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Abstract:
The exploitation of dependencies between state estimates from distributed trackers plays
a vital role in so-called track-to-track fusion and has been extensively studied for state
estimates with the same state space. In contrast, dependencies are often neglected when
considering heterogeneous state estimates referring to different state spaces, since the necessary
transformations make the analytic calculation complex or infeasible. This paper aims to develop
an overarching framework for the reconstruction of cross-covariances between state estimates
obtained in heterogeneous state spaces. The proposed method uses a set of deterministic samples
to calculate dependent information. Thus, it allows for a distributed track-keeping of correlations
that also encodes the transformation into the local subsystems. To highlight the algorithm, we
use a linear problem with heterogeneous trackers only and discuss the correlation problem in
detail. The results show superior performance compared to neglecting the correlations.

Keywords: Distributed Estimation, Heterogeneous Track-to-Track Fusion, Cross-covariance
Reconstruction, Deterministic Samples

1. INTRODUCTION

Modern tracking systems benefit from a variety of different
sensors that are often spatially distributed. Collecting
all measurements from these sensors in a central node
to process them simultaneously is expensive in terms
of processing resources and often infeasible in terms of
communication bandwidth and reliability. Therefore, the
distributed processing of sensor data directly at their source
is often preferred. This more robust approach comes with
the need to account for the correlations between state
estimates when fusing them. This problem of track-to-
track fusion has extensively been studied in recent decades,
e.g., by Chang et al. (1997) or Mori et al. (2012).

A special case is the fusion of state estimates that originate
from different state spaces and use different system models
and that we will call heterogeneous state estimates. Often
the transformation into the subspaces is subject to a
nonlinear transformation. Bar-Shalom and Chen (2007)
first introduced this problem for the track association
problem. Yuan et al. (2011) describe a linear minimum
mean square error approach (LMMSE) and a maximum
likelihood approach (ML) to handle the heterogeneous
fusion. Further, they use an approximation technique for
the cross-correlations, but state that their application has
little impact on the fused result. Another often described
approach introduced by Yang et al. (2019a) is information
matrix fusion, which is also used by Mallick et al. (2019).
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Yang et al. (2019b) introduces an approach to calculate
the cross-covariance matrix between heterogeneous esti-
mates analytically using the jacobian to cope with the
nonlinear transformation. Their results show that using the
cross-covariance matrix is improving the fused estimates.
Overall, cross-covariances are often either neglected or
only approximated. Using linearization to approximate
the nonlinear transformation can lead to unreliable results
when nonlinearities are severe. As it has already been done
for Kalman filtering, e.g., the UKF as described by Julier
and Uhlmann (1997), sampling of distributions is a useful
tool for coping with nonlinearities. Samples can also be
used to reconstruct correlations between state estimates
of different trackers. Reinhardt et al. (2014) use a set
of random samples to reconstruct the cross-covariances
approximately. Steinbring et al. (2016) firstly introduce
deterministic samples to allow for optimal fusion. Here,
every sensor node processes a set of samples in parallel to
its state estimate and covariance matrix using the local
Kalman filter. When the fusion step is executed, the cross-
covariances between the state estimates are reconstructed
using the sample sets. Since the number of samples grows
over time, Radtke et al. (2018) propose a method to keep
the number of samples constant. Radtke et al. (2019) extend
the method for the fusion of overlapping state estimates.

This paper proposes two key contributions to the fields of
heterogeneous track-to-track fusion:

(1) We introduce a heterogeneous track-to-track fusion
problem where none of the trackers has full knowledge



about the complete system state. Further, we show
that trackers are correlated due to common process
noise even though they use different subspaces of the
state space for tracking.

(2) We propose a method to keep track of the occurring
cross-correlations between state estimates in a dis-
tributed fashion using deterministic samples.

In Section 3, this paper gives a brief overview of the
considered setup and the problem of distributed estimation
and the emergence of correlations between state estimates.
Section 4 addresses the dependencies between heteroge-
neous trackers and introduces the proposed approach using
deterministic samples. Section 5 presents numerical results
and comparisons with other methods. Finally, we conclude
our findings and discuss further research opportunities.

2. PRELIMINARIES

Underlined variables x denote vector-valued functions, and
lowercase boldface letters x are used for random quantities.
Matrices are written in uppercase boldface letters P. The
notation x̂ is used for the mean of a random variable, an
estimate of uncertain quality or an observation. The matrix
I is the identity matrix of the appropriate dimension. By
{p(m)}Mm=1, we denote a sample set with a number of M
sample vectors.

3. PROBLEM FORMULATION

We assume a target moving in Euclidean space RN . Its
motion can be described by a linear time-invariant discrete
system model A and is subject to additive white Gaussian
process noise wk with covariance matrix Q according to

xk+1 = Axk + wk ,with wk ∼ N (0,Q) . (1)

The target is observed by a number of L sensor nodes with
measurement models of nodes i = 1, . . . , L according to

zik = Ci
g · (xk + tig) + vik ,with vik ∼ N (0,Ri) , (2)

where every sensor node i has a measurement model in
the global state space with measurement matrix Ci

g and

is subject to white Gaussian measurement noise vik with
covariance matrix Ri. Further, tig is a sensor-specific known
offset from the origin of the global coordinate system to the
origin Oi of the local coordinate system. Although fusing all
measurements in a single global Kalman filter usually yields
the most accurate results, communicating measurements is
not always possible or reasonable. Therefore, every sensor
will be equipped with a Kalman filter to process the
measurements into state estimates locally. An example
for such a setup can be seen in Figure 3. We will assume
that the local trackers are estimating the target in a lower-
dimensional state space RNi that is a subspace of RN so
that Ni < N . The transformation from the global state
space to the local state space is given by

xik = Gi · (xk + tig) = Gixk + ti , (3)

with transformation Gi accounting for the linear transfor-
mation from RN into the linear Euclidean subspace RNi .
The local measurement model with local measurement
matrix Ci is now defined by

zik = Cixik + vik ,with vik ∼ N (0,Ri) . (4)

An example of such a transformation Gi into a lower
subspace is shown in Figure 1(a).

3.1 Distributed Estimation Problem

While the local processing of state estimates lowers the
necessary communication between sensor nodes, it creates a
need to address the dependencies between estimates when
executing the fusion step. We define an unbiased state
estimate as

m̂i
k = x̂ik − ti = Gix̂k ,

where the subtraction of ti removes the offset between
the different coordinate systems introduced by equation
(3). We can then formulate the fusion as a weighted least
squares problem as described by Li et al. (2003) according
to

x̂WLS
k = arg min [m̂k −Gxk]

T
J−1k [m̂k −Gxk] , (5)

with the common state estimate m̂k =
[
(m̂i

k)T . . . (m̂L
k )T

]T
treated as a measurement. The matrix G accounts for the
known transformation of the global state into all local
subspaces according to

G =
[
(G1)T (G2)T . . . (GL)T

]T
.

The state estimates from the distributed trackers include
common process noise and common prior information and
are thus correlated by

Jk = E
[
(m̂k −Gxk)(m̂k −Gxk)T

]
,

which is called the joint error covariance matrix and
accounts for the correlation between state estimates

Jk =


P1
k P1,2

k . . . P1,L
k

P2,1
k P2

k

...
...

. . .

PL,1
k . . . PL

k

 . (6)

The solution of (5) can be computed as a gain matrix
according to

Kk =
(
GTJ−1k G

)−1
GTJ−1

from which we can finally formulate the fusion rule for the
fusion of multiple state estimates similar to the work in
Sun and Deng (2004) as

x̂fk = Kk m̂k = Pf
kG
>J−1k m̂k , (7)

Pf
k =

(
G>J−1k G

)−1
. (8)

While elements on the main diagonal of Jk are known since
they include the covariance matrices of the local Kalman
filters, the cross-covariance matrices on the off diagonals
are usually unknown. Since neglecting these dependencies
can lead to inconsistent fusion results that underestimate
the uncertainty, they can be either approximated which
results in a suboptimal fusion rule or reconstructed enabling
optimal fusion.

3.2 Calculation of Correlation

We consider two sensor nodes i and j that both employ a
Kalman filter or one of its derivatives and estimate the state
of the same target of interest. Both trackers share the prior
common information P0 that originates from initialization
with the same covariance and that causes them to correlate
fully after the initialization step. Further, both sensors
are using the same process model, according to (1), and
incorporate the same process noise wk. Considering this,
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(a) Transformation of two-
dimensional Gaussian into
one-dimensional Gaussian.

G

(b) Transformation of samples in
two-dimensional space into one-
dimensional space.

Fig. 1. Transformation from a two-dimensional to a one-
dimensional state space

we can observe how the trackers are correlated after the
prediction step

Pi,j
k|k−1 = E[(x̂ik+1|k − xk)(x̂jk|k−1 − xk)T]

= APk−1|k−1A
T + Qk . (9)

This correlation is further altered during the update step
by multiplication with the gain matrix Lik = I −Ki

kC
i
k

containing the Kalman gain Ki
k

Pi,j
k|k = E[(x̂ik|k − xk)(x̂jk|k − xk)T]

= LikP
i,j
k+1|k+1(Ljk)T . (10)

These formulas are recursive and allow the complete
calculation of the cross-covariance matrix. Yet, they require
full communication of all model parameters at every time
step, which is infeasible in large sensor networks.

3.3 Deterministic Sample-based Approach for Reconstruction
of Cross-Correlations

Steinbring et al. (2016) introduce a technique to keep track
of the cross-covariance matrix in a distributed fashion
by deterministically sampling the correlated process noise
distributions. While all sample sets are identical after
their creation, they are updated by the Kalman filter
steps of every sensor node individually and afterwards
allow the reconstruction of cross-covariances based on their
modifications. The following section briefly reviews the key
elements of the method.

The first step is to create a sample set {p}Mm=1 that contains
a number of M samples with sample weights ω having the
following characteristics

M∑
m=1

ω(m)p(m) = 0 ,

M∑
m=1

ω(m)p(m)
(
p(m)

)T
= ID×D .

The dimension of the created sample set is given by
M = D + 1 = N × (T + 1) + 1, where N is the dimension
of the state space and T , called the time horizon, is a user-
defined number of processing steps that can be included in
the sample set. Steinbring et al. (2016) suggest to use the
spherical simplex sampling method as proposed by Julier
(2003), but other methods can also be employed as long
as they share the same characteristics. This sample set
is weighed with the following matrix containing the prior
common information and common process noise terms

Σk = diag
(√

P
(i,j)
k|k ,

√
Qk+1, . . . ,

√
Qk+T

)
. (11)

By weighting the sample set, we obtain a sample set
{dk}Mm=1 according to

d
(m)
k = Σkp

(m) , m = 1, . . . ,M

=
[
(s

(i,m)
k|k )T, (w

(m)
k+1)T , . . . , (w

(m)
k+T )T

]T
, (12)

which includes one sample set {s(i,m)
k|k }

M
m=1 accounting

for the common prior information and a sample set

{w(m)
k+τ}Mm=1 for every processing step k + τ accounting for

the common process noise until a user defined time horizon
T . Multiplying sample sets that account for the same
common information yields the underlying cross-covariance

P
(i,j)
k|k =

M∑
m=1

ω(m)s
(i,m)
k|k

(
s
(i,m)
k|k

)T
,

Qk+τ ′ =

M∑
m=1

ω(m)w
(i,m)
k+τ ′

(
w

(i,m)
k+τ ′

)T
,

while multiplying other terms that are uncorrelated to each
other yields zero
M∑
m=1

ω(m)s
(i,m)
k|k

(
w

(m)
k+τ ′

)T
=

M∑
m=1

ω(m)w
(m)
k+τ ′

(
w

(m)
k+τ ′′

)T
= 0 ,

with τ ′ and τ ′′ being arbitrary time steps and τ ′ 6= τ ′′. To
incorporate the dependencies between state estimates, the
samples are propagated through the Kalman filter. Based
on the recursive formula (9), we take the sample set ac-

counting for the current common information {s(i,m)
k|k }

M
m=1

and include the process noise referring to the current time
step

s
(i,m)
k|k−1 = As

(i,m)
k−1|k−1 + w

(m)
k , m = 1, . . . ,M . (13)

The sample set is then modified by the update step of the
Kalman filter gain according to

s
(i,m)
k|k = Liks

(i,m)
k|k−1 , m = 1, . . . ,M . (14)

The sample set {s(i,m)
k|k }

M
m=1 is further updated recursively

until the time horizon is reached or the fusion step should
be executed. The cross-covariance matrix P(i,j) can be
reconstructed by multiplying the correlation samples of
node i and j

P
(i,j)
k =

M∑
m=1

ω(m)
(
s
(i,m)
k|k − s̄(i)k|k

)(
s
(j,m)
k|k − s̄(j)k|k

)T
, (15)

where s̄ is the mean of the sample set {s(i,m)
k|k }

M
m=1 since

the processing of the samples, e.g., during the update step,
can lead to a nonzero sample mean.

4. RECONSTRUCTION OF CROSS-CORRELATIONS
BETWEEN HETEROGENEOUS TRACKERS

While the reconstruction of cross-covariances between
homogeneous trackers with state estimates in the same
coordinate system is an already solved problem, there is
yet no convincing solution for the state estimates from
heterogeneous trackers. In the following section, we will,
therefore, introduce an analytic formulation for the cross-
covariance. Our results are similar to the ones obtained by
Yang et al. (2019b), but the extended explanation helps to
motivate the proposed method. Based on this, we will show
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Fig. 2. Flow diagram for the sample-based reconstruction
of the cross-covariance matrix between heterogeneous
trackers.

why deterministic samples are useful for reconstructing
correlations between different state spaces.

4.1 Calculation of Correlations between Subspaces

We consider two sensor nodes i and j estimating the state
of a target in different state spaces. Depending on their
respective local state space, the information they include is
only partially correlated. Therefore the formula (9) needs
to be adapted to include the transformation into the local
subsystems. The estimation error of node i is defined as
x̂ik|k − Gixk and the transformation into the sub space

is given according to (3) with transformation matrix Gi.
Then, we can calculate the cross-covariance matrix after
the prediction step as

P
(i,j)
k+1|k = E

[(
x̃ik+1|k

)(
x̃jk+1|k)T

]
= E

[(
Aix̂ik|k−Gi ·

(
Axk+wk

))(
. . .
)T]

,

where the local system model can be calculated by Ai =

GiA
(
Gi
)T

(see Appendix A). When substituting this into
our formula, we receive

P
(i,j)
k+1|k = E

[(
Aix̂ik|k−AiGixk−Giwk

)(
. . .
)T]

= E
[
Aix̃ik|k

(
x̃jk|k

)T(
Aj
)T]

+ E
[
Giwk

(
wk

)T(
Gj
)T]

= AiPi,j
k|k
(
Aj
)T

+ GiQ
(
Gj
)T
.

From this formula, we can identify GiQ
(
Gj
)T

as the
common process noise between i and j. The update during
the filter step is similar to (10).

4.2 Calculation of Correlations between Subspaces using
Deterministic Samples

In the following section, we will extend the sample-
based reconstruction of the cross-covariance matrix to

heterogeneous trackers. The flow chart of the proposed
approach is shown in Figure 2, where the processing of
the state estimate and covariance matrix, as well as the
time index k are neglected for simplicity. Since the process
noise is a phenomenon from the global state space, the
samples have to be drawn from the full state space to
include the complete correlation. Therefore the initial steps
of weighting the identity sample set with the common
information according to (11) and (12) remain identical.
Afterwards, the sample sets are communicated with the
local trackers and transformed into the local state space
by the transformation matrix Gi to allow the processing
by the local Kalman filter

d
(i,m)
k =

[(
Gis

(i,m)
k|k

)T
,
(
Giw

(m)
k+1

)T
, . . . ,

(
Giw

(m)
k+T

)T]T
.

A representation of this transformation of samples into a
lower dimensional subspace is shown in Figure 1(b). To
incorporate the correlation, the samples are updated by the
Kalman filter steps according to equations (13) and (14).
When the time horizon T is reached or the fusion step has to
be executed, the samples are transferred back to the fusion
center and used to reconstruct the joint cross-covariance
matrix J using equations (6) and (15). Afterwards the
fusion is carried out using (7) and (8). Lastly, the fused
state estimate and covariance are used to reinitialize the
local trackers and a new set of samples is created with Pf

as their common prior information.

5. EVALUATION

In this section, we will discuss our numerical results. We
assume a target moving on a two-dimensional plane where
the motion can be described by a constant velocity model
with time constant ∆T = 0.1 x

y
vx
vy


k+1

=

1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


 x
y
vx
vy


k

+ wk ,

and that is affected by additive white Gaussian noise wk
with noise power q1 = 2, q2 = 0.5 according to

Q =


q1

1
3∆T 3 0 q1

1
2∆T 2 0

0 q2
1
3∆T 3 0 q2

1
2∆T 2

q1
1
2∆T 2 0 q1∆T 0
0 q2

1
2∆T 2 0 q2∆T

 . (16)

The target will be observed by three trackers arranged in
an isosceles triangle. This setup is sketched out in Figure
3. The subsystems are two dimensional and only observe
the position and the velocity along a single axis that is the
x-axis of the original system rotated by an angle φi

φ1 = −π/3 , φ2 = π/3 , φ3 = −π .
Further, the origins Oi of the new coordinate systems have
an offset tig to the original euclidean coordinate system
according to

t1g =

−5
−5
0
0

 , t2g =

 5
−5
0
0

 , t3g =

0
5
0
0

 .
The transformation from the full state space to the sub
state spaces can be described by equation (3), where the
linear transformation is given by
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Fig. 3. Problem sketch of the linear evaluation example.

Gi =

[
cos(φi) − sin(φi) 0 0

0 0 cos(φi) − sin(φi)

]
.

The local measurement model is given by (4), where the
measurements are drawn from the global state space by
equation (2). The local measurement model matrix in the
global state space (see (2)) and the local measurement
model matrix (see (4)) are given by

Ci
g = [cos(φi) − sin(φi) 0 0] , Ci = [1 0] ,

with the local measurement noise matrices

R1 = 1 , R2 = 0.5 , R3 = 0.25 .

Every local tracker uses a constant velocity model describ-
ing the motion on a one-dimensional plane[

x
vx

]
k+1

=

[
1 ∆T
0 1

] [
x
vx

]
k

+ wk .

The proof that this is true for every of the considered
trackers is given in Appendix A. The process noise matrices
of the local trackers on the other hand are different from
each other and depend on the transformation as can be
seen in Appendix B. The samples are created by using the
method used in the unscented Kalman filter as described
by Julier and Uhlmann (2004), but where the weight of
the sample in the middle is double the weights of the
other samples. We want to point out that the sampling
technique might depend on the transformation carried out
to obtain the local subspaces. The fusion step is carried
out every 5th time step. Therefore, our proposed method
will be initialized with a sample set including process noise
samples till a time horizon of T = 5. Note that the number
of samples included in the sample set grows linearly with
the number of processing steps until the fusion step is
executed. We compare the proposed method (SbF) with a
naive fusion approach, where the correlations are neglected,
with the optimal reconstruction (Opt) of the correlation
using the recursive formulas and with a global Kalman
filter as a reference which uses all measurements directly.

Figure 4 shows the mean squared error (MSE) for all
compared methods. It can be seen that the global Kalman
filter yields the best results. This was excepted since it
uses the measurements more efficiently. The optimal and
the sample-based reconstruction yield the same results
by design. The results also show that neglecting the
correlations leads to a higher error. The consistency of
the different algorithms can be seen in Figure 5. Here, we
compared the estimated error of the tracker, using the trace

0 20 40 60 80 100
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2

k

M
S
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Naive Opt
SbF GlobKF

Fig. 4. Mean squared error (MSE) for linear evaluation
example for 1000 MCR.
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Fig. 5. Comparison of the trace of the fused covariance
matrix (dashed) and actual mean squared error for
1000 MCR.

of the covariance matrix, with the actual mean squared
error. It can be seen that for the Global Kalman filter
(Figure 5(d)), the optimal fusion (Figure 5(b)) and the
proposed approach (Figure 5(c)) the actual error matches
the estimated error. As expected, the naive fusion (see
Figure 5(a)) results in an overconfident covariance matrix
that does not match the real error and therefore leads to
an inconsistent tracker.

6. CONCLUSION

This paper introduced a sample-based approach to recon-
struct the cross-covariance between distributed heteroge-
neous trackers. Further, it introduced an example where
every tracker only observes a subspace of the targets state
space and the nodes need to cooperate to obtain the full
state of the target. While we used the particular case of
a linear transformation to highlight the algorithm itself,
the method can be adapted to a nonlinear transformation.
Using deterministic samples can be especially useful since
it renders the linearization of the transformation unnec-
essary. Because of the nonlinear dependencies between
heterogeneous state estimates, the joint covariance matrix
is insufficient to model the joint probability distribution
and further research has to be undertaken to solve this
problem. Yet, deterministic samples could provide a missing
puzzle piece for modeling dependencies needed in many
heterogeneous track-to-track fusion problems.
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Appendix A. TRANSFORMATION OF TWO-DIM.
CONSTANT VELOCITY MODEL (CVM) INTO A

LOWER-DIM. STATE SPACE

Let x be the state vector in the global state space and
further let xi be the state vector of node i in the local
lower-dimensional subspace. Then the transformation from
the global to the local state space is defined by

xik = Gi ·
(
xk + tig

)
,

where Gi is a linear transformation matrix and tig is a
linear translation between the two coordinate systems. The
propagation of the global state can be described by a linear
transition matrix A. We now want to obtain the local
transition matrix Ai which is the global transition matrix
transformed into the local subspace. The prediction step
from time step k to time step k + 1 can be described by

xik+1 = GiA
(
xk + tig

)
= GiAxk + GiAtig

= AiGixk + AiGitig ,

We can set the equations equal, resulting in GiAtig
!
=

AiGitig and

AiGixk
!
= GiAxik

AiGi !
= GiA

Ai = GiAGi∗ ,

where Gi∗ is the pseudo inverse of Gi. The transformation
matrix Gi is a basis change matrix where the new basis
also has a lower dimension than the original state space.
Revisiting the evaluation example from Section 5, the new
basis is the span of the vectors {w1, w2}. We choose a new
transformation matrix Gi of the following form

Gi =

[
w T

1

w T
2

]
=

[
c1 c2 0 0
0 0 c1 c2

]
,

where c1 and c2 are arbitrary constants for which c21+c22 = 1
holds. This normalization creates a new state space that
has the same dimensions as the original state space without
stretching or compression. We define a pseudo inverse
Gi∗ = (Gi)T that fulfills Gi(Gi)T = I, with I in the
lower-dimensional subspace. We finally obtain the local
transition matrix as

Ai = Gi A (Gi)T =

[
c21 + c22 ∆Tc21 + ∆Tc22

0 c21 + c22

]
=

[
1 ∆T
0 1

]
.

In the considered evaluation example, the offset to the local
coordinate system tig does not include a velocity component

which leads to a constant component Atig = tig.

Appendix B. TRANSFORMATION OF THE PROCESS
NOISE MATRIX INTO A LOWER-DIM. STATE SPACE

Analogously to Appendix A, the local process noise Qi is
obtained by Qi = Gi Q (Gi)T. Compared to the transition
matrix A, the process noise is not symmetric. Considering
a global process noise matrix Q as defined in (16)), the
local process noise matrix can be calculated by

Qi=

[
c1q1

1
3∆T 3+c2q2

1
3∆T 3 c1q1

1
2∆T 2+c2q2

1
2∆T 2

c1q1
1
2∆T 2+c2q2

1
2∆T 2 c1q1∆T+c2q2∆T

]
.

While the transformation of the system model is indepen-
dent of the local state space, the transformation of Qi

depends on the new coordinate system if q1 6= q2.


