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Abstract—In this paper, we present a novel approach for
tracking objects whose movement is constrained to a compact
one-dimensional manifold, for example a conveyer belt or a
mobile robot whose movement is restricted to tracks. Standard
approaches either ignore the constraint at first and retroactively
move the estimate to lie on the manifold, or consider the tracking
problem on a manifold but falsely assume a Gaussian distribution.
Our method explicitly takes the actual topology into account
from the beginning and relies on special types of probability
distributions defined on the proper manifold. In particular, we
consider objects moving along a closed one-dimensional track, for
example an ellipse, a polygon, or similar closed shapes. This shape
is transformed to a circle with a homeomorphism. Thus, we can
apply a recursive circular filtering algorithm to the constrained
tracking problem. Finally, the estimate is transformed back to
the original manifold. We evaluate the proposed method in an
experiment by tracking a toy train moving along a track and
comparing the results to those of traditional approaches for this
problem.

Index Terms—circular estimation, manifold, wrapped normal
distribution, homeomorphism, periodic

I. INTRODUCTION

Tracked objects can sometimes be subject to certain con-
straints enforced by physical properties of the considered setup.
In this paper, we consider objects whose movement is restricted
to a one-dimensional manifold. Intuitively, the objects are only
able to move along a one-dimensional line which extends
through two- or three-dimensional space in a possibly curved
and complicated fashion. In particular, we consider the case
where this line actually forms a closed loop, so an object
traveling in one direction along the line will, at some point,
return to its original position. In order to track the object, we
desire to estimate its position by recursively combining noisy
measurements received from a suitable sensor in order to obtain
an estimate of the object’s current location.

Constrained object tracking can be found in various ap-
plications. Typical examples of objects moving along a one-
dimensional manifold include conveyer belts as they might be
found in industrial settings, robots moving along rails, or even
roller coasters. For the purpose of this paper, we consider the
example of a toy train moving along a track as depicted in
Fig. 1.

Fig. 1: Considered scenario: A toy train moves along a periodic
track and is observed by a Microsoft Kinect from a bird’s eye
view.

The key idea of our approach is the use of a so called length-
ratio-preserving homeomorphism, which maps the original
manifold to a manifold for which a filtering algorithms is
known. This map preserves the topological structure and the
ratio between the length of any two injective smooth curves.



Consequently, we can use this map to transform the estimation
problem to a different manifold and apply circular filtering
algorithms to certain one-dimensional manifolds.

Directional statistics is a branch of statistics that considers
directional quantities rather than real-valued quantities. In
particular, directional statistics can be used to describe periodic
phenomena such as angles or points on a circle. Classical results
in directional and circular statistics can be found in the well-
known book by Mardia and Jupp [1] as well as Jammalamadaka
and Sengupta’s work [2].

Directional filtering algorithms can be derived from results
in directional statistics. A circular filter based on the von Mises
distribution has been proposed in [3] and [4]. In previous work,
we have introduced a circular filter based on the wrapped
normal, von Mises, and wrapped Dirac mixture distributions [5],
which we apply in this paper. There are some other examples
of directional filters, for example based on projected Gaussians
[6], [7] or the Bingham distribution [8].

The advantage of directional filters compared to traditional
approaches based on the Gaussian distribution consists in the
correct handling of periodicity. In particular in situations where
the uncertainty is large, ignoring periodicity can lead to low
estimation quality. Directional filters, however, can handle large
uncertainties properly and produce superior results [3], [5].

The main contribution of this paper is the application of a
circular filter in the area of constrained object tracking. Unlike
previous approaches, not only do we take the constraint into
account, we also handle the circular nature of the considered
problem correctly. In particular, we provide a clean derivation
of the topological transformation that is required to reduce the
original problem to a circular estimation problem.

This paper is structured as follows. First, we introduce some
of the standard approaches to tackle the problem of constrained
object tracking in Sec. II. Then, we define the required
topological transformation in Sec. III and explain the circular
filtering algorithm in Sec. IV. Finally, we present experimental
results comparing the proposed method to standard approaches
in Sec. V and form a conclusion in Sec. VI.

II. STATE OF THE ART

Incorporating state constraints into algorithms for Bayesian
object tracking is a well-studied field of research. A comprehen-
sive overview of methods for linear and non-linear constraints
is given in [9], [10]. Roughly speaking, these approaches can
be divided into several classes:

1) Performing estimation in the original unconstrained state
space

a) employing pseudo-measurements that constantly
pull the state towards the constraints [11].

b) using a post-processing correction in or after the
measurement update to force the state to fulfill the
constraints [12], [13].

c) modifying the system model and its uncertainty
characteristics [14].

2) Performing estimation in the constrained state space by
defining a suitable state representation, similar to the
approach taken in this work.

All strategies have their advantages and disadvantages. However,
defining an appropriate state representation is the only way that
truly respects the fact that the object’s movement is constrained
from the beginning, whereas the other approaches initially
violate the constraint and try to retroactively enforce it. For
this reason, we favor the approach to perform estimation in
the constrained state space.

Before we introduce the details of the proposed approach for
constrained object tracking, we outline standard approaches that
are commonly used. These will serve as a basis for comparison
in the experiments in Sec. V.

A. 1D Kalman Filter

The first standard approach we consider is the application of
a standard one-dimensional Kalman filter [15] after reducing
the considered scenario to a one-dimensional problem. For this
purpose, a similar transform as described in Sec. III can be
used. However, the Kalman filter operates on the real axis,
which is not homeomorphic to the periodic train track. Thus,
the transformation does not preserve the true topology of
the original problem. Consequently, the transformation is not
continuous. As we will show in the evaluation, tracking fails
when this discontinuity is reached.

B. 2D Kalman Filter

A second standard approach is the use of a two-dimensional
Kalman filter. This may seem natural for a two-dimensional
tracking problem, but the constraint can be violated by both
the prediction and the update steps of the Kalman filter. In
order to enforce the constraint, we project the current estimate
to the closest point on the track after each update step, similar
to [13]. It should be noted that the uncertainty is represented
by a two-dimensional covariance ellipse even though the true
uncertainty is only one-dimensional as it solely extends along
the track.

III. CONSTRAINED OBJECT TRACKING BY TOPOLOGICAL
TRANSFORMATION

In the following, we only consider constraints that restrict
the movement of the tracked object to a one-dimensional
manifold. Some examples of one-dimensional manifolds are
depicted in Fig. 2. First, we discuss the topological motivation
for transforming a one-dimensional manifold to a circle.
Subsequently, we will perform the required transformation
for the example of a train track, which we will later use in
our experiments.

A. Topological Motivation

An n-dimensional manifold is a topological space that
locally behaves like Rn. In this paper, we only consider one-
dimensional manifolds, i.e., manifolds that locally behave like
R. Furthermore, we assume that the tracked object moves in
either R2 or R3, so we restrict ourselves to manifolds that are
subsets of R2 or R3.



(a) Circle. (b) Ellipse. (c) Triangle.

(d) Track. (e) L-shape. (f) Plus-shape.

Fig. 2: Examples of one-dimensional manifolds. Please note that the interior area is not part of the manifold.

In order to create maps between different manifolds (or
more general, topological spaces), we introduce the notion of
a homeomorphism.

Definition 1. (Homeomorphism)
A map f : X → Y between topological spaces X and Y is

called a homeomorphism if f is bijective and both f and f−1

are continuous.

According to this definition, a homeomorphism is a structure-
preserving map between topological spaces. Two topological
spaces X and Y are said to be homeomorphic, i.e., topologically
indistinguishable, if a homeomorphism between them exists.

Since we are not only interested in topological properties but
also in geometric properties of the manifold, we need to define a
metric on one-dimensional manifolds. Since we only consider
manifolds that are subsets of R2 or R3, we use the metric
induced by the Euclidean metric on the superset R2 or R3.
The distance between two points on the manifold is thus given
by the length of the geodesic, i.e., the shortest curve between
them measured according to the Euclidean metric in R2 or R3.
The length of an injective smooth curve α : [0, 1] → R2 or
α : [0, 1]→ R3 is given by

||α|| :=
∫ 1

0

||α′(t)|| dt ,

where || · || is the Euclidean metric.
In order to transform probability distributions between

different manifolds, we need to put a restriction on the types
of homeomorphisms we can use. Ideally, a homeomorphism
should preserve the length of any injective smooth curve on
the manifold.

Definition 2. (Length-preserving homeomorphism)
We call a homeomorphism f : X → Y length-preserving if

for all injective smooth curves α : [0, 1]→ X , we have

||α|| = ||f(α)|| .

If length is preserved, it is trivial to transform a probability
distribution defined on one manifold X to a probability
distribution defined on the other manifold Y .

However, we would like to apply a circular filter that is based
on probability distributions on the unit circle S1. Since the
manifold representing the constraint does not have length 2π
in general, we have to weaken our definition to allow uniform
scaling to a manifold of different length.

Definition 3. (Length-ratio-preserving homeomorphism)
We call a homeomorphism f : X → Y length-ratio-

preserving if for all injective smooth curves α : [0, 1]→ X

||α|| = c · ||f(α)||

for a fixed scaling factor c > 0.

A length-ratio-preserving homeomorphism does not require
the two manifolds to be of equal length, but still allows a trivial
transformation of the probability distribution to a different
manifold. It follows from the definition that the length-ratio of
two curves remains the same after transformation, i.e., for all
injective smooth curves α1, α2 : [0, 1]→ X

||α2|| > 0⇒ ||f(α2)|| > 0 and
||α1||
||α2||

=
||f(α1)||
||f(α2)||

.

Obviously, any length-preserving homeomorphism is length-
ratio-preserving for c = 1.

Theorem 1. Let f : X → Y be a length-ratio-preserving
homeomorphism between one-dimensional manifolds and pY :



Y → R≥0 a probability density on Y . Then pX : X → R≥0
with x 7→ c · pY (f(x)) and c = ||X||

||Y || is a probability density
on X and for all injective smooth curves α : [0, 1] → X it
holds that the probabilities fulfill the equation

P(a ∈ α([0, 1])) = P(f(a) ∈ f(α([0, 1]))) .

Proof. By applying the substitution rule twice, we obtain

P(a ∈ α([0, 1])) =
∫
a∈α([0,1])

pX(a) da

=

∫ 1

0

pX(b) · ||α′(b)|| db

=

∫ 1

0

c · pY (f(b)) · ||α′(b)|| db

=

∫ 1

0

pY (b) · ||f(α′(b))|| db

=

∫
f(a)∈α([0,1])

pY (f(a)) df(a)

= P(f(a) ∈ f(α([0, 1]))) .

Examples of original and transformed probability density
functions are depicted in Fig. 4.

B. One-Dimensional Train Track

We consider the track T ⊆ R2 as depicted in Fig. 3. It
consists of four segments, two half circles and two straight
lines. The track can be parameterized by two quantities, the
radius r > 0 and the line length d > 0. The total length of the
track is thus l = 2πr + 2d. The set T = T1 ∪ T2 ∪ T3 ∪ T4 is
given by

T1 = {(r cos(φ), r sin(φ))T | φ ∈ (π/2, 3π/2]} ,
T2 = {(x, r)T | x ∈ [0, d)} ,
T3 = {(r cos(φ) + d, r sin(φ))T | φ ∈ (−π/2, π/2]} ,
T4 = {(x,−r)T | x ∈ (0, d]} .

We parameterize the circle S1 as the half-open interval
[0, 2π) and define the map

f : S1 ∼= [0, 2π)→ T

from the unit circle to the track according to

f(α) =



f1(α · l
2π ) , 0 ≤ α < 2π

l rπ

f2(α · l
2π ) ,

2π
l rπ ≤ α <

2π
l (rπ + d)

f3(α · l
2π ) ,

2π
l (rπ + d) ≤ α < 2π

l (2rπ + d)

f4(α · l
2π ) ,

2π
l (2rπ + d) ≤ α < 2π

,

where

f1(a) =

[
−r sin(a/r)
−r cos(a/r)

]
,

f2(a) =

[
a− πr
r

]
,

f3(a) =

[
−r sin((a− d)/r) + d
−r cos((a− d)/r)

]
,

f4(a) =

[
l − a
−r

]
.

Lemma 1. The inverse map f−1 is given by

f−1((x, y)T ) =



g1(x, y) · 2πl , x < 0

g2(x, y) · 2πl , x ∈ [0, d] ∧ y > 0

g3(x, y) · 2πl , x > d

g4(x, y) · 2πl , x ∈ [0, d] ∧ y ≤ 0

,

where

g1(x, y) = r ·
(
3

2
π − atan2(y, x)

)
,

g2(x, y) = r · π + x ,

g3(x, y) = l − x ,
g4(x, y) = d+ r · (2π −mod(atan2(y, x− d) + π/2, 2π)) .

Lemma 2. The map f is a homeomorphism between manifolds.

Proof. Obviously, S1 and T are one-dimensional manifolds.
It remains to show that f is a homeomorphism.

1) f is bijective: This follows from f(S1) = T together
with f−1 ◦ f = idS1 .

2) f is continuous: Since f1, f2, f3, f4 are continuous, it is
sufficient to check that

f1(0) = f4(2π)

f2

(
2π

l
rπ

)
= f1

(
2π

l
rπ

)
f3

(
2π

l
(rπ + d)

)
= f2

(
2π

l
(rπ + d)

)
f4

(
2π

l
(2rπ + d)

)
= f3

(
2π

l
(2rπ + d)

)
.

These four equations hold as can be shown by simply
plugging in the values as given above.

3) f−1 is continuous: Similar to continuity of f .

Lemma 3. The homeomorphism f is length-ratio-preserving
with c = ||S1||

||T || =
2π
l .

Proof. It is sufficient to show that fi(α · l
2π ) is length-ratio-

preserving for i = 1, 2, 3, 4. We calculate∣∣∣∣∣∣∣∣∂f1(a)∂a

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣[− cos(a/r)
+ sin(a/r)

]∣∣∣∣∣∣∣∣
=

√
cos2(a/r) + sin2(a/r)

= 1 ,
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y

Fig. 3: The train track T we consider in this paper.

and similarly∣∣∣∣∣∣∣∣∂f2(a)∂a

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∂f3(a)∂a

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∂f4(a)∂a

∣∣∣∣∣∣∣∣ = 1 .

For an injective smooth curve α : [0, 1] → Ti with i ∈
{1, 2, 3, 4}, it follows that

c · ||f(α)|| =2π

l
·
∫ 1

0

∣∣∣∣∣∣∣∣ ∂∂t(f(α(t)))
∣∣∣∣∣∣∣∣ dt

=
2π

l
·
∫ 1

0

∣∣∣∣∣∣∣∣( ∂

∂α(t)
f(α(t))

)
∂

∂t
α(t)

∣∣∣∣∣∣∣∣ dt
=
2π

l
·
∫ 1

0

∣∣∣∣∣∣∣∣ ∂

∂α(t)
f(α(t))

∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣ ∂∂tα(t)
∣∣∣∣∣∣∣∣ dt

=
2π

l
·
∫ 1

0

∣∣∣∣∣∣∣∣ ∂

∂α(t)
fi

(
α(t) · l

2π

)∣∣∣∣∣∣∣∣
·
∣∣∣∣∣∣∣∣ ∂∂tα(t)

∣∣∣∣∣∣∣∣ dt
=
2π

l
·
∫ 1

0

∣∣∣∣∣∣∣∣ ∂∂afi(a) · l2π
∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣ ∂∂tα(t)

∣∣∣∣∣∣∣∣ dt
=

∫ 1

0

∣∣∣∣∣∣∣∣ ∂∂afi(a)
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

1

·
∣∣∣∣∣∣∣∣ ∂∂tα(t)

∣∣∣∣∣∣∣∣ dt
=

∫ 1

0

∣∣∣∣∣∣∣∣ ∂∂tα(t)
∣∣∣∣∣∣∣∣ dt

=||α|| .

IV. CIRCULAR FILTERING

We now present a filtering scheme based on circular
probability distributions, which allows for recursive filtering
on the circle S1. The proposed filter is described in more
detail in [5]. It draws inspiration from the similar circular filter
published by [3] and from the unscented Kalman filter [16].

A. Circular Distributions

In order to derive the circular filter, we first introduce three
circular probability distributions that will be used by the filter.

Definition 4. (Wrapped normal distribution)
A wrapped normal (WN) distribution is given by the

probability density function (pdf)

f(x;µ, σ) =
1√
2πσ

∞∑
k=−∞

exp

(
− (x− µ+ 2kπ)2

2σ

)

with parameters µ and σ > 0.

The WN distribution is a natural distribution to use on the
circle because it fulfills the central limit theorem. It is closed
under convolution, but not under multiplication of pdfs.

Definition 5. (Von Mises distribution)
A von Mises (VM) distribution is given by the pdf

f(x;µ, κ) =
1

2πI0(κ)
exp(κ cos(x− µ))

with parameters µ and κ > 0 where I0 is the modified Bessel
function of order 0.

The VM distribution is also commonly used on the circle
because it is easier to use than a wrapped normal distribution
as it avoids the infinite series. It is closed under multiplication
of pdfs, but not under convolution.

Definition 6. (Wrapped Dirac mixture distribution)
A wrapped Dirac mixture (WD) distribution with L ∈ N

components is given by

f(x;β1, . . . , βL, w1, . . . , wL) =

L∑
k=1

wkδ(x− βk)

with Dirac positions β1, . . . , βL and weights w1, . . . , wL. Each
component is a weighted Dirac δ distribution.
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Fig. 4: Wrapped normal probability density function on the circle S1 (left) and probability density function on the manifold T
(right) for two σ = 0.7 rad (top) and σ = 1.3 rad (bottom).

B. Circular Moment Matching

Definition 7. (Circular moment)
The n-th circular moment of a random variable X on the

circle is given by

mn = E(exp(inX)) =

∫ 2π

0

exp(inx)f(x) dx ,

where i is the imaginary unit.

Thus, mn ∈ C is a two-dimensional quantity. The first
circular moment m1 includes information about both mean
and concentration of the random variable and can be seen as
an analogue to the first two conventional moments.

Lemma 4. 1) The n-th circular moment of a WN-
distributed random variable with parameters µ and σ is
given by

mn = exp(inµ− n2σ2/2) .

2) The n-th circular moment of a VM-distributed random
variable with parameters µ and κ is given by

mn = exp(inµ)In(κ)/I0(κ) .

3) The n-th circular moment of a WD-distributed random
variable with parameters β1, . . . , βL and w1, . . . , wL is
given by

mn =

L∑
k=1

ωk exp(inβk) .

Proof. The proof for 1) is given in [1] and the proofs for 2)
and 3) are given in [2].

A numerically stable algorithm to calculate the ratio of
Bessel functions occurring in the moments of the von Mises
distribution can be found in [17]. Pseudo code for this algorithm
is provided in [5].

Now, we can apply circular moment matching to approximate
circular distributions of these types by one another. Detailed
derivations for the approximations based on circular moment
matching are given in [5].

Converting between the different probability distributions
on the circle allows us to take advantage of their respective
benefits for different steps during the filtering process. Noise
is modeled as WN because it fulfills the central limit theorem.
The WD distribution is used when a (possibly nonlinear) system



function has to be applied. Multiplication is performed with
VM distributions and convolution is once again based on WN
distributions.

C. Prediction

The algorithm for prediction is given in Algorithm 1. It is
reminiscent of the UKF and essentially consists of the following
steps. First, the prior WN distribution is converted to a WD
distribution with three Dirac components. These are passed
through the system function and the resulting WD distribution
is converted back to a WN distribution. Subsequently, the
convolution of this WN distribution with the system noise is
calculated.

Input: ak (system function),
µek, σ

e
k (estimated distribution of state),

µwk
, σwk

(distribution of system noise)

Output: µpk, σ
p
k (predicted distribution of state)

/* Dirac approximation */

α← arccos
(

3
2 exp

(
− (σe

k)
2

2

)
− 1

2

)
;

/* application of system function */
β1 ← ak(µ

e
k − α);

β2 ← ak(µ
e
k);

β3 ← ak(µ
e
k + α);

/* conversion of Diracs back to WN */

µ← atan2
(∑3

j=1 sin(βj),
∑3
j=1 cos(βj)

)
;

σ ←
√
−2 log

(
1
3

∑3
j=1 cos(βj − µ)

)
;

/* convolution with noise */
µpk ← (µ+ µwk

) mod 2π;
σpk ←

√
σ2 + σ2

wk
;

Algorithm 1: Algorithm for prediction.

D. Update

The measurement update algorithm is given in Algorithm 2.
The idea behind the algorithm is to use a Bayesian update
step, which is achieved by multiplying the predicted pdf and
the likelihood pdf. The likelihood can be obtained by shifting
the measurement noise distribution accordingly. To carry out
the multiplication, both WN distributions are converted to VM
distributions and then multiplied. Finally, the result is converted
back to a WN distribution.

V. EXPERIMENTS

To evaluate the proposed algorithm, we conducted a tracking
experiment and compared the result to two standard approaches.
More specifically, we track a toy train that moves along the
periodic track and is observed by a Microsoft Kinect from
bird’s eye view. Fig. 1 illustrates this scenario. The straight
segments of the track both have a length of d = 0.48m and
the two half circles both have a radius of r = 0.36m. An
illustration of these parameters is given in Fig. 3. Note that

Input: measurement ẑk,
µpk, σ

p
k (predicted distribution of state),

µvk , σvk (distribution of measurement noise)

Output: µek, σek (estimated distribution of state)

/* shift fv by measurement */
µ̃vk ← (ẑk − µvk) mod 2π;
σ̃vk ← σvk ;
/* convert to VM distribution */
µ1, κ1 ←wnToVonMises(µpk, σ

p
k);

µ2, κ2 ←wnToVonMises(µ̃vk , σ̃vk);
/* multiply densities */
C ← κ1 cosµ1 + κ2 cosµ2;
S ← κ1 sinµ1 + κ2 sinµ2;
µ← atan2(S,C);
κ←

√
S2 + C2;

/* convert back to WN distribution */
µek, σ

e
k ←vonMisesToWn(µ, κ);

Algorithm 2: Algorithm for measurement update.

the entire scenario lies within the field of view of the Kinect
as can be seen in Fig. 5.

A chessboard was carefully aligned with the track in order
to determine its relative pose to the sensor (see Fig. 1). Due
to the even ground plane, the train could easily be extracted
from the depth images by clipping. In doing so, points that
originate exclusively from the top side of the train could be
obtained. The ground truth for the position of the train at each
frame was calculated as the mean of all extracted points.

For the tracking task, one of the measured points was selected
randomly and provided to the competing estimators, i.e., the
proposed approach and two standard methods. Selecting single
points instead of the entire point cloud allows for simulating a
sensor that is affected by a large uncertainty.

As standard approaches we considered

1) the 1D Kalman filter from Sec. II-A that directly
estimates the angle and ignores all circular singularities,
and

2) the 2D Kalman filter from Sec. II-B that estimates a
full two-dimensional position and projects the posterior
position back onto the track.

The behavior of the train was modeled as approximately
constant velocity for all estimators and the noise parameters
were obtained from the ground truth by calculating the
empirical mean and covariance. The parameters of the system
noise for the 2D KF are

µ2D
sys =

[
−3.091 · 10−4
+3.854 · 10−7

]
and

C2D
sys =

[
+2.353 · 10−5 −3.304 · 10−7
−3.304 · 10−7 +1.064 · 10−5

]
,



Fig. 5: Color and depth images of the scene as obtained by the Kinect.
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Fig. 6: True and estimated trajectories in x- and y-direction for one lap.

where the units are m and m2 respectively. The measurement
noise is zero-mean and has covariance

C2D
meas =

[
2.558 · 10−3 2.495 · 10−5
2.495 · 10−5 3.150 · 10−4

]
measured in m2.

For the 1D KF and the proposed approach, we used the
system noise parameters

µ1D
sys = 6.273 , σ1D

sys = 4.684 · 10−3 ,

and zero-mean measurement noise with

σ1D
meas = 9.813 · 10−2 ,

where all units are radians.
The results for one representative lap are depicted in Fig. 6

and Fig. 8. Note that time is drawn on the z-axis. An analysis
of the estimation error compared to the ground truth is shown
in Fig. 7. As can be seen on the plots, the proposed estimator
performs well across the entire run. The 2D KF produces
inferior results throughout the experiment and the 1D KF
performs well at first, but fails completely once the discontinuity
in the transformation is reached.

VI. CONCLUSION

In this paper, we have presented an approach to constrained
target tracking based on performing a topological transforma-
tion to a circle and applying a circular filtering algorithm.

We have shown the viability of the proposed method in real
experiments by tracking the movement of a toy train on a two-
dimensional track. A comparison with traditional approaches
based on Kalman filters shows the clear superiority of the
method based on directional statistics.

Future work may include the generalization of the proposed
approach to two-dimensional manifolds, which can be mapped
to simple shapes like a sphere or a torus depending on their
topology. A filtering scheme based on probability distributions
on the sphere or torus could then be used to track an
object whose movement is constrained to the considered
two-dimensional manifold.
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