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Abstract— Multilateration systems reconstruct the location of
a target that transmits electromagnetic or acoustic signals. The
employed measurements for localization are the times of arrival
(TOAs) of the transmitted signal, measured by a number of
spatially distributed receivers at known positions. We present a
novel multilateration algorithm to localize multiple targets that
transmit indistinguishable signals at unknown times. That is,
each receiver measures merely a set of TOAs with no association
to the targets. Our method does not need any prior information.
Therefore, it can provide uncorrelated, static measurements
to be introduced into a separate tracker subsequently, or an
initialization routine for multi target trackers.

I. INTRODUCTION

Context: Electromagnetic and acoustic signals have
various properties that carry information and, when received
at multiple sites, can be exploited to obtain the location of
the signal transmitter (target). In multilateration (MLAT),
the time of arrival (TOA) is used for target localization.
A typical example is found in aircraft surveillance, where
transmitters on every aircraft emit so-called Mode A/C signals.
Since that standard only allows for 4096 addresses, there are
often multiple aircraft with the same address in one airspace.
Mode A/C transmissions are triggered by interrogator stations,
therefore it is common that many targets transmit shortly
after each other. As a consequence, receivers often cannot
separate targets just by temporal distance of the TOAs.
Other application scenarios of the presented method include
localizing objects emitting indistinguishable acoustic events.

State of Art: Signal properties that carry information
about the location of its emitter are for example received
signal strength (RSS) [2] and angle of arrival (AOA), also
known as bearings measurements [3], [4]. The most accurate
location estimates can typically be obtained with TOA
measurements [5], [6], or differences of TOA [7], [8], [9]
for precisely time-synchronized receiver networks. This is
generally referred to as MLAT. In secondary surveillance
radar (SSR), signal transmissions are actively triggered
by an interrogator, and the duration between sending the
interrogation and reception of the target’s response gives an
additional indication of the target’s distance [10]. However,
if the time lag the target needs to process the interrogation is
not accurately known, this information should be used with
care. Two common SSR variants are Mode S and Mode A/C.
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For multi target tracking, the main challenge is that the
association between measurements and targets is unknown. If
the associations were known because transmissions contain
individual codes, the problem can simply be reduced to
single target tracking, separately for every target. Multi target
tracking can be treated with the Joint Probabilistic Data Asso-
ciation Filter [11], but this requires enumerating all possible
association hypotheses. Other methods like the probability
hypothesis density filter avoid the measurement associations
in their formulation [12], [13]. Further interesting possibilities
are symmetric and association-invariant transformations like
the SME Filter [14], the Kernel-SME Filter [15], [16], or
methods based on association-invariant set distance measures
[17], [18]. Most methods however have been proposed for
linear measurement models or measurements with the full
dimensionality only, and cannot easily be applied to nonlinear
subspace measurements like TOA for emitter localization.

Contribution: In this paper, we will consider a multi
target localization setup with realistic TOA measurements that
implicate a nonlinear measurement model. Our approach can
be used to instantly locate a number of objects transmitting
identical messages without any prior knowledge.

II. PROBLEM FORMULATION

We consider the localization of multiple targets based on
noisy TOA measurements from a receiver network, where the
target-to-measurement associations are unknown. Specifically,
we make the following assumptions:
A1 The number of targets P is known.
A2 There can be missed detections or false measurements

(but not both) at one receiver.
A3 TOA measurements are obtained from synchronized,

passive receivers at known locations.
We consider a set of P stationary or moving targets during
a number of dense transmission events k ∈ {1, 2, . . . ,K} .
With dense transmission events, we indicate situations where
multiple targets transmit quickly in a row, such that the
messages are received in different orders on different receivers.
Target positions are denoted by pj

k
∈ RD, where j ∈

{1, 2, . . . ,P} is the target index, and dimension D is typically
two or three. Every target emits electromagnetic or acoustic
messages at time steps tj k which propagate with uniform
propagation speed c0. These target transmission times (TTTs)
do not need to be known beforehand. Therefore, the target
clock does not need to be synchronized with any other
clock, and transmissions can be equi-spaced in time or not.
Target transmissions also do not need to be triggered by an
interrogation signal. It merely must be provided that each
target does transmit from time to time, because its location
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Fig. 1: Geometry plot (a) shows the position of three aircraft (targets) pj
k
, j ∈ {1, 2, 3} at the time instances tj k. Transmitted

messages propagate with velocity c0 into all directions and are detected by the receivers si, i ∈ {1, 2, 3} . In (b) you can
study the same scenario on a time axis. Transmission of target one p1

k
takes place at t1 k = 0.1 µs . From there, the signal

travels through space (blue arrows) and reaches the individual receivers at times t1 i
k (indicated with fat plus signs). Targets

two and three transmit at t2 k = 1.1 µs and t3 k = 0.6 µs, respectively, and these transmissions propagate likewise (red and
yellow arrows). Because targets transmit in quick succession, the order of TOA measurements from the three targets varies
among the receivers. Therefore, a dense transmission event takes place, indicated with k.

can be measured only for the moments of transmission. Also,
the signal must be shaped in a way that a specific TOA can
be extracted on all receivers referring to the same event.

Measurements are obtained by S receivers stationed at
known locations si ∈ RD, i ∈ {1, 2, . . . ,S} . These receivers
record the TOAs tj ik of the transmissions. Thereby the
receivers are synchronized among each other, but they need
not to be synchronized with any target. The basic equation
that connects aforementioned variables is

tj ik = tj k +

∥∥∥ pj
k
− si

∥∥∥
c0

, (1)

see also Fig. 1. Our goal is to determine the target positions
pj
k

of all P targets based on the (P·S) TOAs tj ik measured
in the S receivers.

Traditional MLAT methods usually employ differences of
TOA measurements from different receivers, i.e.,

tj i2k − tj i1k = ��t
j
k +

∥∥∥ pj
k
− si2

∥∥∥
c0

−��t
j
k −

∥∥∥ pj
k
− si1

∥∥∥
c0

.

That way, the unknown TTT tj k is gone from the measure-
ment equation and does not need to be estimated. Of course,
this works only if the two transmissions come from the same
target j. As we do not know which pairs of TOAs come
from the same target, we do not know which pairs to use.

Obviously, already taking differences of TOAs increases the
number of possible wrong combinations and does not seem
to be a sensible approach here. Therefore, we decide to go
back to the raw TOA measurements and work directly with
these. Consequently, our target state xj k will consist of TTT
tj k and target positions pj

k

xj k =

[
pj
k

tj k

]
.

First we define a notation that bundles the states xj k of
all targets j ∈ {1, 2, . . . ,P} into a combined target state Xk,
and also the P TOA measurements tj ik of one receiver i into
the measurement vector tik

Xk =


x1 k

x2 k
...
xP
k

 , hi(Xk) =


hi( x1 k)
hi( x2 k)

...
hi( xP

k)

 , tik =


t1 i
k

t2 i
k

...
tP i
k

 ,

where hi( xj k) is the measurement equation (1) for receiver
i at location si,

hi( xj k) = tj k +

∥∥∥ pj
k
− si

∥∥∥
c0

. (2)



Summarizing, we have a nonlinear measurement equation
system for each receiver i , namely

tik = hi(Xk) . (3)

The real measurements t̂
πik(j) i

k are additionally distorted with
additive noise vj i

k caused by e.g. a low signal-to-noise ratio.
But most notably, t̂

πik(j) i
k can be correctly compared with the

hypothesized measurements (3) only if the true measurement-
to-target association function πik(j) has been found

t̂
πik(1) i

k

t̂
πik(2) i

k
...

t̂
πik(P) i

k


︸ ︷︷ ︸

t̂
πi
k
i

k

=


hi( x1 k)
hi( x2 k)

...
hi( xP

k)


︸ ︷︷ ︸

hi(Xk)

+


v1 i
k

v2 i
k

...
vP i
k


︸ ︷︷ ︸

vik

.

Combined for all S receivers, we obtain the equation system
t̂

πik 1

k

t̂
πik 2

k
...

t̂
πik S

k


︸ ︷︷ ︸

T̂
πk

k

=


h1(Xk)

h2(Xk)
...

hS(Xk)


︸ ︷︷ ︸

H(Xk)

+


v1k
v2k
...
vSk


︸ ︷︷ ︸
Vk

,

or in short form

T̂
πk

k = H(Xk) + Vk .

This equation system contains all information from S
receivers with P TOA measurements each. As no prior
information is assumed, we want to obtain the maximum
likelihood estimate. In order to obtain the likelihood, we first
define the conditional density

f(T̂k |πk,Xk,Vk) = δ( T̂
πk

k−H(Xk)−Vk) ,

and by the law of conditional densities, the joint density

f(T̂k,Vk |πk,Xk) = δ( T̂
πk

k−H(Xk)−Vk) · fVk (Vk) ,

where fVk (Vk) is the joint density of all measurement noises
Vk. Now we marginalize over Vk, this yields the likelihood
function Λ of the unknowns πk,Xk

Λ(πk,Xk) = fLk(T̂k |πk,Xk)

= fVk ( T̂
πk

k−H(Xk)) .

The maximum likelihood estimate of measurement asso-
ciations and combined target state can be obtained by
maximizing the likelihood function(

π̂ML
k , X̂ML

k

)
= arg max

πk,Xk

{Λ(πk,Xk)} .

Assuming that fVk is a multivariate Gaussian density with a
diagonal covariance matrix, i.e.,

Cov
{

vj1 i1
k1
, vj2 i2

k2

}
=
(

σj1 i1
k1

)2
δj1,j2δk1,k2δl1,l2 ,
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Fig. 2: Block diagram of the proposed multi target localization
algorithm.

the likelihood maximization problem can be formulated
somewhat more intuitively as distance minimization problem(
π̂ML
k , X̂ML

k

)
= arg min

πk,Xk


S∑
i=1

P∑
j=1

(
t̂

πik(j) i
k − hi( x

j
k)

σj i
k

)2 .

Either way this turns out to be a mixed combinatorial and
continuous optimization problem. To convey an idea of the
complexity, we will indicate the number of possibilities
for the combinatorial part. For one specific receiver i, the
association function πik(j) , j ∈ {1, . . . ,P} , can yield P!
different permutations. The overall number of possibilities
to be considered for all S receivers is (P!)

S , which may be
reduced to (P!)·S if associations can be optimized for each
receiver independently.

III. KEY IDEA

Instead of going through all possible associations, we
propose a mathematical composition of an outer continuous
optimization loop and an inner combinatorial optimization,
see Fig. 2. The outer loop always chooses new target positions
and TTT. The inner combinatorial part then calculates the
maximum likelihood that is possible for these values, i.e., how
well they fit to the measurements. Based on that information,
the outer optimization loop can proceed to the next iteration
step and try other target positions until the likelihood is
maximized globally. We will now describe in detail how this
alternating optimization procedure can be achieved efficiently.

IV. COMBINATORIAL OPTIMIZATION PROCEDURE

In the view of the inner combinatorial optimization loop,
we are always given a fixed combined target state X̂k,l (target
positions and TTT at iteration l) that is suggested by the
outer loop. We then have to find the association permutation
π̂k,l that aligns both sets of TOAs such that the likelihood is
maximized

π̂k,l = arg max
πk

{
Λ(πk, X̂k,l)

}

= arg min
πk


S∑
i=1

P∑
j=1

 t̂
πik(j) i

k − hi( x̂
j
k,l)

σj i
k

2
 .

In fact, we may not even be interested in the actual association
but only in the maximum likelihood Λ̂ or the minimum
distance D̂ to be obtained over all possible permutations πk
for the given X̂k,l

Λ̂(X̂k,l) = max
πk

{
Λ(πk, X̂k,l)

}
,



D̂(X̂k,l) = min
πk


S∑
i=1

P∑
j=1

 t̂
πik(j) i

k − hi( x̂
j
k,l)

σj i
k

2
 .

Fortunately, changing only the measurement association πik
at one receiver while keeping the combined target state
fixed does not influence the quadratic difference terms
contributed by the other receivers in D̂. Therefore, association
permutations can be optimized for each receiver individually

D̂(X̂k,l) =

S∑
i=1

min
πik


P∑
j=1

 t̂
πik(j) i

k − hi( x̂
j
k,l)

σj i
k

2

 .

Now what happens exactly for an individual receiver
intuitively? We want to calculate the function

D̂i(X̂k,l) = min
πik


P∑
j=1

 t̂
πik(j) i

k − hi( x̂
j
k,l)

σj i
k

2
 . (4)

It consists of simply calculating the expected TOA mea-
surements based on x̂j k,l using (2). As a result, we have
two sets of TOAs for each receiver: the hypothesized TOAs
hi( x̂j k,l) based on the suggested state x̂j k,l, and the TOAs
t̂j ik that were actually measured by the receiver. We want

to find a permutation πkj to reorder the latter, such that the
sum of the weighted quadratic differences between associated
TOA is minimized. This is an optimal transport problem,
or more specifically, a discrete Monge problem, which is
an assignment problem. The resulting D̂i (4) is a squared
Wasserstein distance [19].

A. Sorting the TOAs

TOA measurements are of course one-dimensional and thus
have a natural order that can be easily obtained by sorting.
Now if two sets (A,B) of TOAs with the same cardinality
are ordered from earliest to latest, and the weighting of the
individual squared differences is uniform, then obviously
the smallest overall distance can be obtained by associating
elements according to their indices in the sorted lists, i.e.,
associating the earliest TOA of set A with the earliest TOA
of set B, and so on. In other words, if there are no missed
detections and no clutter, and the measurement noise variances
σj i
k for all targets j are the same at receiver i, then the

contribution D̂i(X̂k,l) of that receiver to the overall distance
D̂(X̂k,l) can be very efficiently obtained by sorting.

B. Try Few Possibilities

In the case of F false measurements in a clutter envi-
ronment, the cardinality of the two sets of TOAs is not
equal anymore: the set of measured TOAs consists of P +F
measurements. Both sets may still be sorted, but F elements
from the set with more elements are not assigned. There are(

P + F
F

)
=

(P + F)!

P! · F !

possibilities to choose the F elements to exclude. In the
case of one single false measurement (F=1), these are

only (P + 1) possibilities, or 1
2 (P + 2) (P + 1) for (F=2).

When there are instead M missed measurements, we have(
P
M

)
=

P!

(P −M)! · M!

possibilities to exclude M of the P TOAs from association.
Trying out all possibilities and applying Sec. IV-A each time
can be feasible for small numbers of F or M.

C. Minimum of a List

If only one measurement has been detected at the con-
sidered receiver, i.e., P −M = 1, then simply the nearest
TOA is assigned to it, so the necessary operation is taking
the minimum of a list. Vice versa, the same holds if there are
multiple clutter measurements but only one target (P=1).

D. Linear Programming

If the number of false F or missed M measurements is
too high to apply Sec. IV-B, or if TOAs from multiple targets
have individual variances, i.e., the TOA differences in (4)
have individual weightings σj i

k, then the association problem
should be solved with a dedicated linear assignment algorithm
like the Hungarian algorithm [20] or Munkres assignment
algorithm [21]. It was originally proposed for square cost
matrices but can be extended to rectangular matrices [22].
These algorithms always find the optimal assignment in
polynomial time. An alternative is the Auction algorithm
[23], which may obtain a suboptimal solution, but is faster
and can be solved in real time even for larger sets of objects
[24], [25].

V. CONTINUOUS OPTIMIZATION PROCEDURE

The outer optimization loop performs standard continuous
optimization, where the objective function D̂ is a sum of
squared Wasserstein distances D̂i (4). Therefore, it is a
nonconvex nonlinear least-squares problem. Such nonlinear
least-squares problems can be solved with the Levenberg-
Marquardt algorithm [26] or a trust-region algorithm [27].
The solver must be given a suitable initial value, for example
randomly chosen target positions over the area covered by
receivers, if no prior knowledge about target positions is
available. As the problem is not convex, the solver tends to
get trapped in local minima. To be sure to find the global
optimum without using prior knowledge, multiple runs with
randomly chosen initial values should be performed. The
set of target positions found by the optimization run that
yielded the smallest residual norm (objective function value)
after convergence is selected then. For better convergence
and performance, the least squares solver should also be
provided with analytical gradients in addition to the squared
Wasserstein distances D̂i (4).

VI. EVALUATION

A. Synthetic Data

In order to evaluate the basic applicability of our algorithm
and implementation, a two-dimensional synthetic setup with
five receivers and two targets was compiled, see Fig. 3 (a).
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Fig. 3: (a) Visualization of the iterations of the continuous optimization routine. True positions of aircraft and receivers are
indicated by pictograms. The randomly chosen start points are shown as open circles, and the final result of the optimization
as open squares. In between, the intermediate iteration steps are shown as red and blue dots and curves. The lower part of the
figure visualizes the optimization progress of the TTT. The true TTT of the upper target p1

k
= [−1, 0.7]

> is t1 k = 0.5, and
that of the lower target p2

k
= [−1,−0.3]

> is t2 k = 0. Propagation velocity c0 has been set to one here, so everything can
be done without units. (b) Target positions resulting from several optimization runs with different, randomly chosen initial
points (to circumvent local minima) and additive measurement noise. Points are colored by the final residual norm. Evidently,
the turquoise points represent local minima. On the other hand, the result with the smallest residual norm, i.e., the global
optimum, is additionally indicated by an open square and agrees well with the true target positions (aircraft pictograms). See
the supplemental video for an animated version of this figure.

Neither measurement noise nor detection misses were in-
cluded here. Initial points for the two targets were randomly
chosen with an equal distribution over the entire plotted area,
and initial TTT were chosen equally distributed in a window
of one around the respective true value.

In a second step, simulations were performed where Gaus-
sian noise with σj k

k = 0.02 was added to the measurements,
but no detection misses. The resulting target positions of
500 runs with randomly chosen start points are shown in
Fig. 3 (b). Results are also colored by their residual norm,
i.e., the final value of

√
D̂. The supplemental video shows a

similar plot for moving targets. Calculation time for the 500
runs was about 1.1 s without multithreading.

B. Real Data

Together with Frequentis Comsoft GmbH we analyzed real
data from a 20 min national air traffic control data set based
on the Mode A/C radio frequency communication protocol.
Overall, it provided 440 532 TOA events with 4090 different
Mode C target identification codes. All targets actually had
individual codes and the targets thus could also be localized
without association-free MLAT, but this information was used
for ground truth only. We focused on four specific targets

with the codes 2415, 2416, 4442, 5403. This restricted the
data set to 157 585 TOAs from 14 receivers covering roughly
30 000 km2, where the four considered targets stayed within
an area of about 3500 km2. Frequentis Comsoft Quadrant
interrogators always transmit in a specific A-C-A-A pattern
of four Mode A and Mode C requests, in order to be able to
recognize Mode A/C messages that were triggered by own
interrogations. Furthermore, the four answers in combination
provide a more accurate single TOA measurement. The data
set has been specifically chosen for testing our association-
free multi target localization method. Targets perform quite
complex maneuvers simultaneously, two of them in close
formation. On the other hand, the environment is chosen
such that there are no other major difficulties like reflections
present. We can thus assume that measurements are free of
clutter, but with missed detections.

C. Procedure

The Mode C transmissions contain pressure altitude, but
this information was not used – only the TOA measure-
ments of the transmissions together with the known receiver
positions. Mode A transmissions contain a 12-bit code to
identify the targets and all considered targets had unique
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Fig. 4: MLAT results for four targets based on real data from Frequentis Comsoft Quadrant air traffic surveillance. The
problem geometry is 3D, but altitude is not shown here. (a) Received TOA events were treated as association-free (ambiguous)
measurements and target localization was performed with the proposed association-free MLAT algorithm. (b) Corresponding
ground truth. Codes of the Mode A messages were used to identify targets and perform separate single target localizations.
Each color indicates an individual Mode A code, i.e., a specific target. Supplemental video contains animated version of (a).

IDs, but this information was only used as ground truth
in order to evaluate the proposed multi target localization
method. The maximum distance between two receivers was
233 km, so pauses of 0.78 ms and more could be seen as
a guaranteed separation between dense transmission events.
The A-C-A-A interrogation sequence was emitted in intervals
of at least 10 ms, therefore 10 711 dense transmission events
were clearly separated. According to the Mode A codes from
ground truth, 9873 of the dense transmission events actually
contained messages from more than one target. In order to
be able to apply our method without further modifications,
we determined the number of targets P from ground truth
for every dense transmission event. For the MLAT algorithm,
the actual number of targets behind a set of TOA is however
not known in reality. This will be addressed in future works.

D. Results

The multi target localization performance on real data
achieved by the proposed method can be seen in Fig. 4 (a).
The plot shows only point estimates based on six or more
TOA measurements per point. In the supplemental video, the
same MLAT results are shown over time, and the evolution
of the four tracks can be followed more intuitively there.

VII. CONCLUSION

We propose an efficient algorithm for MLAT that does
not require the association between receiving events and
tracked targets. Evaluations with synthetic and real data
demonstrated good localization accuracy with ambiguous
TOA measurements.

Usually, the receiving events comprise scalar (TOA) mea-
surements. For scalar measurements, the proposed method is
especially fast and efficient as finding optimal permutation

just entails a sorting procedure. Furthermore, the optimal
permutation can be obtained for each receiver independently,
which reduces overall complexity and facilitates parallel
execution.

VIII. FUTURE WORK

So far, the problem was assumed to be static, i.e., we
obtain single-shot point estimates that are independent from
each other. We plan to expand this method to a target
tracking system. Therefore, we introduce prior knowledge
and combine suitable dynamic motion models with the
proposed measurement model. This might also vastly reduce
computational power if the iterative continuous optimization
loop can be replaced with a single Kalman filter step, for
example. Batch processing algorithms could be interesting
to determine inherent system properties like measurement
variances and typical deviations in clock synchronization.

An important extension is the automatic detection of the
number of targets behind a set of received TOA events. For
example, suppose that 14 receivers detected one TOA event
each. It could be that all of them come from one target, or
seven from two different targets, respectively. We plan to
heuristically narrow down the possible number of targets and
exploit hypothesis probabilities based on the chi distribution.
Finally, in many applications it is necessary to deal with both
clutter and missing measurements at the same time.
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