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Abstract 

W e  consider s tate  es t imation based o n  observations 
which are simultaneously corrupted by a deterministic 
amplitude-bounded u n k n o w n  bias and a possibly u n -  
bounded random process. Th i s  problem i s  solved by 
developing a combined set  theoretic and Bayes ian  re- 
cursive est imator.  It provides a cont inuous  transi t ion 
between both concepts in that  it converges to  a set  theo- 
retic es t imator  when  the stochastic error vanishes and 
t o  a Bayes ian  es t imator  when  the determinis t ic  error 
vanishes.  In the  mixed noise case, the new  est ima- 
t o r  supplies solution defined by bounds that  are 
uncertain in a statistical sense.  

1 Introduction 

Unknown bias terms have found some attention in 
literature. Several authors employ augmentation of 
the state space model, [l] uses a bank of Kalman fil- 
ters. [5] criticizes stat,e augmentation and provides an 
innovative approach using minimum bias priors based 
on ignorance. The separate estimation of bias and 
state has been discussed in [2]. 

We introduce a new idea for state estimadion from 
observations of several information sources t,hat suffer 
from two different uncertainties simultaneously. One 
type of uncertainty is a deterministic but unknown 
error for which hard amplitude bounds are given a 
priori. The other type of uncertainty is a stochas- 
tic process with given statistics. Prior knowledge on 
both forms of uncertainty allows concepticinallly dif- 
ferent reductions in uncertainty during observation of 
the sample paths of the information sources. The com- 
bined Statistical and Set theoretic Information (SSI) 
filter includes the classical estimation schemes as bor- 
der cases: It converges to  a set theoretic estimator 
when the stochastic error approaches zero and to  a 
Bayesian estimator when the deterministic error ap- 
proaches zero. In the mixed noise case, the resulting 
estimate is a solution set with bounds that are uncer- 
tain in a statistical sense. This solution set converges 
to the intersection of the underlying noise-free sets for 
an infinite number  of observations per source. A rigor- 
ous problem formulation is given in Sec. 2. The special 

case of twlo information sources is discussed in Sec. 3. 
A recursive SSI filter for an arbitrary number of in- 
formation sources ii; introduced in Sec. 4. Numerical 
solution formullae are given for arbiti-ary noise densi- 
ties, simplified solutions arise for the case of Gaussian 
densities. NurnericaJ examples in the context of mobile 
robot localization are presented in Sec. 5 to  clarify the 
conveyed concepts. This paper is limitled to  the scalar 
cas8e, Sec. 6 provides hints for generalization to  higher 
dinnensions. 

2 Problem Formulation 

N possibly conflicting sources of information 
S,, a = 1,. . . , N ,  on a desired state x are given. Each 
source S, is assumed to  be corrupted by two types of 
additive errors. The first error is of deterministic type, 
i.e., constatnt and unknown. It is bounded in ampli- 
tude by a set. This set is an intervall for the scalar 
case. The second error is represented by a discrete- 
time, zero-mean, possibly non-white stochastic pro- 
cess SP, with known statistics. The stochastic pro- 
cesses for different sources are mutually independent. 
For t,he scalar case, the measurement equation may be 
written as' 

When the influence of the stochastic eirror iE, is neg- 
ligible, estimating the state x given oxervations 2, is 
performed by set intersection and results in an interval 
estimate. 'The influence of the statisiical uncertainty 
is eventually ruled out by filtering m.siny outcomes of 
every source Si , i.e., standard set intersection could be 
performed after many observations have been aquired. 
In this paper, we want to go one step iurther and want 
to :make an estirnat'e of the state z aiailable at, every 
tim.e IC. This estimate is of course riot a point esti- 
mate, but a set estimate where the se-; bounds are un- 
certain in a statistical sense. It should asymptotically 
conwerge to the above mentioned mitie-free interval 
estiniatc. 

'Capital letters arc used for random variables or pro- 
cesses,, small letters denote specific realiaaticins or deterministic 
quantities. 
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3 Two Information Sources 

We consider the special case of two independent 
information sources Si, i = 1 ' 2 .  Each source is char- 
acterized by a priori knowledge on bounds bi of the 
deterministic and constant offset and noise densities 
f," at time k .  In the sequel, we derive the joint density 
for t,he left arid right bound of the resulting interval 
estimat,or. Analytical results are given for marginal 
densities in case of Gaussian densities f,". 

3.1 Arbitrary Noise Densities 

X! is an estimator of 3: + zed with density f,". The 
joint density of the independent random quantities 
X!, i = 1 , 2 ,  is given by 22 = ifi!. The additional 
prior knowledge on the bounds bi of the deterministic 
error 'ed allows elimination of the regions of this joint 
density for which 155 - 2: 1 > (b l  + ba) holds. The 

resulting density f,", is then given by 

where C is a normalizing constant. The left and right 
bounds 2Lk and 2Rk of the interval estimator at time 
IC are defined as 

A , .  

where X:, X ;  are jointly distributed with density $a. 
The joint density of the lower and upper bound of the 
interval estimator is derived with the aid of Fig. 1 for 
bl < b2 without loss of generality and given by 

for 15 T 5 1 + bl 

elsewhere 

where 6 (x) denotes Dirac's impulse function. 'CkR 
is a normalizing constant and selected such that 

'ftR ( I ,  r )  dr dI equals 1. The proof of (5) 
c o c o  

J J 
l = - ~  ?-=--CO 

is trivial and left to the reader. 

Figure 1: Visualization aid for derivation of the joint 
distribution 2 F i R  ( I ,  T ) .  

3.2 Gaussian Noise Densities 

If f,", i = 1 ' 2 ,  are Gaussian, of course f!, i = 1 , 2 ,  
are also Gaussian with 

and analytical expressions for the normalizing con- 
stant as well as the marginal densities and expected 
values of left and right bound, 2Lk  and ' R k ,  are ob- 
tained. The normalizing constant ' C t R  is given by 
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with the erf-function defined as denoted by j L k ,  which contains the information from 
sources 1, . . . , j ,  and is defined by 

according to  [8]. 
00 

The marginal density 'f; ( I )  = J f,bR ( I ,T )  dr 
T=-m 

of the lower bound may be expressed as 

(9) 

(erf ( 1  + $- 6:) - erf ( 1  ___- - $- m : ) )  

+it ( 1  + +) 

03 
The marginal density fk  ( T )  = J fiR ( 1 , ~ )  dl of 

the upper bound is given by 
l=-CU 

Due to space limitations, the closed-form solutions 
for the expected values of upper and lower bound are 
omitted. 

4 N Information Sources 

The above insights are now generalized to the case 
of N information sources. We focus attention to the 
derivation of the marginal densities for the upper and 
lower bound, since they are of major interest for prac- 
tical applications. 

4.1 Arbitrary Noise Densities 

We begin with the derivation of a source- recursive 
expression for the marginal density of the lower bound 

Thle prior knowledge on the deterministic uncertainty 
bound b, may be used to formulate lkie following in- 
equalities )[or specific realizations i$, 3 -'lk, 3--lrk 

WithL (11) and (12), we obtain 

I=-m x = l - L  b .  r=::c-!i 

where jCt is a, normalizing constant,. This may be 
mo'dified to  yield 

(14) 

i 3 I k + ! L  

+ 1 7 $ ( x )  3 - 1 f f R ( 3 1 ~ , ~ )  drdx . 

X = l l & - %  T = Z - %  

LEMMA. The double integral over the joint density 
3 - l f j t R  ( 1 ,  I " )  of the firm 

may be expressed in terms of the marginal densities 
as 

g==-Cc 

PROOF. The left hand side of (15) may be rewritten 
as 

z o o  
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Using the fact that J-'fiR (Z,r) is equal to zero for 
1 > T ,  we may replace the upper limit of the first 
integral in the second expression by M .  Interchanging 
the order of integration in the second expression yields 

1 J- l f t ( l )  dl - j - ' j ; ( ~ )  dr .  (18) 
l=-00 r=-m 

This concludes the proof. U 
Eq. (14) may be further simplified by using the 

lemma and by again using the fact that J - ' f k R  ( I ,  r )  
is equal to  zero for 1 > T .  The lower limit z - in 
the second integral of the second expression may be 
replaced by -W. 

The desired recursion for the marginal density of 
the lower bound is now obtained as 

"2 ( 1 )  = 

L '  y=--co 

b -  -I 
x=++ 

In analogy, the recursion for the marginal density 
of the upper bound may be derived as 

' f$ ( T )  = 

[ f;k ( T  - 2)  1 {j-lf; (yj  - j-l f; (yj} dy 

+j - l f ; (T)  J' i:i.:jdrjjlCB , (20) 

y=-m 

r+ $ 

z=r-% 

where jCk is a normalizing constant. 
This lattice-type recursion for the marginal densi- 

ties of lower and upper bound is depicted in Fig. 2 and 
initialized with 

4.2 Gaussian Noise Densities 

Again, f," is a Gaussian density. The above expres- 
sions for the marginal densities may be reduced to 

0 . .  

Figure 2: Lattice-type recursion for the marginal den- 
sities of lower and upper bound in the case of N in- 
formation sources. 

I 

L y=--co 

y=--co L '  

+ j-l fk (7") 

5 Simulative Verification 

Since the authors' background is in mobile robot 
localization based on optical range data  [SI, [7],  acous- 
tical range data [3 ] ,  and angular measurements [4], a 
simple scalar mobile robot localization problem is con- 
sidered. 

Two border cases of gathering information from 
several sources are illustrated by numerical examples: 
The first case consists of sampling the first source sev- 
eral times, then sampling the second source, and so 
on. The second case assumes that samples from all 
sources are available simultaneously. 

Consider a vehicle equipped with a range sensor 
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Figure 3: Experimental setup for mobile robot localization: a) sequential sampling b) simultaneous sampling. 

Table 1: Parameters of localization experiment. 

that measures the distance to  a number of boxes, 
Fig. 3. The box positions are known within a given 
geometric tolerance, i.e., 

where ' 2 . ~  denotes the unknown true value and 'AxB 
is the unknown but bounded deviation of the nominal 
value ' xu .  The range sensor is corrupted by additive 
white Gaussian noise with zero mean and a variance 
o: which depends on the surface characterhtic of the 
box i. The measurement equation isl thus given by 

where 'EE, N N (0, o,), x denotes the vehicle position, 
and Df is the measured distance. Thle two simulations 
are now performed for a true vehicle position z = 200 
and the parameters given in Tab. 1. 

f," (z) is a Gaussian density where the mean and 
variance are recursively estimated by observing source 
a as [9] 

I with f i y  I: 0, (e:)-.- = 0. 

The first simulation refers to Fig. 3 a) where the 
vehicle moves alon,g the four boxes. The boxes are 
sampled sequentia1l.y with 100 samples for each box. 
We start ,with the first box, and simply obtain the 
matrginal densities as the shifted versions of f f  (x) ac- 
cording to (21), (22). These margirials serve as the 
initial densities for the recursion foirrnulae (23) aiid 
(24) that are used for including information sources 
2, 3, and '4 sequentially. The SSI recursion step from 
i - 1 to i :is performed whenever the %ayesian update 
(27) ,  (28) €or information source i has been done, i.e., 
100 times for boxes 2, 3, and 4, respectively. Fig. 4 
a) depicts the response of the expected values of the 
lower and upper bound of the set estimate. Sam- 
pling a specific box reduces the stochastic uncertainty. 
The initial deterministic uncertainty given by the in- 
terval [17!5, 2151 is (obviously reduced each time the 
box is changed: When changing from box 1 to box 2, 
the resulting intersection set without, stochastic noise 
would be [188, 20811, which is eventually approached 
when sampling box 2 for an infinite number of times. 
When traversing from box 2 to box 3, only the lower 
bound is updated, ,since the noise--free interval inter- 
section would yield [197, 2081. Switching from box 3 
to  box 4 produces an update for the upper bound only, 
since the underlying interval intersection would yield 
[197, 2041. 

The second simulation refers to Fig. 3 b) where the 
vehicle samples all four boxes simult,aneously at  time 
k .  The B'ayesian update (27), (28) is performed at 
every time k for each source i. Subsequently, the SSI 
recursions (23), (24:l are performed, starting with (21), 
(22), up to information source 4, a t  (every time k .  In 
t>his experiment, the underlying noiseefree intersection 
set is [197, 2041 for all I C .  This set is approached for 
an infinite number o f  measurements. 

Fig. 4 evidently shows the realistic quantification of 
the associated estimation uncertainty which is in sharp 

3085 



A -’- 

contrast to the optimism of point estimators. This 
feature may be exploited when attempting to navigate 
a mobile robot, through narrow openings. 

6 Conclusions 

A combined Statistical and Set theoretic Informa- 
tion (SSI) filter is introduced for fusing the informa- 
t,ion from several sources which are simultaneously 
corrupted by a deterministic amplitude-bounded un- 
known bias error and a possibly unbounded random 
process. The new approach unites proven schemes 
for handling pure stochastic noise and for treating 
amplitude-bounded uncertainties. Set estimates are 
provided rather than point estimates. Furthermore, 
the set bounds are uncertain in a statistical sense. 
Thus, these estimates do not suffer from the over- 
optimism encountered when just considering one form 
of uncertainty though both are present. Monte Carlo 
simulations in the context of mobile robot localiza- 
tion demonstrate the effectiveness of the proposed 
approach. The simulation results reveal the concep- 
tionally different reductions in uncertainty during the 
measurement process. 

Our study so far only considered the scalar case. 
Nevertheless, generalization to  higher dimensions is 
straightforward when attention is limited to hyper- 
rectangles parallel to the coordinate axes. The treat- 
ment of the common ellipsoidal set bounds is more 
involved, since ellipsoids are not closed under intersec- 
tion, and the detection of ellipsoid overlap is tedious. 
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Figure 4: Expected values of lower and upper bound: a) sequential sampling b) simultaneous sampling 
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