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Abstract 
W e  study the problem of localizing a mobile robot 

with a n  onboard-device making angular measurements 
on  the location of known but undistinguishable land- 
marks. Noiiel algorithms are proposed for I. efficient 
posture initialization based o n  a simple linear solution 
and f o r  2. recursive posture estimation. Derived in 
a set theoretic framework, the algorithms cope with 
nonwhite, nongaussian noise and deterministic errors. 
Experiments with the set theoretic posture estimator 
demonstrate i ts  simplicity and effectiveness in real- 
world applications. 

1 Introduction 

This paper introduces a new view of estimating the 
absolute posture, i.e., position x, y,  orientation $, of 
a fast mobile robot on a planar surface. The estima- 
tion is based upon onboard measurements of angular 
locations of known landmarks. Not only initialization 
of the robot posture, but also recursive in-motion po- 
sture estimation is considered. 

For initialization purposes, a set of angles measured 
with respect to the robot coordinate system needs to 
be paired with a subset of the undistinguishable land- 
marks. In [l], an enumerative scheme has been repor- 
ted for pairing the first three angles with landmarks. 
The remaining angles are used for plausibility tests. 
Several solutions for calculating the posture given the 
association of measured angles with landmarks have 
been reported: [l], [2], and [3] consider only triples 
of landmarks. For the case of more than three land- 
marks some authors average triple solutions, others 
use iterative techniques. [4] supplies a closed-form so- 
lution for N angles without considering uncertainties. 
In this paper, an efficient association algorithm is de- 
veloped. It discards false measurements, is fast, and is 
further accelerated by incorporating prior knowledge. 
In addition, the algorithm takes advantage of a simple 
closed-form solution, which consists of a set of N - 1 
linear equations for the vehicle position, Sect. 3. An 
error propagation analysis considers uncertainties in 
both landmark positions and angle measurement. 

Posture estimates are sequentially updated by 
newly incoming angle measurements, if the vehicle ve- 
locity is high compared to the angle measurement rate. 
The updates are usually performed within the Kalman 
filtering framework. White Gaussian zero-mean ran- 
dom processes are then used as uncertainty models. 
In [l], a Kalman filtering scheme is introduced for this 
purpose, which is based on a kinematic vehicle mo- 
del; fusion of dead-reckoning information is not con- 
sidered. [5] uses a Kalman filter to fuse sensor data 
with dead-reckoning data. Real-world uncertainties, 
however, also include nongaussian, nonwhite noise and 
systematic errors. These uncertainties may easily be 
considered in a set theoretic setting. For example, 
[6] describes a set theoretic approach to stereo vision 
based robot localization without dead-reckoning. In 
this paper, we solve the problem of locating a mo- 
bile robot based on onboard angle measurements in a 
set theoretic framework, Sect. 4. Basic concepts for 
prediction, measurement, and combination of infor- 
mation are developed from a set theoretic viewpoint 
in Sec. 4.1, Sec. 4.2, and Sec. 4.3 respectively. Section 
4.3 then discusses two new approaches for 1. tailo- 
ring set theoretic estimators to specific applications, 
and for 2. achieving robustness against modeling er- 
rors. The individual components are tied together in 
Sec. 4.4 to construct a recursive set theoretic estima- 
tor with real-time capabilities. The benefits of the 
developed localization algorithm are demonstrated by 
experiments as discussed in Sect. 5 .  Combining set 
theoretic and Bayesian estimation is discussed in [7]. 

2 Problem Formulation 

Consider a pool of M landmarks in a two-dimen- 
sional world or map. The positions of the landmarks 
gkM = [ztM, yf'IT, i = 0 ,  1, . . . , M - 1 in a reference 
coordinate system are assumed to be known with ad- 
ditive bias errors A:M = [Ax;", AytMIT, which are of 
course unknown. True values of * are denoted as Z ,  
nominal values as i .  The true landmark position ZtM 
is assumed to lie somewhere within the set 
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where the errors in the position of landmark i are con- 
fined to an ellipsoidal set Clf given by 

Possible correlation of errors for different landmarks 
is ignored. The robot is capable of determining the 
angular locations of these landmarks with respect 
to  its coordinate system. Individual landmarks do 
not necessarily have to be distinguished. The angle 
measurements are corrupted by additive noise, i.e., 
6, = 6,  + Aa,, where Aaz is assumed to be bounded 
in amplitude (b.i.a.) according to  jAa,j < SF. 

To account for possible occlusion of landmarks in 
nonconvex rooms, partitioning walls are added to the 
map. The landmarks are ordered in the map in such 
a way, that the robot always detects the subset of 
unoccluded landmarks in that order when scanning 
counterclockwise. 

3 Posture Initialization 

This section is concerned with ( r e )  initializing the 
robot posture 2 = ( x , Y , $ ) ~  in nonconvex rooms, 
when only very little prior knowledge is available. A 
priori information is specified by confining the posture 
to  an ellipsoidal set f12a-pr,or,. M landmarks are availa- 
ble and N > 3 angles a,, i = 0, 1, . . . , N-1 have been 
measured. The association, i.e., the list of pairings 
of measured angles to  landmarks is initially unknown. 
Inspired by the interpretation-tree (IT) method in [8], 
the association search is kept from becoming intracta- 
ble by approaching it in two steps: In the first step, for 
every measured angle a, the set of visible landmarks 
from f12a-pr,or, is determined. In the second step, these 
visibility constraints are exploited for pruning the IT. 
Thus, only a small portion of all associations needs to 
be generated and tested. 

Step 1: The projection of Q2a-prlon onto the x/y- 
plane is examined at polar grid points Z ( T ,  e ) ,  Y(T,  e )  
for some T ,  8. We define a visibility matrix V with 
dimensions N by M .  The elements VzJ are boo- 
lean variables which are TRUE, if the single measu- 
red angle a, may be caused by landmark j .  A vi- 
sibility test is performed for every grid point z ( ~ ,  e ) ,  
y(r,O). If the landmark j is visible, i.e., when the 
straight line from the considered grid point Z ( T ,  e ) ,  
y(r,O) to zkM, ykM does not intersect any partitio- 
ning walls, a hypothetical angle ( Y h y p  is calculated. 
The minimum and maximum angles at Z(T,  e), y(r, 0) 
within Q,-,,,,,, are denoted as $Low, 4HIGH respec- 
tively. Q, may then be caused by landmark j ,  if 

not contain any TRUE value, a, has been identified 
as false measurement. Row i is then removed from V 
and the number of measurements N is decremented. 

az + $LOW < ahyp < ayi + $HIGH. If row i of V does 

Step 2: Only those candidate associations are ge- 
nerated that do not violate the visibility constraints 
represented by V and that also follow the ordering 
assumption. Erroneous measurements are handled ef- 
ficiently by adopting the "least bad data" constraint 
proposed in [9]. For a specific association, a tentative 
position is calculated and checked for compatibility 
with the error bounds, the posture constraint, 
and the requirements for joint visibility of all land- 
marks involved. 

Tentative postures are quickly calculated by use of 
a closed-form solution. The corresponding set of N - 1 
linear equations for the position is derived next. The 
measurement equation for a single angle measurement 
cyi is given by 

(3) CY, = atan2(xtM - x, y:" - y) - $ , 

i = 0, 1, . . . , N - 1. Define yi as the difference be- 
tween two consecutive angle measurements ai and 
Qi+l 

yi = aa+1 - ai 

= atan2(styl - 2, yk:l - y) (4) 
- a t a n 2 ( ~ : ~  - z,ykM - y) . 

Application of trigonometric identities leads to  

which may be rewritten as 

for i = 0, 1, . . . , N - 1. Index operations are perfor- 
med modulo N ,  i.e., i + 1 = 0 for i = N - 1. Subtrac- 
ting from every equation its follower equation yields a 
system of N - 1 equations that are linear in x and y,  
i.e., 

- z = H[z ,y lT  + e  

- Z = [ Z O , Z l , . . . , Z N - 2 ]  

H =  [h,141,. . . IhN-21 

- hi = [ht, h3T 

( 7 )  

with 

T 

(8) 
T 

and error e = [eo, e l , .  . . , e N - z l T .  The corresponding 
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(9) 

the 
(weighted) l%-solution of (3) for i = 0, 1, . . . , N - 1. 
An error propagation analysis is performed, which 
provides 1. the optimal weighting matrix for the LS- 
solution of (7) and 2 .  the initial set of postures that 
are compatible with the a priori error bounds. This 
analysis is found elsewhere. 

4 Recursive In-Motion Localization 

Once the robot posture is initialized using the me- 
thod developed in the last section, the robot may start 
moving. During motion, the robot posture estimate is 
updated with the information obtained from every sin- 
gle angle measurement. A dead-reckoning system is 
used to smooth the estimate by predicting the posture 
change between two measurements. 

Usually, problems of this type are solved within 
the Kalman filter framework. Measurement noise 
and dead-reckoning errors are assumed to be zero- 
mean, white, mutually independent random proces- 
ses. For these assumptions, the Kalman prediction 
step (time update) provides first and second order 
moments of the predicted state given any noise dis- 
tribution. The Kalman estimation step (measurement 
update), however, yields precise values of first and se- 
cond order moments of the estimated state only for 
Gaussian noise densities. For any other noise density, 
the Kalman estimation step just represents the best 
linear estimator. 

In practical applications, however, a state estima- 
tor must cope with 1. nongaussian noise densities, 2. 
nonwhite noise, 3. systematic errors, and 4. mutally 
dependent noise sources. For the localization problem 
at hand, at least two error sources may be identified, 
that violate the Kalman filter assumptions: 

1. landmark positions are only known within a de- 
terministic offset, and 

2. a robot’s dead-reckoning system - especially for 
the omnidirectional robot considered in Sec. 5 - 
suffers from nonwhite noise and deterministic er- 
rors. 

A nonlinear filter, which copes with the above men- 
tioned uncertainties, is developed by set theoretic con- 
siderations in the following. The proposed filter is first 
order for the sake of simplicity, Le, strictly optimal for 
white b.i.a. noise processes. However, the output re- 
presents an upper bound for nonwhite noise or deter- 
ministic errors, which is in sharp contrast to  first order 
Kalman filters. Furthermore, the noise processes may 
stem from any distribution that is compatible with the 
amplitude bounds.’ Ellipsoidal bounding sets (EBS) 
are used to approximate the sets of feasible solutions. 
They may be manipulated by matrix operations only, 
which leads to efficient algorithms with real-time ca- 
pabilities. 

Section 4.1 develops a simple method for set theo- 
retic posture prediction. The determination of the set 
of feasible postures defined by a single angle measure- 
ment is discussed in Sec. 4.2. An efficient algorithm for 
approximating the intersection of prediction and mea- 
surement set is introduced in Sec. 4.3. These three 
filtering components are put together in Sec. 4.4 to 
form a nonlinear recursive set theoretic estimator. 

4.1 Set Theoretic Posture Prediction 

When moving from one measurement at time k - 1 
to the next, the vehicle posture suffers from accumu- 
lating uncertainties. The relative uncertainty may be 
estimated and must then be “added” to the absolute 
uncertainty prevalent at time k - 1. Usually, the re- 
lative uncertainty is assumed to be independent from 
the absolute uncertainty at time k - 1, which leads to 
the well known Kalman covariance propagation for- 
mula. For nonwhite noise and deterministic errors, 
however, this propagation formula is too optimistic. 
In the following, a simple set theoretic propagation 
formula is developed, that provides a guaranteed up- 
per bound for the posture error even in the case of 
nonwhite and deterministic errors. 

The result of the fusion process at time k - 1 is 
denoted as and given by 

(10) E 
f lk -1  = 

E {& : (zf-1 - zk-1)*(cf -J1(& - &) 5 1). 

The dead-reckoning system supplies the set of relative 
postures with respect to flfF1, henceforth denoted as 

The calculation of 0; depends on the vehicle kine- 
matic. For the omnidirectional vehicle considered in 
Sec. 5, determining 0; is rather complex and outside 
the scope of this paper. 

The exact set of absolute postures is given by trans- 
forming the set Of to the inertial coordinate system 

‘Not only uniform densities ! 

1389 



plane intersecting ellipsoid for all feasible posture estimates contained in C$-l. 
This is written as 

P .  P - I  E A 
fl: = { a k  . - Zk-1 + B k Z k  } , (12) 

with $-i E 
and 

xf E O f ,  I the identity matrix, 

C O ~ ( $ J , " _ , )  - Sin($f-l) 

0 

Unfortunately, Rf is not in general an ellipsoid. Li- 
nearizing (12) around the nominal values yields 

-P  E E * A  
gf - g k  % J k  ( g k - 1  - 2;) + B k  (af - g k  ) (14) 

with the Jacobian 

0: may then be approximated as the EBS for the 
Minkowski sum of the two ellipsoids in (14) 

2P  T P -' 
{E: : (gr --k) ( c k )  (gf -5;) 5 I} I 

(16) 
with center 2; and C r  given by 

. .  

with = k  = JfcfPl(Jf)', r k  = f i k c f f i r ,  for 
-0.5 < K < 0.5.2 K m a j  b e  selected such that a 
measure of the "size" of Rk is minimized. 

4.2 Posture Set Defined by Measurement 

The measurement equation for a single a k  at time 
k and an associated landmark at gLM is given by (3) 
and may be rewritten as 

Linearizing around the predicted posture g:, the mea- 
sured angle &, and the nominal landmark position 
- iLM yields the measurement set 

2-0.5 < ti < 0.5 leads to symmetric solution formulae for K 
in contrast to the formulation in [lo], that assumes 0 < ti < 1. 

Figure 1: 1: Configurations for measurement strip and 
prediction ellipsoid (2D). 2: Definitions for assessing 
consistency of the two sets. 

4.3 Robust Combination of Information 

After measurement k ,  the vehicle posture simul- 
taneously belongs to  two sets: 1. the prediction set 
a:, which carries all past information from dead- 
reckoning and previous measurements, and 2. the mea- 
surement set Of,  which accounts for the last angle 
measurement. Consequently, fusion consists of cal- 
culating the intersection of the two sets Of, Sz?. 
However, the intersection of flf and fly is not in ge- 
neral again an ellipsoid. Thus, an ellipsoid circumscri- 
bing the intersection is required to  arrive a t  a recursive 
scheme. A bounding ellipsoid is given by [ll] 

E -l ?E T of = {zf : (af - 2;) ( c k  ) (Zf - -k ) 5 I} 
cf = dkDk 

for all x k  2 0. The set Rf possesses the interesting 
property that it both contains the intersection of the 
measurement and the prediction set and is itself con- 
tained in their union, i.e., 

(@' n Q:) c 0: c (of U 0:) . (21) 

Furthermore, the set 0; is valid for any noise distribu- 
tion complying with the amplitude bounds. But more 
importantly, no independence assumption is used in 
the derivation. As a result, the estimator provides a 
reliable uncertainty quantification even in the case of 
nonwhite or deterministic measurement errors. 

Although very similar in appearance to  the Kal- 
man filter equations 3 ,  (20) defines a nonlinear estima- 

31n fact, for Xk = 1 and d k  = 1, (20) yields the Kalman filter 
equations, when Cf, C:,  and Ek are interpreted as covariance 
matrices. 
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tor which inherits a selective update mechanism. The 
nonlinear estimator comprises the following cases: 

0 Consistency: Prediction set O r  and measure- 
ment set Of possess common points. 

-- Full consistency: 
* No uncertainty reduction: The ac- 

tual measurement is of no help in redu- 
cing the uncertainty, Fig 1.1 a). 

* Uncertainty reduction: Both planes 
defining the measurement set intersect 
the ellipsoidal prediction set , Fig. 1.1 b). 

- Partial consistency: Only one plane in- 
tersects the prediction set, Fig. 1.1 c). 

Inconsistency: Prediction set O c  and measu- 
rement set Of do not share a common point, 
Fig. 1.1 d). 

Inconsistency is detected by checking the condi- 
tion 

&(A?’”) < 0 , with A$, = . (22) 

No update is then performed. For the case of consi- 
stency of ellipsoid and strip, the volume of the boun- 
ding ellipsoid in (20) may be minimized by selecting 
the weight A z p T  as the most positive root of the qua- 
dratic equation given by [ll] 

A%(N - 1)GE + & { E ;  + (2N - 1 ) E k  - Gk}Gk 

+{N(Ek - E : )  - Gk}Ek = 0 , (23) 

where N is the dimension, here N = 3. The case of no 
uncertainty reduction is characterized by AgpT 5 0. 

Ellipsoidal Bounding Set with 
Minimum Volume Projection Onto Subspace 

For the considered application, it is more natural to 
minimize the volume of the projection of the EBS onto 
the x, y subspace. The EBS with a minimum volume 
projection onto an arbitrary subspace is obtained with 
AgpT as the positive real root of 

Ai(Gk -Kk)GEL+A;{L(3Gk-2Kk) - Kk}EkGk 

+ h{6E(L(Kk - Gk)  + Kk) + Ek(L(3Gk - Kk) - Kk) 
(24) - GkKk}Ek + {L(Ek - E ; )  - Kk}Ei = 0 , 

~k = ~k (c, ) [ ~ r o j ( c { ) ] - ’ C ~ ~ k  . 

with L the subspace dimension and 

(25) T - P T  

Cf is obtained from Cf by eliminating the rows not 
associated with the considered subspace. The proof 
is patterned after the one in [12] and is sketched in 

the appendix. Application to the localization problem 
leads to a tailor-made bounding operation. The in- 
herently high precision of the orientation estimate I@ 
compared to the position estimate xf, yf is conside- 
red by minimizing the projection of the EBS onto the 
z, y subspace. The resulting EBS is more conservative 
in $f, but tight for the more critical position estimate 
xf7  Yf.  

Robust Fusion 

Using the “smallest” EBS is successful as long as the 
model is sufficiently precise. However, modeling errors 
may lead to an unreasonably small estimation set Of. 
Enhanced robustness is achieved by imposing a higher 
priority on the set of predicted states 0: since it con- 
tains all past information. This priority should depend 
on the degree of consistency of the two sets O: and 
O f .  Roughly speaking, the idea is to select the set 
Of such that it exhibits a growing tendency towards 
the prediction set Of with falling degree of consist- 
ency of the sets O r  and 02. Referring to Fig. 1.2,  a 
reasonable consistency measure is given by the inter- 
section width W f  divided by the geometric mean of 
the strip width WF and the ellipsoid width WE 

Ak in (20) is selected from [0, A z p T ]  as an appropriate 
function of the consistency measure. For this purpose, 
a shifted logistic function 

Ak = ArT/[l+ exp(-S(CM - M ) ) ]  , (27) 

is used with S = 10, M = 0.5. The influence of this 
extension on the fusion result is demonstrated in Fig. 2 
by comparing it with the common approach for four 
cases. For the common approach, the volume of the 
resulting EBS 0; experiences large changes when the 
measurement set just changes slightly. Single (unmo- 
deled) measurement outliers may lead to an extremely 
small EBS. On the other hand, the new approach cal- 
culates 0; by modifying 0: depending on its consist- 
ency with Of.  Thus, single erroneous measurements 
have a reduced impact on the fusion result. The vo- 
lume of the EBS as a function of d ,  where d is the 
distance of the ellipsoid center from the strip center 
axis, is shown for this example in Fig. 3. 

Remark: The smallest possible EBS is obtained from (20) 
when both hyperplanes defining f22 intersect 0;. Overboun- 
ding occurs when one of the hyperplanes falls outside f2;. The 
minimum volume bounding ellipsoid would then be obtained 
by parallel repositioning of the outside plane to be tangential 
to f2: [13]. This is not exploited here, since overbounding is in- 
tentionally performed in the case of partial consistency by using 
consistency measures. 
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Figure 2 :  EBSs for the intersection of ellipsoid and 
strip. Top: Common scheme. Bottom: Extension 
employing consistency measures. 

volume ? [-,MA {Tc\ 
of 

estimation I volume new \ 
approac 

Figure 3:  Volume of the EBS in Fig. 2. 

4.4 Set Theoretic Recursive Estimator 

The proposed recursive estimation scheme for loca- 
lization during fast motion is depicted in Fig. 4. Based 
on the set of estimated postures flfp1 at time k - 1, 
the visible landmarks are determined and validation 
bounds for a measured angle are predicted. If the ac- 
tual measured angle falls outside of these bounds, it 
is discarded. Otherwise, it is associated with the best 
matching landmark and the measurement strip Clp is 
calculated. O F  is then fused with the set of predic- 
ted postures flf to  produce flf. The feedback of 5; 
to  the process for determination of fl? deserves some 
attention. It replaces 2; for iterative refinement of 
the linearization of (18). For implementation purpo- 
ses, the scheme has been parallelized into three tasks: 
The fusion loop, the determination of landmarks not 
occluded by partitioning walls, and dead-reckoning. 

5 Experimental Validation 

The effectiveness of the new approach is demon- 
strated by navigating the fast (2 m/sec) omnidirectio- 
nal service robot ROMAN (Roving MANipulator) [14] 
through an office environment. ROMAN is a full scale 
mobile robot adapted to indoor requirements: width 
0.63 m x depth 0.64 m x height 1.6 m. Three indepen- 
dentfly steerable wheel systems provide excellent ma- 

Figure 4: Scheme of set theoretic recursive estimator. 

neuverability. Wheel diameters of 0.2 m allow travel 
across rough surfaces like carpeted floor. For abso- 
lute localization of ROMAN, an  onboard laser-based 
goniometer is used. An eye-safe laser beam scans 
the environment in a horizontal plane and determi- 
nes the azimuth angles to known artificial landmarks, 
i.e., retro-reflecting tape strips attached to  the walls. 
To keep the hardware simple, no distance information 
is supplied and the landmarks are not distinguished. 
20 horizontal 360O-scans per second are performed; 
absolute accuracy is about 0.02'. A map contains no- 
minal positions of 34 identical landmarks and parti- 
tioning walls, Fig. 6. Landmark positions have been 
aquired by the robot itself during an exploration trip. 
The dead-reckoning system employs the robot's odo- 
metry and a gyroscope. Odometry is based on the 
drive wheels and suffers from error sources like im- 
perfect wheel coordination and uncertain wheel/floor 
contact points. The gyroscope suffers from a slowly 
time-varying unknown offset. 

Once initialized, the robot repetetively travels 
along the predefined course depicted in Fig. 6. The 
total distance travelled is about 650 m, the total time 
is 35 min. The maximum speed is 1000 "/sec, and 
the average speed is 312 "/sec. The robot passes 
four doorways a t  each loop, two of which are nar- 
row (80 cm, robot width is 63 cm). The localiza- 
tion estimate based on the fusion of goniometer data 
and dead-reckoning is compared for the first two loops 
with data from dead-reckoning only. The highly cor- 
related nature of the accumulating dead-reckoning er- 
rors is obvious. On the other hand, the vehicle is kept 
accurately on track by means of the localization esti- 
mate. Absolute deviation has found to be about f 2  
cm and 50.5" for the low-speed passages and about 
1 5  cm and 1 1 "  for the high-speed passages. 

The localization system is now in operation for 
more than one year and serves as the basis for re- 
search on mobile manipulation tasks. It has been ex- 
tensively tested by covering a distance of more than a 
hundred kilometers. Experiments include long-range 
navigation like the one discussed above, door ope- 
ning/passing maneuvers, and high-speed runs with 
maximum velocities of up to 2 m/sec. Set theoretic 
estimation proved to be an appropriate alternative to 
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vigation in an office environment revealed a maximum 
deviation of about $5 cm and f1° between true and 
estimated robot location. 
Acknowledgement: The work reported in this paper 
was supported by the Deutsche Forschungsgemeinschaft 
as part of an interdisciplinary research project on “Infor- 
mation Processing Techniques in Autonomous Mobile Ro- 
bots” (SFB 331). 

Figure 5: Omnidirectional mobile manipulator. 

the common statistical approaches when dealing with 
strongly correlated or deterministic uncertainties. 

6 Conclusion 

Set theoretic concepts have been applied to posture 
estimation of fast-moving mobile robots which per- 
form angular measurements on the location of known 
landmarks. The landmarks do not need to be distin- 
guished by the robot. Four main results have been 
presented: 
1. an efficient algorithm for posture initialization in 
nonconvex rooms, 
2. a simple closed-form solution for the robot position 
given angular locations of N known landmarks, which 
consists of N - 1 equations linear in the position, 
3. an extension of the common minimum volume EBS 
algorithms to obtain the EBS with minimum volume 
projection onto an arbitrary subspace, and 
4. a new design approach for set theoretic estima- 
tors which employs consistency measures to achieve 
robustness against modeling errors. 
The effectiveness of the proposed set theoretic esti- 
mator has been demonstrated by experiments with a 
fast omnidirectional service robot. The full scale ro- 
bot is equipped with a laser-based goniometer which 
makes angular measurements on the location of tape 
strips attached to  the wall as artificial landmarks. Na- 
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Figure 6: Result of continuous long-range navigation. 
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7 Appendix 

The coefficients of (19) are given by 

Proof of (24): The projection of Cf onto a certain 
subspace is denoted as proj(Cf) and may be written 
as 

The volume of proj(Cf) is proportional to 

(31) 
where Cf is defined as C [  with those rows eliminated, 
that are not associated with the considered subspace. 
Applying the matrix identity [12] 

d e t ( c 1 t  - yzT) = cL-l(c + yTz)  , (32) 

where L is the subspace dimension, (31) becomes 

with Kk from (25). Differentiating with respect to  XI, 

and setting the result to  zero yields (24). 
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