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Abstract: In recent years, the demand for accurate and delay-free kinematic state estimates,
especially regarding acceleration, led to the adoption of inertial sensors placed along the kinematic
chain of robotic manipulators. With state-of-the-art signal processing algorithms, arbitrary
setups of accelerometers and gyroscopes can be deployed, raising the question of where and
how many sensors should be placed for an optimal estimation quality. This paper presents a
novel observability-based approach to answer this question independent of a specific estimator
implementation. For this purpose, methods for calculating the required sensor measurement ranges
and predicting the estimation quality regarding velocity and acceleration are introduced and
discussed. The resulting procedure is validated successfully by comparing predicted and actual
estimation quality for two example manipulators, indicating that it can provide meaningful aid
to a design engineer.
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1. INTRODUCTION

A basic requirement for high-precision robot systems is
accurate knowledge about the kinematic state composed of
joint position, velocity, and acceleration. Especially the latter
is required for the application of advanced control schemes,
such as Han et al. (2000); Wu et al. (1996); Zimmermann et al.
(2020). Unfortunately, pure encoder setups are insufficient
for obtaining suitable acceleration estimates as the accuracy
is limited in real-time context due to encoder noise and
the phase lag of smoothing filters. For this reason, the
addition of inertial sensors to manipulators with the goal to
improve the quality of kinematic state estimates has become
appealing. The algorithms created in this context usually
rely on a specific sensor setup or cannot handle arbitrary
combinations of gyroscopes and accelerometers as seen in
Nori et al. (2018). Just recently, we published a new method
(Fennel et al. (2022)) removing any requirements on the
placement of the inertial sensors and facilitating superior
velocity and acceleration estimates compared to encoder-
only setups. While this creates plenty of design opportunities,
it raises the question of how an optimal configuration of
inertial sensors looks like on a given manipulator, taking
into account criteria such as sensor count, measurement
range utilization, and estimation quality.

The issue of finding an optimal distribution of sensors is a
recurring topic in different engineering domains. For exam-
ple, Chen and Li (2002) present a method for automatically
determining camera poses for optimal visual inspection
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and Frisch et al. (2022) consider the problem of optimally
placing sensors for multilateration. In the context of robot
manipulators, Wijayasinghe et al. (2018) study different
inertial sensor configurations on a SCARA manipulator to
estimate the robot pose when joint encoders are unavailable.
Here, the rating is based directly on an estimator’s RMS
error and hence requires a full simulation pipeline or physical
experiments, which is costly for complex manipulators. A
very similar approach for the accurate state estimation of the
human lower limb is presented by Niswander et al. (2020).
The necessity of running the actual state estimator to assess a
sensor configuration is eliminated for continuum robots in the
work of Mahoney et al. (2016). Instead, the posterior covari-
ance of a Kalman Filter-based estimator is utilized to obtain
an expression for the uncertainty of a sensor setup without
sensor readings. Unfortunately, this approach is tailored to
continuum robots and cannot be transferred easily to serial
kinematic chains. Furthermore, only the placement of sensors
is optimized but not the actual sensor set. In control theory,
the observability of a system is of interest for the selection
and placement of sensors, as it provides information about
the ability to estimate some variables without necessarily
measuring them directly. This idea is also applied in various
robotic use cases, such as gripper design (Grossard et al.
(2009)) or trajectory planning (Glotzbach et al. (2014)). In
the context of kinematic state estimation, a noteworthy con-
tribution was made by Hinson (2014), where the observability
Gramian and the observability rank condition are used
in applications such as gyroscopic sensing in insect wings.
Likewise, Rakhim et al. (2019) use the observability Gramian
to optimize the sensor placement and the sensor subset on a



variable impedance actuated robot. Although this approach
is already close to answering the initially stated question, it
lacks the ability to focus on velocity and acceleration state
information and it overlooks measurement range limitations.

For this reason, we propose a novel sensor placement pro-
cedure that is based on the observability Gramian and that
facilitates the optimal placement of a pre-defined maximal
number of gyroscopes and accelerometers. Beyond that, we
assess the sensors’ measurement range limits to assist in the
selection of suitable sensor locations and types.

2. PRELIMINARIES

Throughout this paper, vectors are printed underlined and
matrices are printed in bold. Positions, linear velocities, and
linear accelerations are denoted with

¯
x,

¯
v, and

¯
a, respectively.

For rotations, rotation matrices C are used in combination
with angular velocities

¯
ω. Furthermore,

¯
q is the generalized

joint configuration vector. Superscripts denote the resolving
coordinate frame in which a quantity is expressed. The
subscripts denote the reference frame (if applicable) and the
object frame. For example,

¯
xABC represents the position of

frame or point C relative to frame B, given in coordinates
of frame A. Similarly, RA

B describes the orientation of frame
B relative to frame A. The kinematic Jacobians J

¯
vW
WS

and

J
¯
ωW

WS
relate the joint velocity

¯
9q with the linear and the

angular velocity through
¯
vWWS=J

¯
vW
WS¯

9q and
¯
ωWWS=J

¯
ωW

WS¯
9q .

To reference the i-th element of a vector, [i] is appended
to the subscript. Likewise, [i,j] addresses the i-th row and
the j-th column of a matrix. The notation a:b is used to
express an index range from a to b− 1. Omitted bounds
are equivalent to the natural bounds of the range. In the
remainder, the world frameW is considered an inertial frame
and marks the stationary base of the robot. All quantities
are given in SI units unless otherwise specified.

3. PROBLEM FORMULATION

In this paper, a serial manipulator with known forward kine-
matics and n joints, which are either prismatic or revolute
joints, is considered. Kinematic redundancies are explicitly
allowed. Each joint is equipped with an encoder providing
absolute but noisy position data with standard deviation σE .
This way, all kinematic joint quantities are guaranteed to be
observable without further instrumentation, independent of
singularities and redundancies. It is possible to install zero
or more triaxial, noisy inertial sensors along the kinematic
chain. Each of these sensors is described by the tuple

S=
(
I ,σ , l ,

¯
xβl

βlS
,Cβl

S

)
, (1)

whereas I ∈{A,G} decides whether the sensor mounted at
frame S on link l∈{1, ...,n} with noise standard deviation
σ is an accelerometer or a gyroscope. The placement of S

relative to the link is specified using
¯
xβl

βlS
and Cβl

S with the
link reference frame βl . The sensor configuration

K={S1 , ... ,Sk} (2)

represents the unique combination of k ∈ N0 sensors. All
feasible sensor configurations with exactly m= |K| sensors
are summarized in the set Km. With an upper bound of l
sensors, the total set of feasible sensor configurations is

K̄l=K0 ∪K1 ∪ ...∪Kl . (3)

As stated in the introduction, the motivation is to estimate
the manipulator’s kinematic state consisting of joint posi-
tion

¯
q , velocity

¯
9q , and acceleration

¯
:q as best as possible

with a constrained number of sensors. Thus, the sensor
configuration K∗ that minimizes an observability measure
J describing the potential estimation uncertainty has to be
found. Mathematically, this is equivalent to

K∗=argmin
K∈K̄l

J(K) . (4)

4. PLACEMENT PROCEDURE

The previous problem statement raises two questions. On
the one hand, it is unclear which sensor configurations are
feasible. On the other hand, a suitable objective function
has to be specified. Both questions will be answered in the
following, yielding a novel sensor placement algorithm.

4.1 Calculation of Measurement Ranges

For sensor fusion, it is vital that all inertial sensors are
exposed to physical values within their measurement ranges.
However, the measurement range of sensors cannot be in-
creased arbitrarily without sacrificing resolution or violating
device specifications. For this reason, the expected maximal
quantity must be evaluated beforehand for each potential
sensor position, depending on the expected maximal joint
velocities and accelerations as well as the configuration

¯
q .

Eventually, suitable sensor types can be identified with the
resulting measurement ranges.

Formally, we assume that the set of reachable joint velocities
has the shape of an axis-aligned ellipsoid scaled with the
maximal joint velocities

¯
9qmax , i.e.,{

¯
9q=D

¯
9q
¯
9̃q | ||

¯
9̃q||2≤1

}
with D

¯
9q =diag

(̄
9qmax

)
. (5)

Although this does not reflect the reality in the case of fully
independent joints, it provides a good approximation as
all joints rarely reach their maximal velocity at the same
time. Furthermore, it facilitates the calculation of true upper
bounds for all inertial sensor measurements as shown below.
The set of reachable joint accelerations is defined analogously
to (5) with D

¯
:q =diag

(̄
:qmax

)
.

Gyroscope: The angular rate measured at a gyroscope
mounted at frame S is given by

¯
ωSWS=CS

WJ
¯
ωW

WS¯
9q . (6)

With the definition of the set of feasible joint velocities
¯
9q ,

this can be written componentwise as

¯
ωSWS[i] =

(
CS
WJ

¯
ωW

WS
D

¯
9q

)
[i,:]¯

9̃q . (7)

The maximal absolute value of this expression is

¯
ωSWS,max[i] =max

∣∣∣
¯
ωSWS[i]

∣∣∣=∥∥∥∥(CS
WJ

¯
ωW

WS
D

¯
9q

)
[i,:]

∥∥∥∥
2

(8)

due to the submultiplicativity of the spectral norm and the
feasible range of

¯
9̃q. Hence, the maximal amplitude over all

gyroscope axes is

ωSWS,max =
∥∥

¯
ωSWS,max

∥∥
∞ . (9)



Accelerometer: The necessary calculations for an ac-
celerometer at frame S are more elaborate because the
acceleration in world coordinates

¯
aWWS=

∂

∂t

(
J

¯
vW
WS¯

9q
)

+
¯
g=J

¯
vW
WS¯

:q+
∂

∂t

(
J

¯
vW
WS

)
¯
9q+

¯
g (10)

is composed of terms depending on joint accelerations, joint
velocities, and gravity

¯
g. If the joint velocity dependant term

is considered componentwise, it can be rearranged to(
∂

∂t

(
J

¯
vW
WS

)
¯
9q

)
[i]

=
∂2

¯
xWWS[i]

∂
¯
q∂t ¯

9q=
¯
9qT
∂

∂
¯
q

(
∂

¯
xWWS[i]

(̄
q
)

∂
¯
q

)T
¯
9q

=
¯
9qTHi

¯
9q

(11)

using the definition of the Jacobian, Schwarz’s theorem, and
the chain rule. The occurring Hessian Hi of

¯
xWWS[i] can be cal-

culated as presented by Hourtash (2005) or with an extension
of the recursive scheme presented by Fennel et al. (2022).

The resolving frame is changed to S via componentwise
transformation yielding

¯
aSWS[i] =

(
CS
WJ

¯
vW
WS

)
[i,:]¯

:q︸ ︷︷ ︸
=

¯
β

+
¯
9qTH̃i

¯
9q︸ ︷︷ ︸

=
¯
γ

+CS
W [i,:]

¯
g︸ ︷︷ ︸

=
¯
δ

(12)

with

H̃i=

3∑
j=1

CS
W [i,j]Hi . (13)

The gravitation-dependant term
¯
δ is constant with respect

to
¯
9q and

¯
:q . The influence of the joint acceleration on

¯
β can

be handled analogously to the gyroscope in (8), resulting in
the componentwise maximal absolute values

¯
βmax[i] =max

∣∣∣
¯
β[i]

∣∣∣=∥∥∥∥(CS
WJ

¯
vW
WS

D
¯
:q

)
[i,:]

∥∥∥∥
2

. (14)

The quadratic term
¯
γ is analyzed with the Courant-Fischer-

Weyl min-max principle stating that

λmin,A
i ¯

9̃qT

¯
9̃q ≤

¯
9̃qTAi

¯
9̃q ≤ λmax,A

i ¯
9̃qT

¯
9̃q (15)

holds for any real symmetric matrix Ai∈Rn×n and
¯
9̃q∈Rn,

whereas λmin,A
i

and λmax,A
i

are the smallest and the
largest eigenvalue of Ai, respectively. By substituting

¯
9q

in
¯
γ according to the set definition (5)

Ai=DT

¯
9qH̃iD

¯
9q (16)

is obtained. With this, the componentwise lower and upper
bounds of

¯
γ are easily determined as

¯
γmin[i] =

{
0 if Ai positive definite

λmin,A
i

otherwise
, (17)

¯
γmax[i] =

{
0 if Ai negative definite

λmax,A
i

otherwise
, (18)

depending on the definiteness of Ai. Note, that these limits
are not overestimating the range of

¯
γ owing to the fact that

¯
9̃q can reach all normalized eigenvectors of Ai as well as zero.

Finally, the componentwise limits of
¯
aSWS are

¯
aSWS,max[i] =

¯
βmax[i]+max

(
|
¯
γmin+

¯
δ |[i],|

¯
γmax+

¯
δ |[i]

)
, (19)

taking into account that the range of
¯
γ is potentially

asymmetric and shifted by
¯
δ. The overall range of a triaxial

accelerometer at frame S is then

aSWS,max =
∥∥
¯
aSWS,max

∥∥
∞ . (20)

4.2 Observability Measure

Binary statements about the observability as they are often
used in control theory (e.g., see Chen (1999)) are not useful in
the problem context because a continuous objective function
is required. In particular, the assumed sensor setup with
encoders at each joint already guarantees full observability
of joint velocities and accelerations

To obtain a continuous measure for the observability of the
kinematic state

¯
x=(

¯
qT,

¯
9qT,

¯
:qT)T , (21)

we formulate the constant acceleration model

¯
9x=A

¯
x=

(
02n×n I2n×2n
0n×n 0n×2n

)
¯
x, (22)

that is initialized at state
¯
x0 and not affected by noise or in-

puts. As a result, the acceleration
¯
:q is assumed to be constant.

Although this is not true for arbitrary time horizons, it is a
reasonable approximation in the case of short time horizons
for which we desire to rate the observability. The correspond-
ing measurement equation with dimension n+3ng+3na

¯
ỹ(

¯
x,K)=

¯
y(

¯
x,K)+

¯
v=



¯
q

¯
ωG1

WG1

(̄
q,

¯
9q
)

...

¯
ω
Gng

WGng

(̄
q,

¯
9q
)

¯
aA1

WA1

(̄
q,

¯
9q,
¯
:q
)

...

¯
a
Ana

WAna

(̄
q,

¯
9q,
¯
:q
)


+

¯
v (23)

stacks the data from the encoders, from all ng gyroscopes
with the sensing framesG1 toGng , and from allna accelerom-
eters with the sensing frames A1 to Ana in the considered
sensor configuration K. Accordingly, the covariance matrix
RK of the additive white Gaussian noise

¯
v is populated

with the sensor covariances σ2
E , σ2

Gi
, and σ2

Ai
, whose values

depend on the sensor types, along its diagonal.

The time-discretization of the already linear system model
with sample time ∆t yields

¯
xk+l=Φl

¯
xk , (24)

where Φ= exp(∆tA) is a constant transition matrix. The
measurement model can be linearized using the Jacobian
J(

¯
x,K)=∂

¯
y(

¯
x,K)/∂

¯
x utilizing the partial derivatives from

Fennel et al. (2022). Now, the definition of the observability
Gramian G for non-linear time-discrete systems from Chen
(1999) can be applied, yielding

G(K,T )=

M∑
k=0

(
Φk
)T

JT(
¯
x̂k,K)R−1

K J(
¯
x̂k,K)Φk . (25)

Here, T is the reference joint trajectory with samples
¯
x̂k

and M the time horizon. This definition is closely related
to the weighted least squares problem

¯
x∗0 =argmin

¯
x0

M∑
k=0

∥∥∥R− 1
2

K
(
¯
zk−J(

¯
x̂k,K)Φk

¯
x0

)∥∥∥2

(26)

with

¯
zk=

¯
ỹ(

¯
xk,K)−

¯
y(

¯
x̂k,K)+J(

¯
x̂k,K)

¯
x̂k , (27)

because the covariance of the estimate
¯
x∗0 equals the inverse

of (25), i.e., Cov(
¯
x∗0) = G−1(K,T ) (see Bar-Shalom et al.

(2001)). Thus, the proposed observability Gramian describes



how much information can be obtained from a given sensor
setup and its inverse describes the estimation uncertainty.

Unfortunately, (25) cannot be directly plugged into the
optimization problem (4) as G(K,T ) is non-scalar and a
robot typically executes more than one trajectory. The first
problem can be solved with the construction of a scalar
quantity by exploiting the fact that the diagonal elements of
the inverse observability Gramian correspond to the mean
square estimation error. Hence, we propose two observability
measures, where smaller values imply higher observability:

(1) The velocity observability measure corresponds to
h

¯
9q (K,T )=tr

(
(G−1)(K,T )[n:2n,n:2n]

)
. This way, only

uncertainties of velocities are included.
(2) Analogously, a suitable measure for the

acceleration observability is defined by
h

¯
:q (K,T )=tr

(
(G−1)(K,T )[2n:,2n:]

)
.

A measure that includes the position observability can be
constructed as well, but this is usually not of interest in a
setup where

¯
q is directly measured by encoders. To solve

the second problem, we propose to simply average over the
different elements in the set of trajectories T . Therefore,

J(K)=
1

|T |
∑
T ∈T

h(K,T ) , h∈
{
h

¯
9q ,h

¯
:q

}
. (28)

4.3 Simplifications

So far, the objective function has been specified, but some of
the parameters are not yet defined. Furthermore, (4) is a non-
linear mixed-integer problem which is hard, if not impossible,
to solve. For this reason, the necessary simplifications are
presented in the following.

Time Horizon: For the practical computation of the observ-
ability Gramian, the time horizon M must be chosen finite.
We propose to setM=2 as the presence of the encoders facili-
tates an acceleration estimation after three measurements in
any case, guaranteeing a non-singular observability Gramian.
This short horizon also serves as justification for the approx-
imation with a constant acceleration model (22). Moreover,
replacing the linearization points

¯
x̂k of the trajectory T with

a single linearization point
¯
x̂0 is now a valid approximation,

as only small state changes are to be expected within 2∆t.

Discrete Mounting Points: The definition of the continuous
sensor placement (1) is universal but introduces major
complexity into the optimization process. Motivated by
practical designs, where installation space and thus possible
mounting options are limited, we suggest using a set of dis-
crete mounting poses instead of continuous ones. As a result,

the placement tuple (l,
¯
xβl

βlS
,Cβl

S ) just takes discrete values
and the set of feasible configurations Km becomes finite.
When p different placement options exists, m sensors can be
mounted in |Km|=

(
2p
m

)
different combinations. Accordingly,

|K̄l|=
∑min(2p,l)

m=0

(
2p

m

)
(29)

is the total number of feasible configurations with up to l sen-
sors. For typical robots, (e.g., p=18, l=12, |K̄l|≈2.2×109),
an exhaustive search is computationally costly, but still
tractable. Consequently, the solution to problem (4) can be
approximated with a combinatorial search. If constructive

velocity h=h
¯
9q acceleration h=h

¯
:q

# configuration K log10J ranking log10J ranking

1 {} 0.32 11 6.28 11
2 {G at S1} 0.02 9 5.98 10
3 {G at S2} 0.02 8 5.98 9
4 {A at S1} 0.05 10 5.98 7
5 {A at S2} −0.80 6 −4.05 4
6 {G at S1,G at S2} −4.12 1 1.66 6
7 {G at S1,A at S1} 0.02 7 5.98 8
8 {G at S1,A at S2} −1.10 3 −4.05 2
9 {G at S2,A at S1} −1.10 4 1.18 5
10 {G at S2,A at S2} −1.10 2 −4.05 3
11 {A at S1,A at S2} −0.80 5 −4.22 1

Table 1. Evaluation of the proposed observabil-
ity measures for all feasible sensor configura-
tions in the case of the SCARA manipulator.
The notation of K was simplified for brevity.

or economical reasons (e.g., sensors placed only in joints for
cost-effectiveness) demand it, the potential sensor mounting
points can be reduced. This does not affect the placement
procedure in general. However, the resulting estimates tend
to be less accurate in general due to the shorter lever arms
between joint axes and sensors.

Linearization Point: Although a short time horizon re-
moves the need for a fully specified reference trajectory, mul-
tiple linearization points are still required. If typical tuples of
joint position, velocity, and acceleration are available to the
design engineer, these can be used. However, in many cases,
this information is not known because it is application depen-
dent. Näıvely sampling over all possible values of

¯
x̂k∈R3n in

(28) is an option, but it will quickly become computationally
intractable for a higher number of joints. As an alternative,
the joint velocity and the joint acceleration in

¯
x̂k can be

set to
¯
0, which equals a movement starting from standstill.

Although this is a rather coarse approximation, we will see
that its effect is tolerable in Section 5. The objective (28)
therefore collapses to averaging over a set of joint configura-
tions, that can be either derived from typical operating points
or sampled from the configuration space under avoidance of
irrelevant regions (e.g., kinematic singularities, symmetry).

4.4 Procedure Summary

To obtain an optimized placement of up to l sensors, the
following steps must be performed:

(1) Identify a set of suitable sensor mounting poses.
(2) Select a set of typical joint configurations for which

to calculate the expected measurement range and the
observability measure.

(3) Calculate the expected maximal sensor values according
to Section 4.1 for all considered joint configurations
and select appropriate sensors, whose noise standard
deviations are noted.

(4) Perform the combinatorial search with ranking accord-
ing to Section 4.2 and Section 4.3.

5. EVALUATION

In the following, the procedure is applied to two examples.

5.1 SCARA Manipulator

For the first example, the placement procedure is applied
to a two-joint SCARA manipulator as depicted in Fig. 1(a).



W

S1

S2

(a) SCARA manipulator.

W

S2

S1

S3
S4

S5
S6

S7

S8

S9S10S11

(b) Manipulator with 8 joints.

Fig. 1. Models used for the evaluation of the placement
procedure. The potential mounting poses are marked
with blue spheres and coordinate systems.

(a) Velocity h=h
¯
9q . (b) Acceleration h=h

¯
:q .

Fig. 2. Visualization of the observability measures for all
feasible sensor configurations.

Both links have a length of 1 m and a potential mounting
point for inertial sensors at their distal ends. To keep the
problem comprehensible, only the configuration as shown
in Fig. 1(a) is used for the sum (28). This completes step 1
and 2 from Section 4.4.

For step 3, the maximal joint velocity and acceleration are as-
sumed to be

¯
9qTmax =(180 180)°s−1 and

¯
:qTmax =(720 720)°s−2,

respectively. This results in a maximal scalar output magni-
tude ωS1

WS1,max = 180°s−1 for a gyro at S1 and ωS2

WS2,max =

255°s−1 for a gyro at S2. Since both sensor frames’ z-axes are
aligned with the joint axes, this is straightforward to verify.
The calculated maximal accelerations at S1 is aS1

WS1,max =

12.6ms−2, which can be verified by calculating gravity, linear,
and centripetal acceleration. The maximal acceleration at S2

is aS2

WS2,max = 32.3ms−2 and occurs at
¯
9qT = (127 127)°s−1,

¯
:qT =(720 0)°s−2, as one can verify manually using

¯
aS2

WS2
=

¯
:q[1]−(

¯
9q[1]+

¯
9q[2])

2

¯
9q2
[1]+

¯
:q[1]+

¯
:q[2]

9.81ms−2

 . (30)

Consequently, typical MEMS sensors such as the InvenSense
MPU-9250 are a suitable choice. The resulting standard
deviations at a sampling frequency of 1 kHz are then typically
0.32 °s−1 for gyroscopes, 9.5×10−3 ms−2 for accelerometers,
and 0.023° for encoders.

The observability measures from step 4 for all feasible
configurations with up to two sensors are listed in Table 1
and visualized in Fig. 2. For an optimal velocity estimate (see
Fig. 2(a)), the configuration with gyros at both links should
be favored. Combinations with one gyroscope perform much
worse because the contributions of both joints cannot be

Fig. 3. RMS errors of the studied sensor configurations
for the SCARA manipulator. Each setup is colored
according to the observability measure J with h=h

¯
:q .

The dashed lines represent the RMS values of the
excitation signals.

distinguished due to the parallel joint axes. The addition
of accelerometers does not improve the velocity estimation
significantly, because they only observe velocity changes
in the absence of centrifugal and Coriolis accelerations. In
contrast to that, an optimal acceleration estimate can be
obtained using at least one accelerometer at S2 according
to Fig. 2(b). Here, one accelerometer is already sufficient as
both joint accelerations excite a different measurement axis.
Interestingly, a second accelerometer at S1 does not increase
the observability score much according to Table 1. If an
accelerometer atS2 is excluded, medium-quality acceleration
estimates can be obtained using either two gyros or using one
gyro and one accelerometer at different joints. These findings
match with what one might expect based on an engineer’s
intuition: It is beneficial to measure a kinematic quantity
without the need for differentiation or integration. Further-
more, one triaxial sensor can sense multiple joints very well
as long as the resulting sensor excitations are orthogonal.

To test the meaningfulness of the previous results, all sensor
configurations and their acceleration observability scores
were analyzed with the IMU-based kinematic state estimator
from Fennel et al. (2022). The associated simulation includes
sensor errors such as bias, noise, and quantization, but not
scale-factor errors or placement errors as these can distort
the estimator performance. Fig. 3 depicts the resulting RMS
errors for acceleration and velocity. The estimation quality
across a large range of frequencies is strongly correlated with
the acceleration measure. Even the ranking from the last
column of Fig. 1 is reflected for close scores. Interestingly,
the acceleration ranking is also valid for ranking the velocity
estimation. This is caused by the fact that the used esti-
mator always has a previous velocity estimate allowing the
integration of acceleration signals, which stands in contrast
to the assumption of the weighted least square problem
without prior knowledge from (26). Despite this explainable
discrepancy, these results endorse the simplifications from
Section 4.3 regarding time horizon, linearization point, and
averaging of joint configurations.



at frame S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Gyroscope 0.0 0.0 6.0 6.0 8.4 8.4 8.4 11.5 11.5 11.5 16.1
Accelerometer 9.8 9.8 9.8 21.3 25.1 36.5 53.0 59.1 53.7 53.5 65.2

Table 2. Calculated maximal sensor values
for the potential mounting poses on the

manipulator with 8 joints.

# of sensors configuration K log10J

0 {} 6.89
1 {A at S11} 6.66
2 {G at S11,A at S10} 6.28
3 {G at S11,A at S2,S10} 1.65
4 {G at S11,A at S2,S10,S11} 1.18
5 {G at S11,A at S2,S9,S10,S11} 1.18
6 {G at S11,A at S2,S5,S9,S10,S11} 1.18

14∗ {G and A at S1,S2,S4,S7,S8,S10,S11} 1.18

Table 3. Observability measures with h=h
¯
:q for

the best configuration with a given number of
sensors. For comparison, a non-optimal config-
uration with a total of 14 sensors (∗) was added.

5.2 Manipulator with 8 Joints

To demonstrate the effectiveness of the proposed place-
ment procedure for complex manipulators, whose properties
cannot be deduced by hand without great effort, we used
the kinematic chain from Fig. 1(b) with 2 prismatic and 6
revolute joints. Following the steps from Section 4.4, we first
selected suitable mounting poses at each link. As depicted
in Fig. 1(b), mounting poses that are fully translation
invariant to existing mounting poses were omitted (e.g.,
S8 can be shifted up or down arbitrarily). For step 2, the
shown configuration was augmented with 80 configura-
tions, where joint 3 varies ±45.0° and joints 4 to 6 vary
±22.5° as this is the typical operation range for the studied
manipulator according to Fennel et al. (2021). With the
assumption, that the maximal joint velocities and acceler-
ations are

¯
9qTmax =(1.5 1.5 6.0 6.0 7.9 7.9 14.0 14.0)

and
¯
:qTmax = (6.0 6.0 12.6 12.6 12.6 12.6 12.6 12.6),

the measurement ranges from Table 2 are obtained in step
3. From this, it is clear that a measurement range with
±1000°s−1 and ±8ms−2 is a reasonable selection criterion
for gyroscope and accelerometers, respectively.

According to (29), 110056 sensor combinations are possible
with up to six sensors. For this reason, Table 3 only lists the
best configuration for each number of sensors. Interestingly,
already four sensors at suitable positions are sufficient to min-
imize the observability measure. Additionally, the last entry
of the table indicates that even placing a gyroscope and an ac-
celerometer at the end of each link, which increases the num-
ber of sensors to 14, yields no improvement regarding acceler-
ation observability. Although these results might look coun-
terintuitive at the first glance, they match the behavior of
the IMU-based kinematic state estimator from the previous
chapter as shown in Fig. 4. Hence, the proposed algorithm is
meaningful even for complex problems and facilitates the pre-
diction of the estimation quality of a functioning estimator.

6. CONCLUSION

As shown in the evaluation, the presented placement proce-
dure is a helpful tool for finding an optimal inertial sensor
configuration in the context of kinematic state estimation.
Experiments with a real-world state estimator revealed

Fig. 4. RMS errors for the manipulator with 8 joints analog
to Fig. 3. Note, that the outlier and the missing
samples for 1 and 2 sensors are caused by numerical
instabilities of the underlying estimator and therefore
are unrelated to the placement procedure.

that especially the proposed observability measure for the
acceleration is a meaningful quantity to judge the expected
estimation quality of a sensor setup. Furthermore, our
placement procedure supports the design engineer by finding
good solutions, that might be hard to discover manually,
and by providing upper bounds for the measurement ranges,
which are helpful for the sensor selection.

In future work, we plan to remove some of the simplifications
made above, especially the assumption of discrete mounting
poses. Although we already demonstrated the practical
relevance, we would also like to add some proofs to establish a
mathematically sound basis. Furthermore, the examination
of related problems, such as finding the worst and best
joint configuration for a given sensor setup, is of inter-
est. Manipulator motions are often planned and executed
in Cartesian space. This raises the question, whether a
Cartesian formulation of the presented placement procedure
is feasible and meaningful. Another interesting question,
which returns to the design of a suitable state estimator and
therefore is beyond the scope of this paper, is how joint torque
measurements can be used in combination with the robot
dynamics to obtain even better kinematic state estimates.
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