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Abstract: In this article, a new mechanism is described for modeling and evaluating
Hybrid Dynamic Bayesian networks. The approach uses Gaussian mixtures and Dirac
mixtures as messages to calculate marginal densities. As these densities are approximated
by means of Gaussian mixtures, any desired precision is possible.

The presented approach removes the restrictions of sample based evaluation of Bayesian
networks since it uses an analytical approximation scheme for probability densities which
systematically minimizes the distance between the exact and the approximate density.
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1. INTRODUCTION edge stands for a direct dependency between two vari-
ables. Probabilistically, this dependency is expressed
The application of Bayesian networks is evolving by means of a likelihood function. Bayesian networks
since their first appearance in (Pearl, 1988). Their have the big advantage, that not all possible combina-
stochastic foundation provides a method for building tions of variables and their states have to be addressed
models for systems with an uncertain behavior. Suchto represent the joint probability. It is sufficient to con-
a model is usually found by identifying parts of the sider the conditional densities of the variables given
system which can be represented by random variablestheir parents in the graph.

Joint probabilities over these random variables are ) ) . )
then used to represent the system’s behavior. The first Bayesian networks were limited to discrete

The termrandom variableis usually used for scalar domains and their conditional densities were modeled
values only. For the sake of simplicity this paper only by conditional tables. Pearl’s approac_h to evaluate the
deals with scalar values, but it is easy to extend the "€Work by means of message passing (Pearl, 1988)
presented approach to vector valued systems. was extended for continuous netvyorks in (Driver qnd
Morrell, 1995). They used Gaussian mixtures, which
Bayesian networks are considered to be an efficientgre sums of weighted Gaussian densities, to approx-
representation of joint probabilities, exploiting the imate the likelihood functions and to represent the
causal background of a domain. This is achieved by messages.
representing the causal structure of a domain by means i i )
of a directed acyclic graph (DAG). Each random vari- ' N€ treatment of hybrid Bayesian networks today is
able is depicted by a node in this graph and every mam_ly influenced by the articles (Lauritzen, 199_2;
Lauritzen and Wermuth, 1989; Olesen, 1993), which
use so called cg-potentials. The drawback of this

1 This work was supported in part by the German Research Foun- approach is the mere use of the first two moments
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(mean and variance) to characterize continuous densi-
ties. Another problem is the explicit avoidance of dis-
crete nodes as children of continuous parents. There
have been attempts to remove this restriction by using
sigmoid-functions (Murphy, 1999). This approach was
picked up to include it into Lauritzen’s mechanism
(Lerneret al., 2001), but again, accuracy is limited to
the first two moments of the densities.

Dynamic Bayesian networks are an extention to model
the evolution of a static Bayesian Network over time.
This is done by representing the network at several
time slices and connecting the network of time step

t with the network in step t+1 via edges pointing from ‘ ‘ =
tto t+1.

] ) . Fig. 1. Two densities fi(x) = N(z,0,1)
Ararely considered problem in the context of Bayesian and folz) = %N (L —a, m) +

networks is the treatment of nonlinear dependencies
between variables. The possibility of approximating
the likelihood functions induced by nonlinear depen-

dencies using Gaussian mixtures is offered in (Driver Many densities which have identical first moments.
and Morrell, 1995). This can be seen in figure 1 for the functioh$z) =

A oroblem in d _ Lasin| ai . N(z,0,1) and fao(z) = %N (m, —a,V1—a?) +
problem in dynamic as well as in large static net- 1 e

works is the increasing complexity of continuous den- 2N (x’a’ L-a ) where

sities, while they are propagated through the network. N(z, p,0) = 1 exp {_1 (z — p)? }
Sampling methods like particle filters (Murphy, 2002) e V2o 2 o2

are often used to overcome this problem. The draw-s 3 Gaussian density with meanand standard de-
back of these methods is that it is not known a priori \jiation . Both densitiesf;, and f, have 0 as first
how many samples are needed to approximate theang 1 as second moment independent of [0, 1).
densities and no distance between the true and thegpyiously, these densities cannot be distinguished by
approximated density can be given. This paper usesihejr first two moments. Hence, this work uses a full

a progressive approach (Hanebegtkal., 2003) for  gensity representation provided by Gaussian mixtures.
approximating the densities by means of Gaussian ) ) .

mixtures. This has the advantage that accuracy (dis-The simultaneous treatment of continuous and discrete
tance between densities and its approximations) carvariables used in this paper considers two distinct

be traded for complexity (number of mixture compo- Cases, Which are shown in figure 2. '_I'he nodes in box
nents) and vice versa. shape are discrete whereas the continuous nodes have

_ _ _ a round outline. For the parent nodes ..., u,, and
The remainder of this paper is structured as follows. e child nodes, . ..,y,, We assume a partition into
The next section gives a formulation of the consid- -ontinuous (4,...,u, OF y1,...,yn) and discrete
ered problem. Section 3 presents new formulations for(unﬂ, e Um OF Yt .., Ym) variables.
hybrid conditional density functions. In section 4 ac-
cordingly adapted message representations are showrfzreating hybrid Bayesian Networks requires hybrid

The progressive approximation scheme is treated inconditional densities to capture the relationship be-
section 5. tween continuous and discrete variables. These densi-

ties describe the probability of a continuous or discrete
random variable, depending on the state of a set of
mixed parent variables.

AN (z,a,v/1—a?) with identical first and
second moment. Here far= 0.95.

2. PROBLEM FORMULATION
Since this new approach is based on message pass-

The application of hybrid Bayesian networks requires ing, the message schemes known from purely discrete
the simultaneous treatment of continuous and discrete(Pearl, 1988) or purely continuous (Driver and Mor-
random variables. Hence, a compatible representatiorrell, 1995) approaches must be extended for the use in
for densities in both cases has to be found. This hybrid networks. This is due to the fact that messages
work is concerned with the representation of density from continuous variables travel directly to discrete
functions in hybrid systems and the corresponding successors and vice versa. Hence, a hew representa-
hybrid conditional densities used in the likelihood tion is needed, allowing the simultaneous treatment of
functions. Furthermore, the propagation of densities continuous and discrete densities.

through the hybrid network will be treated. Updating the marginal densities in the network re-

Recent works concerning hybrid Bayesian networks quires the multiplication of incoming message den-
use only the first two moments to describe continuous sities. Hence, the exact calculation leads to increas-
densities. Unfortunately, taking into account only the ingly complex densities. For Gaussian mixtures this
first two moments yields a drawback, since there exist means that the number of components grows. To keep
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Fig. 2. The simultaneous treatment of continuous and discrete variables requires the consideration of two distinct
cases. The nodes in box shape are discrete, whereas the continuous nodes have a round outline. Hence, the
left part of this figure shows the continuous and the right part shows the discrete case.

the complexity at a tractable level, the densities are M* x|
systematically approximated by means of Gaussian  f*(z|uy,... u,) = Za; Zp;ﬁ(s(x
mixtures with less components but with respect to a e =1 !

distance measure. This is done by application of the N(us, @ 50" v N(um, i 0% )
progressive Bayes framework (Hanebetkl., 2003). U P go T g) e > Tunj
A more precise introduction to this approach is given i, the discrete case.

in section 5.
4. MESSAGES IN A HYBRID NETWORK
3. HYBRID CONDITIONAL DENSITIES Measurements for variables in the network provide
information for other (unobserved) variables. This in-
A hybrid conditional densityf (|u; ) i given formation travels to an arbitrary nodean the network

as defined in (Schrempf and Hanebeck, 2004) by DY means of message densitiegu;) from the parent
nodes and\y, (z) from the child nodes. Continuous

parents send their messages as Gaussian mixture den-
flxlug, ... um) = sities

[Unt1] [um | m
il Z ( H 8 (u; —kl)> Fr(x|ug, .. ug). Txe (U;) Zw( )N u,,ul( )W, (i)ﬂ) ,

,L+1 =1 k,,,,—l l:n+1 1—1

. . . . . whereas discrete parents send a sum of weighted Dirac
This formulation contains a single continuous con-

ditional densityf*(z|us,...,u,) for each joint dis- pulses

crete statu,11,--.,uy) Of X's discrete predeces- [ui]
sors. The asterisk is an abbreviation indicating the Txd(Ui) Zpl )6
dependency ofk,, 41, - - ., km ). The number of states s

of a discrete variable; is indicated byju;|. 4() is a
Dirac delta function, which is used here to select the
appropriatef*() for each joint discrete state.

The message from a continuous chglgd is again a
Gaussian mixture

M;
The conditional densitieg™* (x|u1, ..., u,) used in Ay,e(r) = Zwl(f)N(x;Ml(f)A’gl(f)A) .
this paper are modeled by means of Gaussian mixtures -1

in the continuous case and as sum over Gaussians anF th that th
Dirac pulses in the case thatis discrete. This means n the case that there was no measuremeng far in

we have a single Gaussian for each continuous paren{l® Part of the network below this node, the message
variable and another Gaussian or sum of weighted Is setto

Dirac pulses depending ¥ is continuous or discrete. Ayie(z) =1 .
This is The message from a discrete child is a sum of
weighted Dirac pulses

M* x|

fe(@lur, .. uy Za (2, 1z j: 05)- Aya(@) = p6(x — 1)
;=1

N(u *-*4~...'Nu Lol . . .
(w1 i, 5 Oy 5) (Uns oy 5 T ) If there is no measurement available from this part of

the network, the message yf is set to 1, causing no

in the continuous and
update forx.
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Fig. 3. The probability density over is updated according to the information coming from the network above
and belowx.

4.1 Density Update ous or discrete, f*(x|u,...,u,) has to be chosen
accordingly.
Depending on the measured values for observable

variables in the network, the probability density over Hence, for a continuous we receive the message

the unobserved variables has to be updated. The prob- [un 1] lum| M*
ability density over an arbitrary node for instance, = > Y N 0f)
is updated according to the measurements made in the Enii=1  kp=1t=1

upper part of the network and the measurements mad
in the part of the network below. This is shown in
figure 3.

The density over an arbitrary variabtén the network v =af < H Pr(u; = k,;)) .

Qvhich is a Gaussian mixture density with the weights

depending on the the measured values is calculated as i=n+1
n M7
(4) (4)
f@) = af @i, @m) f(@1, - Gml) I3 N, (i soi +0)k) @
j=11;=1
=amn(z)\(z) , Q) T
() (J) ; .
wherea is a normalization constant(z) andA(z) 1€ ©MNu, (1, 07 + 077 ) describes a Gaus
are introduced as abbreviations. sian density ovem; with mean Hz(f-)ﬂ and variance
The information from the upper part of the net can be of + Ul(j,)ﬁ evaluated ap; .
written as In the case thak is discrete, the message from the
- - upper part of the net is
T) = / / flzlug, ... um) - [nt 1l [um| M* |x|
ENNE IR P AP
kpny1=1 m=1t=1 hi=1
T 7o () dus -+ - dusyy, with the same weights; as in (3). This message is a

sum of weighted Dirac pulses.

This calculates the marginal density owegiven the
message provided by every predecessor, weighted byThe message from the lower part of the net is written

the likelihood ofx. as
Inserting the definitions from above and simplifying m
the formula yields
y Mz) = H Ay, (z)
Iun ‘ ‘um| m -
~ . which is a product of the single messages coming from
=3 > (I Prtw=k) . ges o
- every child node ok. In the case that is continuous,
n+1 =1 km=1 i=n+1 .. . . . .
this is again a mixture of Gaussians according to
. e () ug, e ug) Mo
/ / Ae(@) =Y wj N (5 g 2, 1.0
—00 —00 lo=1
T xe(wy) dun - duy, @ withwj, = []72, w”. Inthe discrete case we have a
product over sums of weighted Dirac pulses
Pr(u; = k;) is the probability, that variable; is in m x|
statek;. (2) is equal for both continuous and discrete M) =[] pl(j)é(a:

variablesx. To make the distinction between continu- j=11;=1



4.3 Boundary Conditions

If x is a root node for which no measurement is
available, itst-message is set to be the prior density
for that node. This is a Gaussian mixture density for a
continuousx and a sum of weighted Dirac pulses for
(y) ) a discretex.

If x is a leaf node that has not been observed so far, its
Fig. 4. Messages flow intg to update its density. \-message is set to 1. Hence the density for this node
Theny sends back messages to the network. is calculated ag(z) = n(z).

The density function for a continuous or discretean  Exact measurements= # are represented by(z) =
now be obtained by multiplying the appropriateand 5., — ) = N(z, #,0). This impliesf(z) = 2.
A-messages.

5. PROGRESSIVE APPROXIMATION

4.2 Calculating the Messages to be sent by an Update

Node dI'o tackle the problem of the increasing number of

mixture components described in section 2 we re-
approximate the mixtures resulting from the product

Every node receiving messages from its neighbor . . .
sends out messages to the other neighbors as wellpf mixtures. The approach described in (Hanebetck

It sendsr-messages to its children andmessages 2 2003) provides a framework for approximating
grbitrary densities by means of a Gaussian mixture

density. It estimates an optimal set of parametgrs
‘consisting of mixture weights, meansy and vari-
ancess for all components in the mixture

RPN

are calculated according to (Schrempf and Hanebeck
2004) and result in Gaussian mixtures for continuous
and Dirac mixtures for discrete variables.

n=[w®, 1@, o0, .. w®)

Ther-Messages This vector of parameters is approximated optimally
in the sense of minimizing a distance measure be-
The messagery, (r) that a nodex sends to its i-th  tween the exact and the approximate density. In our

successor is calculated as case, the exact density is a product of two Gaussian
mixtures. To achieve this, instead of approximating
Ty, () = F(@|h, ooy Ty Gy e e vy Dim1s Dit 1y - - Gim) the exact denglty directly, the approgch sta(ts with a
— ar(@)A\(@)| tractable density that can be approximate with no er-
= AT Ny @r=1 ror. This density is continuously transformed into the

This means that all messages excluding the one com-exact density via intermediate densities. To realize this
ing from y; are passed ahead. Hence, this messageprogression, a parameteis introduced into the exact
can be calculated as shown in section 4.1 under thedensity which varies from 0 to 1. White approaches
assumption\y, (z) = 1. 1, the parameter vectoy is adjusted infinitesimally,
to keep the distance between the parameterized and
the approximated density at the minimum. Since the
The\-Messages approach starts at the global minimum, it is guaranteed

) ] ) that the global minimum is reached for= 1.
The calculation of the\-messages is a little more

tricky since these messages travel against the direcAs @ measure of deviation between the true density
tion of the modeled dependengy|u;). Depending ~ and its approximation, we use the squared integral
on the continuous or discrete identity of the parent distance

variable, the message sentkys a Gaussian mixture 1 ~ 2

density or a sum of weighted Dirac pulses as shown (m.7) =5 /R (f(xﬁ) B ﬂx””) dz

in table 1. The main information of these messages is

Table 1. Thel-messages fronx to its
parent differs for continuous or discraig.

where f(m,’y) is the parameterized true density and
f(x,n) is the approximation density.

For~ = 0, the parameterized density can easily be

u; T Ax (ui) approximated by a Gaussian mixture or is already
Un41 Um| M* . . . . .
cont. S S e N s, o) given as Gausmani mixture. Slnce fqr this work_ t.he
=1 lm=1i=1 product of two arbitrary Gaussian mixture densities
‘ || ) fi(x) and f2(x) has to be approximated by means of
disc. 1215(“1' — L) -, a Gaussian mixture, we choose the parameterization

Fx,y) = fi(x) - fa(a,~) with

carried by their weight vectors? ; andnl?i which are I
calculated in different ways for continuous or discrete fo(m,~) = Z w; exp ( (I; i) )

) 4 2 € ’
X. i=1 yte



wheree is a small constant. Hence, for= 0, f2(z) the é,]_raph. Lauritzen uses clustering techniques when
is close to 1 for allz and f(z,7) = fi(x). For building !qnctlon tregs, but this results in collapsing
. Loz . the densities to the first two moments. To preserve the
~v = 1, the desired functiotf (z,v) = fi(x) - fo(x) is )
approached accuracy of the app_roach presented here, the persis-
' tence of the full density structures must be guaranteed.

To obtain a progression from = 0 to v = 1 while
keeping the distance at the minimum we first take the
partial derivative of the distance meastién, ) with
respect to the parameter vectpand setting the result

The presented approach has already been used in the
context of intention recognition in the robotics domain
and showed good results. Especially the freedom in
modeling is of great value.

to zero
0G
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