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Abstract − Both, the ISO-GUM [1] and the Supplement 

S1 of the GUM [2] require expressing the knowledge about 

the measurement process by a so-called measurement func-

tion [3], which represents the mathematical relationship 

between the relevant parameters, the influence quantities, 

and the measurand(s). Nevertheless, both documents are 

confined to lumped-parameter systems in the steady state. 

Since dynamic measuring systems gain more and more 

importance, modern uncertainty determination must develop 

appropriate modelling approaches for dealing with dynamic 

measurements. This paper exemplarily describes a possible 

modelling approach for dynamic measurements that utilizes 

discretized state-space forms. The basic role of the cause-

effect approach and its necessary inversion for the 

uncertainty evaluation is emphasized. The paper is an 

extension and refinement of former work of the authors [4]. 
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1.  INTRODUCTION 

 For evaluating the measurement uncertainty, the GUM 

framework [1, 2] requires to express the knowledge about a 

measurement by the so-called measurement function [3], 

which represents the mathematical relationship between the 

relevant parameters, the influence quantities, the 

indication(s), and the measurand(s). But the GUM 

framework [1, 2] does not (yet) provide any assistance on 

modelling of measurements. Moreover, today it is confined 

to lumped-parameter systems in the steady state. 

 This paper describes a modelling approach that starts 

from a cause-effect analysis of the measurement process. 

For modelling of dynamic measurements in the time 

domain, discretized state-space forms are proposed. These 

mathematical forms originate from signal and system 

theory. Due to their obvious advantages (see Section 5), they 

form an appropriate means for modelling of measuring 

systems. 

 

2.  THE CAUSE-EFFECT APPROACH AND THE 

MEASUREMENT FUNCTION 

In measurement, usually the measurand and other in- 

 fluence quantities can be seen as causative signals which 

are physically transformed by the measuring system into 

effects, for example into indications. Therewith, the 

measuring system assigns values to the measurand(s), and 

the system is influenced by system-disturbing influence 

quantities. The cause-effect approach is the most commonly 

used and comprehensible methodology for representing 

basic relationships in modelling of measurements [5, 6]. It is 

based on the constitutions of the path of the measurement 

signal from cause to effect. A model that describes the 

cause-effect behaviour of a measuring system or sensor is 

often termed 'measurement equation' or 'sensor equation'.  

 In contrast to this, for determining the measurement 

uncertainty, usually an 'inverse model' is needed that 

establishes the relationship between the 'target quantity', i.e. 

the measurand(s), Y, and all relevant influence quantities 

and the indication(s), X
 = (X1,..., XN)T. So far, this model 

category has been termed 'model equation' or 'measurement 

reconstruction model' [5].  

 

 
 
Fig. 1. Comparison of model categories: 'Measurement equation' 

vs. 'model equation' or 'reconstruction model' or ‘measurement 

function’ [4-6]. 

 

 The new ISO IEC Guide 99 (‘VIM 3’) [4] uses the term 

‘measurement function’ which is generally expressed as 



 

Y = fM (X1,..., XN).    (1) 

 

 Fig. 1 illustrates the difference between the two model 

categories. 

 

In practice, due to its comprehensibility and deducibility 

from the real system, the cause-effect approach almost 

always forms the basis for the modelling of measurements. 

The cause-effect approach itself is founded on the transfer 

behaviour of the functional elements of the measuring chain. 

3.  DESCRIBING AND MODELLING THE 

TRANSFER BEHAVIOUR 

 Measuring systems are usually modelled the same way 

as any other technical information system. First, the system 

is decomposed and modularized into functional elements. 

Then, the transmission behaviour of each functional element 

is mathematically described [5-6]. The so-called transfer 

function [7] relates the output signal(s) to the input signal(s): 

 

XOUT = h (XIN) ,   (2) 

 

where XIN = (XIN1,..., XINn)
T – input signal(s), XOUT – output 

signals, and h – transfer function. 

 Fig. 2 exemplarily shows a depiction of a general steady-

state transmission element (a) and its application to an 

example (b) [6]. 
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Fig. 2. General transmission element: (a): General depiction. (b): 

Example: air buoyancy correction. Symbols: h – transfer function;  

(XIN1,..., XINn)
T = XIN – input signal(s); XOUT – output signals; W – 

air buoyancy correction in terms of mass; ρA – air density, ρB – 

density of the body; m0 – uncorrected (true) mass [6]. 

 

 In measurement, the great majority of systems are treated 

as being linear and time-invariant [6]. Therefore, a proper 

description of this system category is of great importance in 

metrology and industrial measurement. Moreover, today, in 

analytical metrology, it is best practice to treat even slightly 

nonlinear and time-variant systems this way with account-

ting for additional uncertainty contributions owing to 

nonlinearity and dynamic effects [6]. 

 The transfer function of a time-invariant system or 

transmission element is represented by an algebraic equation 

(see Table 1). For a linear system, the transfer function 

consists of constant transmission factors, 

 

XOUT = h (XIN) = A = (A1,..., Am)T  ,   (3) 

 

where A = (A1,..., Am)T are constant factors. 

 Linear and time-invariant transfer functions can easily be 

inverted into the so-called ‘measurement function’ [3] or 

'reconstruction model' (see Equation (1) and Section 2). 

 But to an increasing extend, dynamic measuring systems 

gain importance in metrology and industrial measurement. 

The time-dependent behaviour of these systems or transmis- 

sion elements results from transient and storage effects 

affecting the quantity of interest. This might be briefly 
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Table 1. Survey on static and dynamic systems along with tools for 

their appropriate mathematical description. 

 

explained with an example [4, 6, 10]: A liquid-in-glass 

thermometer that indicates the ambient air temperature ϑa 

plus its (statical) instrumental error, ϑIND = ϑa + ΔϑINSTR, is 

at the time t0 being immersed into a water bath with 

temperature ϑB. Then, the cause-effect relationship of the 

measurement and temperature equalization process may by 

expressed by the following differential equations  

 

Th

IND B INSTR

d
T

dt

ϑ
ϑ ϑ ϑ= +Δ −  .    (4) 

 

 Consequently, the model equation becomes 

 

Th

B IND INSTR

d
T

dt

ϑ
ϑ ϑ ϑ= +Δ −  ,   (5) 

where DYN ( )Th
d

T t
dt

ϑ
δϑ⋅ =  can be seen as dynamic error 

component, whose expectation is approximately  

δϑDYN (t) = (ϑB - ϑa) · exp ot t

T

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 [5-6, 9].  

 In general, dynamic measuring systems can be classified 

as lumped-parameter systems or distributed-parameter 

systems. The key characteristic of a lumped-parameter 

system is that the state of the system, which uniquely 

describes the system behaviour, depends only on time. In the 

time domain, it is generally described by a set of ordinary 

differential equations [7]. Table 1 gives an overview on the 



mathematical tools used for the description of analogue 

static and dynamic systems in both the time domain and the 

frequency domain [6-8]. 

 It should be emphasized that in today's practice, the 

system description is usually discretized. Discretization 

allows for treating many types of systems as being linear (at 

a discrete point of time) and offers advantages for digital 

signal processing [11]. 

4.  INVERTING THE TRANSFER FUNCTION 

 Whereas for linear and linearizable systems, the 

measurement function [3]  is usually established by alge-

braically inverting the mathematical cause-effect rela-

tionship expressed by the transfer function, in case of non-

linearizable and dynamic measuring systems this might be 

awkward, i.e., in case of so-called ill-posed inverse pro-

blems. 

 Alternatively to algebraically inverting the cause-effect 

relationship, for uncertainty evaluation, the following 

strategies might be applied: 

(a) Incorporating the mathematical cause-effect-

relationship as a so-called ‘Model Prior’ into the 

‘Likelihood’ of the Bayes Theorem [9] and 

computing the ‘Joint Posterior’ probability density 

function (pdf) for the measurand. 

(b) Estimating the parameters of the measurement 

function [3] by means of recursive estimation 

algorithms (see Section 4), such as, for example, 

Kalman Filters. 

(c) Combinations of (a) and (b).  

5.  STATE-SPACE FORMS 

 State-space forms are a useful alternative approach to 

describing dynamic measurements in the time domain. In 

general, they consists of a combination of a system equation 

(6) and a so-called output equation (7) [8, 9] according to 

 

( ) ( )[ ]S IN
, , ,f t t t=Z Z X  (6) 

 

XOUT(t) = fOUT [Z(t), XIN(t)], (7) 

 

where the state vector Z represents the present state of the 

system.  For example, an appropriate state variable (vector) 

may be the (real) temperature of a thermometer immersed 

into a water bath (see Section 3). 

 State-space forms are mathematically equivalent to the 

description by means of ordinary differential equations (see 

(4)). The relevant advantages are:  

(a) technically easy interpretation of the state vector  

(b) having first order differential equations only 

(a) allowing to easily derive the input and the output 

quantities/vectors from the state vector/variable. 

 Additionally, time discretization results in a finite-state 

form that basically allows to treat a measuring system as 

being linear (and time-invariant) at a discrete state Zk [11]. 

Consequently, (6) and (7) become 

 

Zk+1 = Ak Zk + Bk · XINk, (8) 

 

XOUTk = Ck Zk (+ Dk XINk), (9) 

 

where k indicates a discrete point in time and Ak, Bk, Ck and 

Dk representing constant transmission vectors at k. 

With a view to evaluate the (measurement) uncertainty 

for a (measurement) process described in space-state form, 

the above variables (vectors) XIN, XOUT and Z are to be 

described by appropriate probability density functions (pdf) 

g(XINk), g(XOUTk) and g(Zk), which represent the incomplete 

knowledge about the variables (vectors). Furthermore, based 

on the existing knowledge about the measuring system, both 

the state equation and the output equation may be 

augmented by additional noise/uncertainty components to 

account for the imperfection in modelling of the whole 

(measurement) process. 

 
 

Fig. 3. Illustration of the example described: Modelling of dynamic 

error and uncertainty. 

 

 For better illustration of the application of state-space 

forms to measuring systems, the thermometer example 

given in Section 2 is changed and extended to a calibration 

of the instantly immersed thermometer, and the bath 

temperature is made known by a standard thermometer (see 

Fig. 3) [4, 10]. Assume, the calibration aims at the (steady-

state) systematic error ΔϑINSTR. Obviously, the (real) 

temperature of the thermometer to be calibrated, ϑTh, might 

be taken as a state variable, and the bias-corrected 

temperature indicated by the standard, ϑs, is an appropriate 

system input. Then, the discretized system and output 

equations would formally read as 

 

Zk+1 = Ak · Zk + Bk · ΔϑINSTR  + Bk · ϑs. (10) 

 

XOUTk = ϑINDk = Zk + νk , (11) 

 

where νk  represents a random uncertainty component. Fig. 4 

illustrates the basic structure of this model [4, 10]. 
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Fig. 4. Basic structure of a discretized state-space model in 

accordance with Equations (10) and (11) [4, 11]. 



6.  MODEL-BASED ESTIMATOR 

 Assume the above example (see Figure 4 and Equations 

(10) and (11) in Section 3): At the end of a thermometer-

production process, the instruments are calibrated, and the 

measurand is the (steady-state) instrumental error. The 

calibration is carried out by immersing the thermometers 

into a water bath of known temperature. For efficiency 

reasons, one cannot wait until the thermal steady state is 

reached. Therefore, a good estimate of the unknown dyna-

mic error is needed. This estimation can be carried out on 

the basis of a state-space model [4, 7, 10]. Fig. 5 illustrates 

the idea [10]: Both the uncertainties for the system equation 

and the output equation are taken into consideration. The 

system input and the state vector are described by 

appropriate PDFs. Due to the fact that in the given example 

the output quantity XOUTk, which is chosen to be the 

indication of the instrument to be calibrated (see Equations 

(10 and (11)), is well known, the (easy obtainable) inverse 

output equation might be used for obtaining a second  

estimate of the state-vector PDF gL (Zk) that is derived from 

real measurement data. Employing the Bayes theorem, this 

estimate is used to permanently update the PDF gp (Zk) 

provided by the system equation. For an optimal estimation 

result, ge (Zk), possible systematic uncertainty contribution, 

which can result in a significant covariance of the states Zk 

and Zk+1, are to be taken into consideration. Therefore, the 

estimation algorithm used for the ‘Bayesian step’ (see 

Figure 5) must be capable to cope with unknown 

correlation, by employing, for example, so-called covariance 

bounds [10, 12]. 
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Fig. 5. Model-based estimator [4,10] for the example given (see 

[4]). 

 

 Based on real input data, this model-based estimator has 

successfully been proven [4, 10].  

 The possible physical definitions and allocations of the 

state-space vectors (see Equations (8) and (9)) to a particular 

measurement process mainly depends on the model structure 

of the process or system and, hence, on the measurement 

method [3] utilized [5].   

7.  CONCLUSION 

 Modelling the measuring process is a necessary task for 

evaluating measurement results and ensuring their 

reliability. Since dynamic measurements gain more and 

more importance, modern uncertainty evaluation must 

develop appropriate modelling approaches. It is exemplarily 

demonstrated that discretized state-space forms in 

connection with model-based estimators are a suitable 

alternative for modelling dynamic measurements in uncer-

tainty evaluation. First results show the performance and the 

potential of this approach. 
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