4 show the performance in Case 1. From all these
four figures, we can see that, in terms of estimation accuracy,
centralized fusion with compressed measurements is better
than the one with recombined measurements obviously and
the one with recombined measurements is much better than
the one with stacked original measurements, whether it is
about position or velocity. In terms of filter credibility, after 60
steps, the noncredibility of centralized fusion with compressed
measurements is slightly smaller than the one with recombined
measurements, and also smaller than the one with stacked
original measurements obviously.

In Case 2,

σ1
r = 40m, σ1

b = 30mrad, σ1
e = 15mrad

σ2
r = 20m, σ2

b = 15mrad, σ2
e = 20mrad

σ3
r = 10m, σ3

b = 20mrad, σ3
e = 30mrad
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Fig. 1: Position RMSE (Case 1)
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Fig. 2: Velocity RMSE (Case 1)
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Fig. 3: NCI (Case 1)
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Fig. 4: II (Case 1)
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Fig. 5: Position RMSE (Case 2)
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Fig. 6: Velocity RMSE (Case 2)
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Fig. 8: II (Case 2)

Figs. 5-8 show the performance in Case 2. From all these
four figures, we can see that, in terms of estimation accuracy,
centralized fusion with recombined measurements is similar to
the one with stacked original measurements, but the centralized
fusion with compressed measurements is much better than the
one with recombined measurements and with stacked original
measurements in position. And in velocity, after 80 steps, these
three approaches perform very closely. For the filter credibility,
these three approaches are all credible.

In summary, the above numerical examples show that new
centralized fusion with compressed measurements provides
better estimation accuracy and smaller noncredibility under the
recursive LMMSE framework. The compressed measurement
at time k is a 3× 1 vector, while the stacked measurement at
time k is a 9× 1 vector. Thus, nonlinearity of the compressed
measurement is reduced compared with that of the stacked
measurement with respect to the system state. Also, covari-
ances of compressed measurements are reduced compared
with the ones of the measurements of each radar, whether
recombined or not. This explains why recursive LMMSE

centralized fusion with compressed measurements performs
better than the two existing centralized fusion approaches using
stacked measurements.

VI. CONCLUSION

For centralized fusion with multi-radar measurements un-
der the recursive LMMSE filtering framework, we propose a
new centralized fusion approach. In this new approach, we
compress the measurements from all radars at the fusion center
first and then apply the recursive LMMSE filter with single
radar measurements. Comparing the new approach to central-
ized fusion using both stacked original and recombined mea-
surements under the recursive LMMSE filtering framework,
it is found that new approach can provide better estimation
accuracy and smaller noncredibility. That is mainly because
the new approach uses more accurate radar measurements with
smaller nonlinearity.
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