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Abstract: This paper deals with sequence-based control over networks with time-varying
and generally unknown delay and loss probabilities. We show that the problems of stability
analysis and controller synthesis can be addressed using a polytopic Markov jump linear system
describing an augmented system. For this kind of systems, we derive a necessary and sufficient
condition for mean square stability that extends existing results in literature. Likewise, we
provide a sufficient condition for mean square stabilizability in terms of an LMI feasibility test.
The results are illustrated in a numerical example.

Keywords: Control over networks, Control under communication constraints, Control of
switched systems, Stability and stabilization of hybrid systems

1. INTRODUCTION

Plenty of research has been carried out to date focusing
on control in networked environments such as today’s
cyber-physical systems (CPS). Well known examples are
smart grids, water distribution systems, or intelligent
manufacturing systems (Hu et al., 2016; Zhong et al., 2017).

To exchange data such as system states, control commands,
or sensor readings, such kind of systems typically make use
of off-the-shelf communication infrastructure (Hehenberger
et al., 2016; Karnouskos et al., 2019). Main benefits are
increased flexibility and simplified installation and mainte-
nance compared to traditional point-to-point connections
between the individual components. On the other hand,
such networks are prone to non-deterministic communica-
tion delays and data losses, which, in turn, can severely
degrade the possible control performance (Lucia et al.,
2016).

To cope with packet delays and losses, network-aware con-
trollers commonly transmit not only the control command
for the current time step to the plant but also a sequence
of predictive inputs for the next, say N , time steps. This
technique, known as sequence-based control in literature,
has been considered in a multitude of works in the last
years.

Research effort in this regard has led to a variety of different
approaches for the computation of such control sequences,
ranging from methods building on nominal controllers that
completely disregard the underlying network, e.g., Bempo-
rad (1998); Liu (2010), to more sophisticated approaches
based on model predictive and optimal control in, for
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instance, Reble et al. (2013); Quevedo and Jurado (2014);
Fischer et al. (2013); Jurado et al. (2015); Dolgov et al.
(2015); Li et al. (2016); Rosenthal et al. (2019).

To reflect the randomness of packet delays and losses in
real networks, it is common to treat them as realizations of
a stochastic process. In this regard, a typical assumption
is that this process is stationary with known statistics.
Yet, when communication resources are shared without
statically configured scheduling, the provided quality of
service fluctuates, leading to changing communication
conditions that are hardly completely foreseen in advance.
Control algorithms that are able to cope with varying
packet delays or data rates while at the same time
guaranteeing a certain control performance are thus a
fundamental building block of flexible and future-proof
CPS. Consequently, research in this regard demands further
attention.

In this paper, we are concerned with sequence-based control
in settings where packet delays and losses are governed by a
non-stationary stochastic process with unknown statistics.
Focusing on linear time-invariant plants that are subject
to white second order wide-sense stationary noise, the
contributions of this work are as follows.

We first develop a combined model that jointly expresses
the plant dynamics and the underlying network in terms
of a discrete-time Markov jump linear system (MJLS).
This is similar to what was done in, e.g., Fischer et al.
(2013); Rosenthal et al. (2019); Rosenthal and Hanebeck
(2019), where fixed packet delay and loss probabilities
were considered. However, in contrast to these works, the
resulting MJLS turns out to be polytopic, that is, the
Markov chain governing the switching of the modes is time-
inhomogeneous and its transition matrix varies within a
convex polytope.



Second, we prove that the necessary and sufficient condition
for mean square stability of noise-free polytopic MJLS and
polytopic MJLS with bounded noise presented in Lun et al.
(2016) and Lun et al. (2017, 2019), respectively, which
requires the calculation of the joint spectral radius (JSR)
of a set of matrices, also holds true for polytopic MJLS
driven by wide-sense stationary noise.

Finally, we derive a sufficient condition for the existence of
a stabilizing mode-independent state feedback controller in
terms of a linear matrix inequality (LMI) feasibility problem
similar to the ones presented in Aberkane (2011) and Zhang
and Boukas (2009) for polytopic MJLS without noise
and MJLS with partly unknown transition probabilities,
respectively.

Notation Throughout this paper, vectors will be indicated
by underlined letters (x) and boldface capital letters
indicate matrices, e.g., A. We use In to denote the n-
dimensional identity matrix, 0 to denote zero matrices
of arbitrary dimension, and a subscript k, e.g., xk, to
indicate the time step. Transposition of a vector or a
matrix is indicated by xT and AT, and A > 0 (A ≥ 0)
means that the matrix A is positive definite (positive
semidefinite). The Kronecker product of two matrices A
and B is denoted by A⊗B, vec (A) denotes vectorization,
and diag(A1, . . . ,Ai) denotes the block-diagonal matrix
formed by the matrices A1, . . . ,Ai. Furthermore, we denote
by conv(M) the convex hull of a set M. Finally, A:j

indicates the j-th column of A and 1i=j is the indicator
function, i.e., 1i=j = 1 if i = j and 0 otherwise.

2. PROBLEM FORMULATION

Consider a linear time-invariant plant with discrete-time
dynamics given by

xk+1 = Axk + Buk + wk , (1)

with xk ∈ Rn the plant state, uk ∈ Rl the control input,
A ∈ Rn×n the system matrix and B ∈ Rn×l the input
matrix. The process noise wk is a white, zero mean wide-
sense stationary sequence with covariance matrix W. The
initial plant state x0 is assumed to be Gaussian with given
mean x̂0 and covariance X0, and independent of wk for all
k.

The control inputs are computed by a remote controller
and then sent to the actuator, which is attached to the
plant, using a packet-based network. Due to the nature
of the network, packets containing control inputs can
randomly experience (potentially unbounded) delays or
get lost. We interpret packet losses as infinite delays, so
that we can model the delay of a packet transmitted to
the actuator at time step k by the random variable τk ∈ N
with corresponding probability mass function (pmf) fk.
Consequently, fk(t) denotes the probability that the packet
sent from the controller to the actuator at time k arrives
at time step k + t (i.e., fk(t) = Pr[τk = t]), whereas the
probability that this packet gets lost is given by fk(∞).

Finally, we assume that any two τk and τk̃ are mutually

independent for k 6= k̃, i.e., packet delays and losses are
independent over time. However, to reflect the nature
of modern communication networks, we assume that the

probabilities for packet delays and losses may change over
time, and are not known in advance. That is, the pmfs fk
are not known at design time.

To cope with packet delays and losses, the controller is
sequence-based and transmits predicted control inputs for
the next N time steps in conjunction with the one for the
current time step. Hence, at each time step, the data packet
transmitted to the actuator consists of a sequence of N + 1
control inputs

Uk =
[
uT
k|k u

T
k+1|k . . . uT

k+N |k

]T
∈ R(N+1)l ,

with uk+i|k the control input computed at time k to be
applied at time k + i, i = 0, . . . , N . At the plant side, only
the most recent control sequence is maintained, whereas all
others are discarded upon reception. The inputs provided
by this sequence are then applied to the plant one after
another until a newer sequence is received.

Due to this buffering procedure, at any time k the actually
applied control input must stem from one of the sequences
Uk−N , Uk−N+1, . . . , Uk. If none of these sequences is
buffered at the actuator side, but for instance an older one,

no applicable input is present, and the default input udfk = 0
is applied to the plant, that is, the plant runs open loop.
This can only happen if all of the packets containing the
aforementioned sequences get lost during the transmission
or suffer large delays. The probability that the default
input is applied is thus not only determined by the packet
loss rate, but depends also on the sequence length chosen
by the designer. In this regard, the following assumption
is justified to ensure that the controller can influence the
plant behavior.

Assumption 1. The length of the control sequences is cho-
sen such that the probability of two consecutive applica-
tions of the default input is less than one.

We aim to find stability conditions for networked control
systems that operate in the given setup and, moreover,
seek to synthesize a linear state feedback control law that
is able to stabilize the plant. More precisely, we will use
the notion of mean square stability as defined below in
Definition 4.

3. PRELIMINARIES AND BASIC RESULTS

As mentioned above, at any time k the actually applied

control input is either the default input (udfk = 0) or is part
of one of the sequences Uk−N , Uk−N+1, . . . , Uk.

This observation is the key to obtain the MJLS that
jointly expresses the plant dynamics (1) and the buffering
procedure employed by the actuator and can be formalized
as follows. First, we introduce a vector η

k
that contains all

inputs from past control sequences that are still applicable
at time k or later according to

η
k

=



[
uT
k|k−1 u

T
k+1|k−1 . . . uT

k+N−1|k−1

]T[
uT
k|k−2 u

T
k+1|k−2 . . . uT

k+N−2|k−2

]T
...[

uT
k|k−N+1 u

T
k+1|k−N+1

]T
uk|k−N


∈ Rd ,
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Fig. 1. Visualization of η
k+1

, η
k
, Uk, and their relationship

for N = 2.

where d = lN(N+1)
2 . The corresponding dynamics is

η
k+1

= Fη
k

+ GUk , (2)

with F ∈ Rd×d and G ∈ Rd×(N+1)l given by

F =


0 0 0 0 . . . 0 0
0 I(N−1)l 0 0 . . . 0 0
0 0 0 I(N−2)l . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Il 0

 , G =

[
0 INl
0 0

]
.

The relationship between η
k+1

, η
k
, and Uk according to (2)

is visualized for N = 2 in Figure 1.

Together with a scalar variable θk, defined according to

θk =

{
i if uk is part of Uk−i
N + 1 if uk = udfk

, (3)

with i ∈ {0, 1, . . . , N} and

H(θk) = [1θk=1Il 0 1θk=2Il 0 . . . 1θk=NIl] ,

J(θk) = [1θk=0Il 0] ,

the actually applied input can then be written as

uk = H(θk)η
k

+ J(θk)Uk .

It is clear from (3) that the set of possible values of θk is di-
rectly related to the sequence length. For i ∈ {0, 1, . . . , N},
θk = i corresponds to the age of the buffered sequence,
whereas θk = N + 1 indicates an empty buffer at the
actuator side. Moreover, we have the following result.

Theorem 2. The process {θk} forms a time-inhomogeneous
Markov chain with transition probabilities pk,ij = Pr[θk+1 =
j|θk = i] determined by the pmfs fk according to

pk,ij =



qk if j = 0

(1− qk)
i−1∏
m=0

(1− q̃k(m)) if j = i+ 1

0 if j > i+ 1

(1− qk)q̃k(j − 1)

j−2∏
m=0

(1− q̃k(m)) if 1 ≤ j ≤ i ≤ N

(1− qk)
N−1∏
m=0

(1− q̃k(m)) if i = j = N + 1

,

with qk = fk+1(0) and

q̃k(j) =
fk−j(j + 1)

1−
∑j
m=0fk−j(m)

, (4)

denoting the probability that Uk−j arrives at time k + 1
given that it has not been received at time k or earlier.

Proof. The proof is similar to the time-homogeneous
case discussed in Fischer et al. (2013) and exploits that

packet delays are assumed to be independent. First, j = 0
indicates a transition from θk = i to θk+1 = 0, which
means that Uk+1 arrives at the actuator without delay.
The corresponding probability is thus fk+1(0).

For the remaining cases, we first conclude from (4) that
1− q̃k(j) denotes the probability that Uk−j does not arrive
at the actuator at time k + 1, given that is has not arrived
earlier. Then we note that a transition from θk = i to
θk+1 = i + 1 corresponds to the event that the currently
buffered sequence Uk−i is not replaced by a newer one
which means that none of the sequences Uk−i+1, . . . , Uk+1
will arrive at k + 1. Consequently,

pk,i(i+1) = (1− qk)

i−1∏
m=0

(1− q̃k(m)) .

Transitions from θk = i to θk+1 ≥ i + 2 are impossible
since the age of the buffered sequence can only increase by
one, namely in case it is not replaced. Hence, pk,ij = 0 for
j > i+ 1.

For 1 ≤ j ≤ i ≤ N , we have transitions from θk = i to
θk+1 = j that indicate a replacement of Uk−i by a newer
sequence Uk−(j−1). The corresponding probability is given
by

pk,ij = (1− qk)q̃k(j − 1)

j−2∏
m=0

(1− q̃k(m)) .

Finally, we note that the case i = j = N + 1 corresponds
to the event that at time k + 1 no valid packet is buffered
given that no valid packet was buffered at time k either.
Hence,

pk,(N+1)(N+1) = (1− qk)

N−1∏
m=0

(1− q̃k(m)) ,

which concludes the proof.

Remark 3. The result implies that the corresponding tran-
sition matrices Pk are lower Hessenberg matrices and that
the last two rows are always equal. For example, for N = 2
we have

Pk =



qk 1− qk 0 0
qk (1− qk)q̃k(0) (1− qk)(1− q̃k(0)) 0

qk (1− qk)q̃k(0) (1− qk)q̃k(1)(1− q̃k(0)) (1− qk)
1∏

m=0

(1− q̃k(m))

qk (1− qk)q̃k(0) (1− qk)q̃k(1)(1− q̃k(0)) (1− qk)

1∏
m=0

(1− q̃k(m))


.

By defining ψ
k

=
[
xT
k ηT

k

]T ∈ Rs, s = n+d, we obtain the
augmented dynamics

ψ
k+1

= Ã(θk)ψ
k

+ B̃(θk)Uk + w̃k , (5)

where

Ã(θk) =

[
A BH(θk)

0 F

]
, B̃(θk) =

[
BJ(θk)

G

]
, w̃k =

[
wk
0

]
,

E{w̃k} = 0, and Cov{w̃k} = W̃ = diag(W,0).

Eq. (5) represents the desired MJLS, with the jumping be-
tween theN+2 modes governed by the time-inhomogeneous
Markov chain {θk}. We note that the true value of θk is only
known to the controller if acknowledgments sent back from
the actuator are delivered instantaneously and without



losses. This assumption, often referred to as TCP-like
communication in literature, does not hold in real networks
since each data packet is subject to physical constraints
such as processing and propagation speed. Thus, in realistic
environments, θk is either unknown or becomes available
only belatedly.

Since the pmfs fk are unknown, the transition probabil-
ities cannot be calculated so that, apart from the zero
entries in the upper right corner, all entries of Pk are
generally unknown. However, Assumption 1 implies that
pk,(N+1)(N+1) ∈ [0, δ] for some δ < 1. Exploiting the
dependencies between the entries according to Theorem 2,
we can use the multi-simplex approach from Oliveira et al.
(2008) to show that for any N we can always find an L ∈ N
and corresponding transition matrices T(1), . . . ,T(L) such
that at each time step Pk can be expressed in terms of a
convex combination

Pk =

L∑
r=1

αk(r)T(r) , αk(r) ≥ 0 ,

L∑
r=1

αk(r) = 1 .

In other words, Pk varies within a convex polytope with
vertices T(1), . . . ,T(L) and each transition probability is

given by pk,ij =
∑L
r=1αk(r)tij(r). For instance, for N = 2,

Pk varies within a polytope with L = 36 vertices, while for
N = 5 we already have L = 8640.

For the subsequent analyses of the polytopic MJLS (5), we
use the following definition of mean square stability that
can, for instance, be found in Costa and Fragoso (1993).

Definition 4. The dynamics (5) with Uk ≡ 0 is mean
square stable if for every initial condition (ψ

0
, θ0) it holds

lim
k→∞

∥∥∥E
{
ψ
k

}∥∥∥ = 0 , lim
k→∞

∥∥∥E
{
ψ
k
ψT

k

}
−Q

∥∥∥ = 0 , (6)

for some Q that is independent of the initial conditions.

Following Costa et al. (2006) and Lun et al. (2016), we
introduce some notation associated with the augmented
dynamics that will be useful in the remainder according to

Q̃
(i)
k = E

{
ψ
k
ψT

k
1θk=i

}
, (7)

W̃
(i)
k = E

{
w̃kw̃

T
k 1θk=i

}
, (8)

φ(Q̃k) =

[
vec
(
Q̃

(0)
k

)T

. . . vec
(
Q̃

(N+1)
k

)T
]T

, (9)

φ(W̃k) =

[
vec
(
W̃

(0)
k

)T

. . . vec
(
W̃

(N+1)
k

)T
]T

, (10)

A = diag(Ã(0) ⊗ Ã(0), . . . , Ã(N+1) ⊗ Ã(N+1)) .

Using (5) and (8), it follows that the dynamics of the
mode-conditioned second moment (7) is

Q̃
(j)
k+1 =

N+1∑
i=0

L∑
r=1

αk(r)tij(r)

(
Ã(i)Q̃

(i)
k

(
Ã(i)

)T

+ W̃
(i)
k

)
,

and consequently

vec
(
Q̃

(j)
k+1

)
=

N+1∑
i=0

L∑
r=1

αk(r)tij(r)
(
Ã(i) ⊗ Ã(i)

)
vec
(
Q̃

(i)
k

)
+

N+1∑
i=0

L∑
r=1

αk(r)tij(r) vec
(
W̃

(i)
k

)
,

since vectorization is a linear operation and it holds
vec (XYZ) =

(
ZT ⊗X

)
vec (Y). Writing this in terms of

φ(Q̃k) and φ(W̃k) yields

vec
(
Q̃

(j)
k+1

)
=

L∑
r=1

αk(r)
(
T:j(r)

T ⊗ Is2
) (

Aφ(Q̃k) + φ(W̃k)
)
,

so that the dynamics of (9) is finally given by

φ(Q̃k+1) = Γkφ(Q̃k) + Σkφ(W̃k) , (11)

where

Γk =

L∑
r=1

αk(r)
(
T(r)T ⊗ Is2

)
A , (12)

Σk =

L∑
r=1

αk(r)T(r)T ⊗ Is2 . (13)

Introducing the finite set AL = {Λ(1),Λ(2) . . . ,Λ(L)}
with Λ(r) =

(
T(r)T ⊗ Is2

)
A, we get from (12) that

Γk ∈ conv(AL).

With these prerequisites, we can now establish a necessary
and sufficient condition for mean square stability of (5)
based on the joint spectral radius (JSR) of AL.

Generally, for a given set of matrices, the JSR is defined
as follows according to Jungers (2009).

Definition 5. Let M = {M1,M2, . . . ,MM} be a set of
real square matrices and set

Πk(M) =

{
k∏
i=1

Mli |l1, l2, . . . , lk ∈ {1, . . . ,M}

}
.

For any matrix norm, consider the quantity

ρk(M) = sup
P∈Πk(M)

‖P‖1/k . (14)

The limit for k →∞ of this quantity, which always exists
and is independent of the chosen norm,

ρ(M) = lim
k→∞

ρk(M) ,

is called the joint spectral radius of M.

In the remainder, we will make use of the following two
well-known facts. Proofs are, for instance, given in Berger
and Wang (1992) and Jungers (2009), respectively.

Fact 6. For any finite set of matricesM, ρ(M) < 1 if and
only if any P ∈ Πk(M) converges to 0 as k →∞.

Fact 7. For any finite set of matricesM, it holds ρ(M) =
ρ(conv(M)).

Before we proceed with the presentation of the main results
of this work in the next section, we want to emphasize that
the assumption of independent packet delays and losses is
essential for the augmented dynamics (5) to be a MJLS. If
instead correlations between consecutive delays and losses
are considered, {θk} is generally not a Markov chain. This
is due to the fact that θk depends on the delays experienced
by the control sequences Uk−N , . . . , Uk (cf. (3)) and thus
on the random variables τk−N , . . . , τk. For instance, θk = 2
if and only if τk−2 ≤ 2, τk−1 > 1, and τk > 0. For the
common assumption of Markovian packet delays and losses
this dependency for example leads to Pr[θk+1 = 1|θk =
1, θk−1 = 0] 6= Pr[θk+1 = 1|θk = 1, θk−1 = 1], certifying
that {θk} is indeed not a Markov chain.



However, the modeling approach used in this paper re-
sembles the one used by Quevedo and Gupta (2011)
and Quevedo et al. (2015) in their research on sequence-
based anytime control with Markovian processor availabil-
ity. By adapting the methodology used therein, we expect
that we can construct an aggregated Markov chain of the
form {(τk, θk)} so that the augmented dynamics would
then again be expressed in terms of a polytopic MJLS. Just
very recently, a similar idea has been seized by Lun and
D’Innocenzo (2019) in the context of wireless networked
control. This would in turn mean that the results presented
in the following would carry over with only little modifi-
cation to the case of Markovian packet delays and losses
with time-varying and unknown transition probabilities.
Substantiating this proposition is part of our ongoing
research.

4. MAIN RESULTS

Theorem 8. The polytopic MJLS with wide-sense station-
ary noise as given by (5) (with Uk ≡ 0) is mean square
stable if and only if ρ(AL) < 1.

Proof. From (11) it follows that

φ(Q̃k) = Γk−1Γk−2 . . .Γ0φ(Q̃0)

+

k−1∑
i=0

(
k−1∏
l=i+1

ΓT
l

)T

Σiφ(W̃i) .
(15)

To show necessity, the hypothesis (6) implies that there
exist Q such that for any initial condition

lim
k→∞

E
{
ψ
k
ψT

k

}
= lim
k→∞

N+1∑
i=0

Q̃
(i)
k = Q ,

which means that each Q̃
(i)
k must converge to some Q(i).

Consequently, we have for any initial condition φ(Q̃0) that

lim
k→∞

φ(Q̃k) =
[
vec
(
Q(0)

)T
. . . vec

(
Q(N+1)

)T]T
. (16)

For φ(Q̃0) = 0, i.e., E
{
ψ

0
ψT

0

}
= 0, the first term on the

right side of (15) vanishes for any k, implying that the
second term converges to the limit given in (16). Since

this term is independent of φ(Q̃0), the first term on the
right side of (15) must vanish for any initial condition.
Thus, Γk−1Γk−2 . . .Γ0 ∈ Πk(conv(AL)) must converge to
0. Applying Facts 6 and 7 then yields that ρ(AL) < 1.

For sufficiency, we first note, using again Facts 6 and 7,
that ρ(AL) < 1 implies that the first term on the right
side of (15) vanishes as k → ∞. Then, according to (13)
the Frobenius norm of Σk is bounded from above by some
ξ > 0

‖Σk‖F ≤
L∑
r=1

αk(r)
∥∥T(r)T ⊗ Is2

∥∥
F
≤

L∑
r=1

∥∥T(r)T ⊗ Is2
∥∥
F

= ξ .

Similarly, from (10) we get for φ(W̃k)

‖φ(W̃k)‖2 =

√√√√N+1∑
i=0

∥∥∥vec
(
W̃

(i)
k

)∥∥∥2

2
=

√√√√N+1∑
i=0

∥∥∥W̃(i)
k

∥∥∥2

F

=

√√√√N+1∑
i=0

‖E{1θk=i}‖2 ‖W̃‖2F ≤ ‖W̃‖F .

Thus, for the norm of the sum on the right of (15) we
obtain∥∥∥∥∥∥
k−1∑
i=0

(
k−1∏
l=i+1

ΓT
l

)T

Σiφ(W̃i)

∥∥∥∥∥∥
2

≤ ξ‖W̃‖F
k−1∑
i=0

∥∥∥∥∥∥
(

k−1∏
l=i+1

ΓT
l

)T
∥∥∥∥∥∥
F

.

Since ρ(AL) < 1, it follows from (14) that for sufficiently
large k we have ρk(conv(AL)) < β < 1. Thus, using the
same arguments as in Lun et al. (2016), we can state that
there exist χ ≥ 1 such that for all k it holds ‖P‖F ≤ χβk
for any P ∈ Πk(conv(AL)). Hence,

ξ‖W̃‖F
k−1∑
i=0

∥∥∥∥∥∥
(

k−1∏
l=i+1

ΓT
l

)T
∥∥∥∥∥∥
F

≤ ξχ‖W̃‖F
k−1∑
i=0

βk−i−1 <∞ ,

as the sum on the right is a geometric series, which
establishes the convergence of the second moment. To
conclude the proof, it remains to show that ρ(AL) < 1⇒
limk→∞

∥∥∥E
{
ψ
k

}∥∥∥
2

= 0. Similar to Costa and Fragoso

(1993), this is readily verified by considering the noise free-

dynamics ψ
k+1

= Ã(θk)ψ
k

for which
∥∥∥Q̃(i)

k

∥∥∥
F
→ 0 as k

approaches infinity and noticing that∥∥∥E
{
ψ
k

}∥∥∥2

2
≤ E

{∥∥∥ψ
k

∥∥∥2

2

}
≤ s

N+1∑
i=0

∥∥∥Q̃(i)
k

∥∥∥
F
.

It has been proved in Lun et al. (2016) that determining
whether ρ(AL) < 1 is NP-hard even for polytopic MJLS
with only two vertices in AL. Thus, unless P = NP ,
there cannot exist any polynomial time algorithm to decide
whether (5) is mean square stable or not.

In the remainder we provide sufficient conditions for mean
square stability and stabilizability, respectively, based on
LMI feasibility problems that are similar to, but more
general than the ones derived in Aberkane (2011) for
polytopic MJLS without noise. To that end, we first
establish a sufficient condition for mean square stability
that requires that an infinite set of matrix inequalities be
solved.

Theorem 9. If there exist D(0),D(1), . . . ,D(N+1) > 0 such
that for i = 0, 1, . . . , N + 1 it holds

D(i) −
(
Ã(i)

)T N+1∑
j=0

L∑
r=1

αk(r)tij(r)D
(j)Ã(i) > 0 , (17)

then the polytopic MJLS (5) (with Uk ≡ 0) is mean square
stable.

Proof. We proceed similar to the proof of Proposition 7
in Costa and Fragoso (1993) and consider the dynamics

Y
(j)
k+1 =

N+1∑
i=0

L∑
r=1

αk(r)tij(r)Ã
(i)Y

(i)
k

(
Ã(i)

)T

, (18)

with initial condition Y
(i)
0 ≥ 0 for i = 0, . . . , N + 1. By

noticing that

V (Yk) =

N+1∑
i=0

tr[D(i)Y
(i)
k ] ,

is a Lyapunov function for the system (18) and, moreover,
is radially unbounded, we conclude that the equilibrium



Y(i) = 0 is globally asymptotically stable. Consequently,
the vectorized dynamics

φ (Yk+1) = Γkφ (Yk) ,

with Γk as given by (12), is also globally asymptotically sta-
ble. Thus, ΓkΓk−1 . . .Γ0 ∈ Πk(conv(AL)) must converge
to 0 for any initial condition, from which the claim follows.

Based on (17), the following result provides a sufficient
condition for mean square stability of (5) that is easy to
evaluate using state-of-the-art LMI solvers.

Theorem 10. There exist D(0),D(1), . . . ,D(N+1) > 0 sat-
isfying (17) for i = 0, 1, . . . , N + 1 if and only if
there exist S(0),S(1), . . . ,S(N+1) > 0 and nonsingular
E(0),E(1), . . . ,E(N+1) satisfying[(

E(i)
)T

+ E(i) − S(i) Z(i)(r)
Z(i)(r)T S̄

]
> 0 , r = 1, . . . , L ,

for i = 0, 1, . . . , N + 1, where

Z(i)(r) =
(
Ã(i)E(i)

)T (
t(i)(r)⊗ Is

)
,

t(i)(r) =
[√

ti0(r)
√
ti1(r) . . .

√
ti(N+1)(r)

]
, (19)

S̄ = diag(S(0),S(1), . . . ,S(N+1)) . (20)

Proof. The result is proven using arguments similar to
those employed to prove Proposition 2 in Aberkane (2011).

Theorem 10 enables us to determine the existence of a
stabilizing mode-independent state feedback law

Uk = Lψ
k
, (21)

as indicated by the corollary below.

Corollary 11. The polytopic MJLS (5) is mean square
stabilizable by mode-independent state feedback (21) if
there exist S(0),S(1), . . . ,S(N+1) > 0 and E,K such that
for each i = 0, 1, . . . , N + 1 the LMIs[

ET + E− S(i) Z̃(i)(r)

Z̃(i)(r)T S̄

]
> 0 , r = 1, . . . , L ,

with

Z̃(i)(r) =

((
Ã(i)E

)T

+
(
B̃(i)K

)T
)(

t(i)(r)⊗ Is

)
,

and t(i)(r) and S̄ given by (19), (20), are feasible. The
stabilizing controller gain is then given by L = KE−1.

Proof. The corollary is shown using the same reasoning as
in the proof of Theorem 10 by considering the closed-loop
dynamics

ψ
k+1

=
(
Ã(θk) + B̃(θk)L

)
ψ
k

+ w̃k ,

and the change of variables K = LE.

An implementation of the proposed control law that uses
yalmip (Löfberg, 2004) and SDPT3 (Tütüncü et al., 2003)
to evaluate the LMI condition given in Corollary 11 is part
of CoCPN-Sim and can be found on github (Jung and
Rosenthal, 2018).

5. ILLUSTRATIVE EXAMPLE

In this section, we provide a numerical example to illus-
trate the derived results by means of a simulation. To

that end, we consider a double integrator plant with

state xk = [sk ṡk]
T

, where sk denotes the horizontal
displacement of the body in meters, and parameters

A =

[
1 ta
0 1

]
, B =

[
0

1/m

]
, W = 0.1

[
t2a/2
ta

] [
t2a/2
ta

]T

,

in (1), where ta = 0.01 s, m = 2 kg, and the noise is
Gaussian distributed.

The goal is to synthesize a stabilizing sequence-based
controller that communicates the control inputs to the plant
over a network with time-varying packet delay and loss
probabilities. For controller synthesis, we use N = 3, which
corresponds to control sequences of length four, so that
the resulting augmented dynamics (5) is a polytopic MJLS
with five modes and the transition matrix Pk varies within
a polytope with L = 192 vertices. Accordingly, the set AL
contains 192 matrices, each of which being of dimension
320 × 320. Using the JSR toolbox from Vankeerberghen
et al. (2014), we verify that 1 ≤ ρ(AL) ≤ 1.2447, implying
that the uncontrolled augmented dynamics is not mean
square stable. This is expected since the plant dynamics
taken by itself is already not (asymptotically) stable.

However, assuming that sequences of length four are large
enough to satisfy Assumption 1 and setting δ = 0.1 so that
pk,44 is assumed to lie within the interval [0, 0.1], we can
invoke Corollary 11 to compute a stabilizing state feedback
controller with gain

L =

−0.510 −1.512 0.044 −0.255 −0.350 0.072 −0.235 0.068
−0.085 −0.199 −0.029 0.009 −0.009 −0.026 0.004 −0.020
−0.091 −0.219 −0.015 −0.034 −0.002 −0.035 −0.039 −0.036
−0.090 −0.221 −0.015 −0.040 −0.054 −0.036 −0.043 −0.036

 .
To illustrate that the controller does indeed stabilize the
plant, we carry out 1000 simulation runs, each of which is
comprised of 10000 time steps. In each run, the initial plant
state is randomly drawn from a Gaussian distribution with
mean and covariance

x̂0 =

[
5
0

]
, X0 = 0.52

[
1 1
1 2

]
.

To simulate a network with time-varying delay and loss
probabilities, at each time step a pmf is chosen by randomly
picking a row from the stochastic matrix

0.0001 0.455 0.430 0.045 0.03 0.0200 0.0199
0.0001 0.455 0.400 0.045 0.02 0.0199 0.0300
0.0001 0.455 0.430 0.045 0.03 0.0199 0.0200
0.0001 0.455 0.430 0.045 0.02 0.0300 0.0199
0.0001 0.455 0.045 0.430 0.02 0.0300 0.0199
0.0001 0.045 0.455 0.430 0.02 0.0300 0.0199
0.0001 0.430 0.045 0.455 0.02 0.0199 0.0300
0.0001 0.045 0.430 0.455 0.02 0.0199 0.0300
0.0001 0.455 0.430 0.030 0.02 0.0199 0.0450
0.0001 0.455 0.030 0.430 0.02 0.0199 0.0450


,

according to which the actual packet delay is then drawn.
In each pmf the last entry subsumes the probability that
a packet is delayed by more than five time steps or gets
lost (infinite delay), whereas the first entry, indicating the
probability that a packet is to be delivered without delay, is
chosen very small to reflect the behavior of real networks.

After the simulation runs, an estimate of E{xk} is cal-
culated in terms of the sample mean x̄k. The evolution
of the norm of x̄k over time is depicted in Figure 2 and
an exemplary state trajectory from a single run is shown
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Fig. 2. Norm the sample mean x̄k of the plant state over
time.

in Figure 3. The results indicate that the closed loop system
is mean square stable. In fact, they even suggest exponential
mean square stability.

6. CONCLUSION

In this work, sequence-based control over networks with
time-varying and generally unknown delay and loss prob-
abilities was considered. Stability analysis and controller
synthesis were addressed based on a problem reformulation
in terms of a polytopic MJLS. Subsequently, a necessary
and sufficient condition for mean square stability and a
sufficient condition for the existence of a stabilizing state
feedback controller were derived and illustrated by means
of simulations.

Future research will investigate whether mean square
stability and exponential stability, which are known to be
equivalent characterizations of noise-free polytopic MJLS,
are also equivalent for the considered polytopic MJLS
driven by wide-sense stationary noise. While this is strongly
suggested by our simulation results, a formal verification
is demanded. Additionally, future research will extend the
presented results by considering output feedback in setups
where sensor data communicated to the controller are also
subject to delays and losses.
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