
Highly Parallelizable Plane Extraction for
Organized Point Clouds Using Spherical Convex Hulls

Hannes Möls, Kailai Li, and Uwe D. Hanebeck

Abstract— We present a novel region growing algorithm for
plane extraction of organized point clouds using the spherical
convex hull. Instead of explicit plane parameterization, our
approach interprets potential underlying planes as a series of
geometric constraints on the sphere that are refined during
region growing. Unlike existing schemes relying on downsam-
pling for sequential execution in real time, our approach
enables pixelwise plane extraction that is highly parallelizable.
We further test the proposed approach with a fully parallel
implementation on a GPU. Evaluation based on public data
sets has shown state-of-the-art extraction accuracy and superior
speed compared to existing approaches, while guaranteeing real-
time processing at full input resolution of a typical RGB-D
camera.

I. INTRODUCTION

Extracting high-level geometric information plays a critical
role for robotic perception tasks, especially in man-made en-
vironments mostly composed of planar structures, e.g., walls,
streets, ceilings and floors. Compared to pointwise feature
extraction, planes can provide more reliable and predominant
primitives. As an underlying map representation, they also
significantly reduce memory consumption and runtime for
further processing. Therefore, plane extraction has become
increasingly popular in various application scenarios such
as simultaneous localization and mapping (SLAM), human-
machine interaction, sensor calibration, robotic locomotion,
as well as virtual/augmented reality [1]–[8] , etc.

More specifically, plane extraction techniques are expected
to give pixelwise associations to planes clustered from point
clouds. Multiple sensory modalities can hereby be involved,
e.g., stereo cameras, laser scanners, light detection and
ranging (LiDAR) sensors, RGB-D(epth) cameras or any multi-
sensor setups able to stream out three-dimensional pointwise
geometric information. The popularization of consumer-
affordable 3D sensing solutions endows mobile platforms
profound elevation of perception capabilities, providing image-
level resolution of point cloud readings. The point cloud data
is usually organized in an image-like structure (so-called orga-
nized point cloud) . However, large amounts of data need to be
processed using typical embedded computers, ideally without
considerable sacrifice of extraction precision and level of
detail. Some hardware for parallel computing (e.g., embedded
GPUs) exists [9] , however, parallelizing existing sequential

The work is supported by German Research Foundation (DFG)
under grant HA 3789/16-1. The authors are with the Intelligent
Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthropo-
matics and Robotics, Karlsruhe Institute of Technology (KIT), Ger-
many. E-mails: ureaa@student.kit.edu, kailai.li@kit.edu,
uwe.hanebeck@kit.edu.

(a) (b)

Fig. 1: Plane extraction results (bottom) using the proposed
approach. Two example frames (ground truth shown on top)
were taken from the SynPEB [10]. Execution time is around
15 ms per frame for a full resolution of 500× 500 pixels.

plane extraction algorithms is non-trivial. Given inputs of
organized point clouds, existing plane extraction techniques
can be distinguished into three categories, namely, approaches
based on (1) random sample consensus (RANSAC), (2) the
Hough transform, and (3) region growing.

RANSAC is a model-fitting algorithm specifically designed
to overcome problems introduced by strong noise and outliers.
To get planes extracted, it iteratively splits a given set
of input points into disjoint inlier and outlier sets. The
inliers are then used to calculate the plane equation from
three points. The process of randomly choosing the inlier
set is repeated until a certain metric (e.g., point-to-plane
distances) is valued as sufficiently optimal. Schabel et al. [11]
used RANSAC to approximate point clouds with primitive
geometric shapes using an octree subdivision of the scene.
However, in order to find a good inlier set, a large number of
potential inlier/outlier splits have to be tested which is very
time-consuming. Alehdagi et al. [12] parallelized RANSAC
on the GPU. While achieving a significant performance boost,

the algorithm is still not capable to run in real time for full-
resolution input (< 10 Hz given 640× 480 depth image) due
to the inherent redundancy of RANSAC trials.

Hough transform was originally designed for image pro-
cessing and extracts geometric primitives, e.g., circles and
lines, by voting in a discretized parameter space. A first
extension for three-dimensional plane extraction was proposed
in [13]. Planes are computed for each input point and fed
through the voting procedure in the parameter space. Due
to memory constraints, similar planes are mapped to the
same cell in the parameter space which is memory-inefficient.
Though mapping and voting can be trivially parallelized, dis-
cretizing a large parameter space is rather memory-consuming
and cannot be tailored for faster and smaller memory. This
prohibits exploiting the caching mechanism of modern GPUs.
Moreover, the extraction can suffer from loss of details due
to the discretization. Oehler et al. [14] proposed a Hough-
RANSAC hybrid in a coarse-to-fine scheme for better trade-
off between speed and extraction detailedness. Following a
pre-segmentation using the Hough transform in the coarse
level, RANSAC is further employed as post-processing for
fleshing out the details. Unluckily, this approach is still not
real-time capable for pixelwise extraction. For instance, 2.06
sec is needed for processing a 640× 480 depth image from
a typical RGB-D camera.

Region Growing-based extraction approaches are motivated
by the grid nature of organized point clouds. Though faster
than their RANSAC and Hough counterparts, region growing-
based schemes cannot be further accelerated due to the
exceptional difficulty of performing parallelization. The core
concept of region growing-based extraction is to start at
a set of seed points in a depth/normal map and to find
all connecting neighbors sharing the same plane. Different
metrics are used to determine if a connected neighboring
pixel belongs to the same plane or not. Poppinga et al. [15]
essentially applied incremental principal component analysis
(PCA) to find the plane equation which best-fits all points and
used the incremental mean squared error (MSE) to cluster
newly observed points. Holz et al. [16] followed the same
concept but utilized normal-based region growing on meshes
instead. While much acceleration potential is present thanks
to partial parallelization, it is error-prone for growing planes
on large low-curvature surfaces since it uses a normal centroid
to update the plane estimate. In [17] , PCAs are applied for
getting patchwise plane equations. Agglomerative clustering
based on MSE are then performed to join patches to larger
planes. Therefore, only planes larger than the patch size can
be found and extra post-processing is needed for sub-patch
segmentation. Full parallelization of the core algorithm is
almost infeasible, since it uses a min-heap which changes
in each iteration. Schäfer et al. [10] employed maximum
likelihood estimation (MLE) to maximize the likelihood
of the laser scan measurement in a similar agglomerative
hierarchy. Though it can generate very accurate results despite
large noise, the algorithm is time-consuming and notably
difficult to parallelize due to similar limitations mentioned
before. In [18] , a region growing approach was proposed in

a discretized space of R3 for the normals. However, it also
suffers from loss of details due to discretization while being
dependent on a complex look-back strategy for the clustering.

The state-of-the-art algorithms for plane extraction pre-
dominantly rely on explicit parameterization of the planes
and solving optimization problems is often involved. With
complex pipeline designs for multi-resolution schemes, some
extraction algorithms can be accelerated. However, sacrifices
on the extraction details are inevitable. In fact, for full-
resolution plane extraction, the execution time of existing
approaches ranges from several hundred milliseconds to
hours, which is not real-time capable. Therefore, they are
less appealing for robotic applications where both real-
time performance and perception detailedness are desired
within constraints of embedded computational resources. The
aforementioned issues thus strongly motivate the development
of a lightweight algorithm that is inherently parallelizable
for enabling fast and detailed plane extraction for 3D robotic
vision.

In this paper, we introduce a non-heuristic approach for
extracting planes from organized point clouds in a highly
parallelizable manner. In contrast to the approaches mentioned
above, our major contributions are highlighted in two aspects.
First, plane segments are not explicitly parameterized but
interpreted as a series of geometric constraints on the spherical
domain. Second, region growing in the normal map is
regulated by the convex hull associated to the plane on
the sphere, which inherently guarantees parallel processing.
The algorithm is light-weight and enables pixelwise plane
extraction for low-cost GPU in real time. We compare our
system with other popular plane extraction schemes based on
publicly available data sets SegComp [19] and SynPEB [10].
To the best knowledge of the authors, our algorithm provides
the fastest plane extraction by far.

The remaining part of the paper is structured as follows.
In Sec. II , preliminaries about convex hull and geometric
interpretation for plane extraction from normals are given.
The detailed algorithm for spherical convex hull-based region
growing (SCH-RG) and the extraction pipeline is introduced
in Sec. III. Based thereon, the implementation details are
given in Sec. IV and a thorough evaluation using public data
sets is performed in Sec. V. Finally, the work is concluded
in Sec. VI.

II. PRELIMINARIES

A. Convex Hull on the Sphere

The convex hull of a finite point set is defined as the
convex combination of the points. When generalizing this
concept to the spherical domain, a straight line between two
points then adapts itself to be the shortest arc on S2 . Given
a set of normals on the sphere P ⊂ S2 , its convex hull
Conv(P) is the smallest spherical polygon covering all the
points of P. Points on the edge cycle of the polygon are
called vertices, forming the set V . The vertices surround the
point set U inside the polygon, namely, Conv(P) = U ∪V
and U ∩V = ∅ .

θ 2θ

(a) (b)

Fig. 2: Plane extraction on the circular domain. Normals
(arrows) between point cloud vertices (dots) are located on
S1 (dashed) .

B. Plane Extraction Condition

When growing clusters for normals, a certain metric is
needed to threshold newly received normal. Considering the
manifold structure of the spherical domain, the arc length
is hereby employed. For a set of normals P = {pi} ⊂ S2 ,
an underlying plane can be extracted if there exists a plane
normal µ within the range of angle θ to all normals, namely

{µ ∈ S2 |∠(µ,pi) ≤ θ, ∀pi ∈ P } 6= ∅ . (1)

C. Inspiration of Plane Extraction on Circular Domain

Based on the aforementioned condition, a plane can be
extracted by finding its normal satisfying the condition in (1) ,
meanwhile maximizing the cardinality |P| of the clustered
normals. Before introducing the proposed algorithm on the
spherical domain, we first illustrate the intuition behind it
by taking an example of clustering normals on the circular
domain. As shown in the left side of Fig. 2 , we start from the
initial normal in blue. When considering the next connected
normal (green), the condition in (1) should hold, meaning
that there exists a red arc segment of length 2θ covering both
normals. However, a constrained yet infinite amount of arc
segments can be found at this stage. Therefore, the red plane
normal µ is not fixed. On the right side of Fig. 2, the next
neighboring normal (purple) is added and is assumed to fully
constrain the location of the red arc segment, fixing the plane
normal. It should be noted that only the bordering pair of
normals constrain the plane normal µ on the circular domain.

This intuition can be generalized to the spherical domain
for plane extraction by extending the bordering pair on the
circle to the spherical convex hull. When considerably many
vertex normals are added, the algorithm shows asymptotic
behavior of approximating the cluster boundary (even for
slightly curved surfaces) .

III. PROPOSED PLANE EXTRACTION APPROACH

A. Spherical Convex Hull-based Region Growing (SCH-RG)

As concluded in Sec. II-C, the plane normal µ is de-
termined by the spherical convex hull (SCH) of normals
satisfying the extraction condition in (1) . We introduce the
so-called cluster permissible region (CPR) (shown as orange
line segments in Fig. 3) . It is an approximation of the set of

Algorithm 1: SCH-based Region Growing (SCH-RG)
Data: seed s, already clustered point set T
Result: newly clustered point set P

1 P← {s}
2 (U ,V)← InitSCH (P)
3 Q← QueueUpNeighbors (s)
4 while Q 6= ∅ do
5 p← Pop(Q)
6 dp ← GetDepth(p)
7 do ← GetOriginDepth(p)
8 if p ∈ P or p ∈ T or |do − dp| > T then
9 continue // Discard p

10 end
11 if p ∈ U then
12 P← P ∪ p
13 Q← QueueUpNeighbors(p)
14 else
15 if p /∈ CPR(V) then
16 continue // Discard p
17 else
18 if |V| < 3 then
19 V← V ∪ p
20 else
21 V← ExpandSCH(p)
22 end
23 P← P ∪ p
24 Q← QueueUpNeighbors(p)
25 end
26 end
27 end

potentially valid normals satisfying the condition in (1) given
the current normal set P = {pi}. For one single normal pi,
its CPR is the set of neighboring normals within the radius
of 2θ, i.e.,

CPR (pi) = {q ∈ S2 |∠(pi,q) ≤ 2θ } . (2)

The CPR of multiple normals is then the intersection of CPRs
of individual normals, namely CPR (P) =

⋂
pi∈P CPR(pi) .

There are two important properties of the CPR that are
exploited: (i) If the newly received normal is covered by the
current CPR, a valid plane normal µ is assumed to exist
and the CPR is then updated via intersection (see Fig. 3.5
– 3.7) . (ii) The CPR of a point set P is only determined
by the intersection of CPRs of the SCH vertices V, i.e.,
CPR(P) = CPR(V). CPRs of the normal set U that are inside
Conv(P) are therefore redundant for performing intersection
(see Fig. 3.9) . Therefore, the shape of the CPR varies only
in the case of a changing convex hull and the spherical
convex hull is always a subset of the CPR, i.e., Conv(P) ⊂
CPR(P) = CPR(V) . Also, we have CPR(∅) = ∅ . As the
CPR is a superset of the set of all valid normals, property (i)
can be violated, resulting in the covering of outlier normals in
theory. In practice, however, this side effect occurs extremely
rarely which brings no degeneration without explicit handling.

(1) (2) (3) (4)

(1) A single normal (blue) and a possible µ containing the plane normal (Alg. 1, line 1-2) . (2) A second normal (violet) is
covered by the CPR of the blue normal (Alg. 1, line 17) . (3) Because the violet normal is within the CPR, a plane normal µ
containing both plane normals can be found. There are many plane normals satisfying condition in (1) while containing both
normals. (4) The new CPR is created by intersecting individual CPRs of the normals (Alg. 1, line 19) .

(5) (6) (7) (8)

(5) A third normal (green) lies within the CPR of the blue and violet normals (Alg. 1, line 17) . (6) A potential plane normal
µ exists, which contains all three normals. Note that µ is now more constrained than in (3) . (7) The new CPR of all three
normals is created via intersection. (8) A convex hull is formed by the three normals (Alg. 1, line 19) .

(9) (10) (11) (12)

(9) A new normal (cyan) was added and lies within the convex hull, therefore it is part of the current plane but does not
update the convex hull (Alg. 1, line 12) . (10) A new normal (cyan) lies outside of the convex hull and outside of the CPR,
therefore no plane normal can be found for all of the four normals. It is thus not added to the current plane (Alg. 1, line 16) .
(11) A new normal (cyan) lies outside of the convex hull but inside the CPR (Alg. 1, line 17) . (12) The convex hull is
updated (Alg. 1, line 21) and shrinks the CPR via intersection. Note that valid plane normal set is constrained even more.

Fig. 3: Illustration of the proposed plane extraction algorithm based on spherical convex hulls.

The proposed approach for finding one single plane from
one given seed point is illustrated in Fig. 3 and introduced in
detail in Alg. 1 . As the algorithm runs in parallel, a set T of
already clustered points is given as input. For initializing seed
points, an efficient algorithm to find seeds for all underlying
planes in a frame is introduced later in III-B. The proposed
algorithm is to be executed for each of these initialized seed

points. A first-in-first-out (FIFO) queue Q is applied for
checking whether a pixel normal is to be clustered into the
same plane. It should be noted that points from a parallel
offset plane cannot be directly recognized by only region
growing on the normal map. To solve this issue, a depth
check between neighboring pixels is performed alongside
the region growing. The connected neighboring pixels in

5. SCH-RG on SPL Subset

1. Bilateral Filter 2. Generated Normal Map 3. Seed Point List (SPL)

4. Selected SPL Subset7. Extracted Planes8. Planes after Dilation 6. Exclude Associated SPs

RGB-D Input

if SPL not empty

Fig. 4: Overview of the proposed plane extraction approach based on region growing using spherical convex hulls.

the queue also carry the depth value of its origin pixel. If
the depth difference is larger than a predefined threshold T
(Alg. 1, line 6-8), the connected pixel is discarded from the
plane of the seed pixel. Theoretically, this can falsely discard
connected neighboring pixels on planes lying steeply relative
to the camera angle. In practice, however, little side effects
are observed. Alternative approaches for solving this issue are,
e.g., to incorporate color intensity for validation, or to apply
on-plane validation for the neighboring pixels based on the
point-to-plane metric. Here, explicit plane parameterizations
are essential, which prohibit the extraction parallelizability.

B. System Overview
Based on the proposed region growing using spherical

convex hulls, we introduce a light-weight plane extraction
approach shown in Fig. 4 . Given a depth image, e.g.,
streaming out from the RGB-D camera [20] , a bilateral
filter is first applied for denoising, after which the normal
map is generated (shown in Fig. 4.1 – 4.2) . A seed point
list (SPL) is constructed in a patch-wise fashion (e.g., of size
20× 20 pixels, shown as red boxes in Fig. 4.3) . Here, the
MSE of point-to-plane fits is computed for each patch [16] .
A given MSE threshold is then applied to discard patches on
plane transitions and curved surfaces. The remaining patches
are then sorted according to their patch-plane roughness and
their center points are gathered into the seed point list (SPL)
accordingly.

Each time a subset is selected from the SPL such that at
most one seed is placed on each unextracted plane (Fig. 4.4) .
Afterwards, the region growing algorithm is performed using
SCH-RG (Fig. 4.5) . It should be noted that some valid seed
points in the SPL are associated to extracted planes during the
current region growing. In this case, they are removed from
the SPL (Fig. 4.6) . The procedure of region growing and
seed exclusion are repeated until no remaining normals can
be found in the SPL. As post-processing, dilation is executed
on the extracted planes to eliminate holes caused by the noise
for practical applications.

The usage of the subset mechanism is to avoid merging
clusters and to ensure that one plane can be cleanly flooded

over from one single seed point. To avoid rivalry cases
where two seed points grow regions on the same plane
(oversegmentation), we select seeds with angle differences
of patch plane normals larger than 2θ . Seed points that are
falsely excluded here can still be processed in the subsets
later. Our tests have shown that enough seed points can be
selected to fully occupy the GPU.

IV. IMPLEMENTATION

The proposed region growing algorithm is computationally
intensive, but inherently parallelizable. More specifically, its
parallelizability can be interpreted in three execution levels:
(i) At the pixel level, validating the CPR and convex hull
for a single pixel normal can be easily parallelized. (ii) At
the plane level, parallel validation of normals in queue Q

(i.e., the while-loop in Alg. 1) w.r.t. to the current CPR is
guaranteed. (iii) At the seed/cluster level, multiple planes can
be flooded from different seeds in parallel.

The proposed plane extraction approach is prototyped in
CUDA and C++ with a NVIDIA MX150 GPU. Every step of
the system workflow in Fig. 4 is fully parallelized. Steps in
the loop shown in Fig. 4.4 – 4.6 also run in parallel to each
other (e.g., new SPL subset can be selected while the region
growing is performed) . In practice, the proposed algorithm
is executed in a CUDA cooperative kernel. It is preferable
to fully occupy the workers on the GPU and use a software
block-wise scheduler for achieving good performance. The
block-wise execution gives the advantage of using the fast
shared memory. Within each block, pixels are processed warp-
wise. This is a necessity because mutual exclusions, which
are needed when expanding the convex hull, only work at
warp level. Thread-wise execution is hereby avoided since
threads within the same warp on different execution paths
are processed sequentially, which gives worse performance.

If a newly received normal lies within the CPR, its arc-
length distances to all the vertices of the convex hull need to
be smaller than 2θ (described in Sec. III-A) . This validation
is done on 32 threads in parallel. We store the spherical
convex hull as a set of normals given by planes intersecting
the S2 center and convex hull edges. The normals are oriented

Approach f in % α no nu nm ns

SegComp Perceptron [19]
USF [19] 60.9 2.7 0.4 0.0 5.3 3.6
WSU [19] 40.4 3.3 0.5 0.6 6.7 4.8
UB [19] 65.7 3.1 0.6 0.1 4.2 2.8
UE [19] 68.4 2.6 0.2 0.3 3.8 2.1

UFPR [21] 75.3 2.5 0.3 0.1 3.0 2.5
Oehler et al. [14] 50.1 5.2 0.3 0.4 6.2 3.9
Holz et. al. [16] 75.3 2.6 0.4 0.2 2.7 0.3
RPL-GMR [10] 72.4 2.5 0.3 0.3 3.0 2.0
Feng et al. [17] 60.9 2.4 0.2 0.2 5.1 2.1

PEAC [10] 48.6 2.6 0.0 0.1 7.1 2.0
MSAC [22] 18.5 3.9 0.1 0.2 11.3 3.4

PPE [10] 60.7 2.8 1.4 1.1 1.5 2.3
SCH-RG (proposed) 73.4 4.0 1.5 0.5 5.8 7.0

SynPEB [10]
PEAC [10] 29.1 – 0.7 1.0 26.7 7.4
MSAC [22] 7.3 – 0.3 1.0 36.3 10.9

PPE [10] 73.6 – 1.5 1.1 7.1 16.5
SCH-RG (proposed) 58.6 – 2.4 1.0 24.1 17.8

TABLE I: Accuracy comparison of the proposed algorithm
SCH-RG with existing approaches. f in % is the percentage
of correctly segmented planes. α is the angular std. deviation
w.r.t the ground truth. no, nu, nm, ns are the average amount
of oversegmented , undersegmented, missing, and spurious
planes per frame. Noise level for SynPEB is 1 mdeg.

towards the hull center. If a newly received normal belongs
to the current spherical convex hull, its distances to all the
hull planes should be positive. This test is also executed
thread-wise in parallel using the 32 warp threads.

V. EVALUATION

Evaluating the proposed plane extraction method on the
well-known data sets SegComp [19] and SynPEB [10] has
given state-of-the-art accuracy (shown in Tab. I) . The metric
definition and evaluation results are copied from [10] . The
proposed method provides superior extraction speed with an
improvement of at least one order of magnitude compared
to PEAC [17] , the fastest plane extraction algorithm in the
table. PEAC runs 120 ms per frame for a 640× 480 depth
image using patches of 4×4 pixels. For the same image size,
our proposed SCH-RG runs 17 ms per frame pixelwise on a
NVIDIA MX150 GPU. This can be broken down to 2.2 ms
for the bilateral filter and normal map generation, 0.66 ms
to find and sort the image patches, 0.37 ms to extract the
first subset and 13.9 ms for the core SCH-RG as well as
0.2 ms for dilation. Consecutive subset extractions are done in
parallel to the region growing. Because SCH-RG is a region
growing algorithm, the execution time is proportional to the
amount of pixels. One can argue that the improvement merely
benefits from running the algorithm on the GPU. However,
most of the alternative algorithms are hardly, or not at all,
parallelizable. For instance, PEAC uses a min-heap to get the
next element to be processed. Once processed, the min-heap
changes accordingly. This means that the core execution step
can only be processed sequentially.

The most theoretically similar algorithm to SCH-RG is
the one from Holz et al. [16] as it uses region growing
on a bilateral-filtered normal map. However, its metric for
adding new normals to a given plane requires averaging all

(a) raw (b) filtered (c) artifact (d) result

Fig. 5: Example image from SegComp for showing the artifact
due to the bilateral filter.

normals currently covered by the plane. For low-curvature
surfaces, the average normal will be slowly dragged along the
curvature during region growing, thereby falsely classifying
these surfaces as planes. Furthermore, already clustered
normals can “fall out” of a plane if a majority of the newly
clustered normals have dragged the average normal too far
away. The authors tried to curb this problem by adding an
additional point-to-plane distance check. SCH-RG does not
suffer from this issue as it does not rely on averaging normals.
Furthermore, [16] can only be executed sequentially since a
new average is calculated for each addition of a new normal.
In contrast, it is observed in the proposed approach that there
are 99.35% of normals which fall inside the convex hull and
do not contribute to its shaping. In our test, e.g., the convex
hull of a large plane with 20k+ pixels is only expanded 130
times during region growing with around 40 vertices.

In the proposed approach, the seed patch size neither affects
the extraction speed nor the accuracy. In each seed patch,
only a single pixel is used during region growing, regardless
of the patch size. The region growing itself is always
executed pixelwise. The seed patch size merely determines
the size of extracted planes and introduces a slight overhead
during the extraction and sorting of seed points. Furthermore,
directly applying the proposed algorithm on raw and noisy
input requires a large θ, leading to undersegmentations. For
denoising purposes, the bilateral filter is employed. However,
this also creates artifacts as shown in Fig. 5-(c) . The “glowing”
of the edges has to be accepted and is believed to be the
major reason of the accuracy depredation compared to the
most accurate algorithms.

VI. CONCLUSION

In this paper, a novel region growing-based plane extraction
technique is proposed for organized point clouds using
spherical convex hulls. It gives state-of-the-art extraction
accuracy and is inherently designed for parallel computing,
thus achieving the fastest pixelwise processing rate among
all existing approaches even on low-cost GPUs.

Though promising results have been shown in this work,
much potential can still be exploited. For instance, directional
statistics and estimation approaches [23], [24] can be con-
sidered for further handling the uncertainty on the sphere.
As plane representations are much more memory-efficient,
the proposed parallel plane extraction can be integrated into
SLAM frameworks for real-time large-scale reconstruction
and long-term navigation for autonomous robots.

REFERENCES

[1] E. Ataer-Cansizoglu, Y. Taguchi, S. Ramalingam, and Y. Miki,
“Calibration of Non-overlapping Cameras Using an External SLAM
System,” in Proceedings of the 2014 IEEE International Conference
on 3D Vision (3DV 2014), Dec. 2014, pp. 509–516.

[2] K. Li, F. Pfaff, and U. D. Hanebeck, “Geometry-driven stochastic
modeling of se(3) states based on dual quaternion representation,” in
Proceedings of the 2019 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI 2019), Taipei,
Republic of China, May 2019.

[3] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “CPA-SLAM: Consistent
plane-model alignment for direct RGB-D SLAM,” in Proceedings of
the 2016 IEEE International Conference on Robotics and Automation
(ICRA 2016), 2016, pp. 1285–1291.

[4] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng, “SLAM Using
Both Points and Planes for Hand-Held 3D Sensors,” in Proceedings
of the 2012 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR 2012), Nov. 2012.

[5] M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli,
D. G. Caldwell, and C. Semini, “Heuristic Planning for Rough
Terrain Locomotion in Presence of External Disturbances and Variable
Perception Quality,” Springer Tracts in Advanced Robotics (STAR),
2019.

[6] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng, “Point-Plane
SLAM for Hand-Held 3D Sensors,” in Proceedings of the 2013 IEEE
International Conference on Robotics and Automation (ICRA 2013),
Karlsruhe, Germany, May 2013, pp. 5182–5189.

[7] Y. Shi, K. Xu, M. Nießner, S. Rusinkiewicz, and T. Funkhouser, “Plane-
match: Patch coplanarity prediction for robust rgb-d reconstruction,”
in Proceedings of the 2018 European Conference on Computer Vision
(ECCV 2018), 2018, pp. 750–766.

[8] S. Bultmann, K. Li, and U. D. Hanebeck, “Stereo visual slam based
on unscented dual quaternion filtering,” in Proceedings of the 22nd
International Conference on Information Fusion (Fusion 2019), Ottawa,
Canada, July 2019.

[9] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-Time Large-Scale
Dense 3D Reconstruction with Loop Closure,” in Proceedings of the
2016 European Conference on Computer Vision (ECCV 2016), 2016,
pp. 500–516.

[10] A. Schaefer, J. Vertens, D. Büscher, and W. Burgard, “A Maximum
Likelihood Approach to Extract Finite Planes from 3-D Laser Scans,”
in Proceedings of the 2019 IEEE International Conference on Robotics
and Automation (ICRA 2019), May 2019.

[11] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-
cloud shape detection,” in Computer Graphics Forum, vol. 26, no. 2.
Wiley Online Library, 2007, pp. 214–226.

[12] M. Alehdaghi, M. A. Esfahani, and A. Harati, “Parallel RANSAC:
Speeding Up Plane Extraction in RGBD Image Sequences Using GPU,”
in Proceedings of the 2015 IEEE International Conference on Computer
and Knowledge Engineering (ICCKE 2015), 2015, pp. 295–300.

[13] G. Vosselman, B. G. Gorte, G. Sithole, and T. Rabbani, “Recognising
Structure in Laser Scanner Point Clouds,” in International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 46, no. 8, 2004, pp. 33–38.

[14] B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke, “Efficient
Multi-resolution Plane Segmentation of 3D Point Clouds,” in Proceed-
ings of the 2011 International Conference on Intelligent Robotics and
Application (ICIRA 2011). Springer, 2011, pp. 145–156.

[15] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast Plane
Detection and Polygonalization in Noisy 3D Range Images,” in
Proceedings of the 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2008), 2008, pp. 3378–3383.

[16] D. Holz and S. Behnke, “Fast Range Image Segmentation and
Smoothing Using Approximate Surface Reconstruction and Region
Growing,” in Intelligent Autonomous Systems 12. Springer, 2013, pp.
61–73.

[17] C. Feng, Y. Taguchi, and V. R. Kamat, “Fast Plane Extraction in
Organized Point Clouds Using Agglomerative Hierarchical Clustering,”
in Proceedings of the 2014 IEEE International Conference on Robotics
and Automation (ICRA 2014), 2014, pp. 6218–6225.

[18] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time Plane
Segmentation Using RGB-D Cameras,” in Robot Soccer World Cup.
Springer, 2011, pp. 306–317.

[19] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B.
Goldgof, K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B. Fisher, “An
Experimental Comparison of Range Image Segmentation Algorithms,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, no. 7, 1996.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A Benchmark for the Evaluation of RGB-D SLAM Systems,” in
Proceedings of the 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal,
Oct. 2012.

[21] P. F. Gotardo, O. R. P. Bellon, and L. Silva, “Range Image Segmentation
by Surface Extraction Using an Improved Robust Estimator,” in
Proceedings of the 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, 2003,
pp. II–33.

[22] P. H. Torr and A. Zisserman, “MLESAC: A New Robust Estimator
with Application to Estimating Image Geometry,” Computer Vision
and Image Understanding, vol. 78, no. 1, pp. 138–156, 2000.

[23] G. Kurz, I. Gilitschenski, F. Pfaff, L. Drude, U. D. Hanebeck, R. Haeb-
Umbach, and R. Y. Siegwart, “Directional Statistics and Filtering Using
libDirectional,” Journal of Statistical Software, May 2019.

[24] K. Li, D. Frisch, B. Noack, and U. D. Hanebeck, “Geometry-driven
deterministic sampling for nonlinear bingham filtering,” in Proceedings
of the 2019 European Control Conference (ECC 2019), Naples, Italy,
June 2019.

