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Abstract—Magnetic-field based indoor localization uses distor-
tions of the Earth magnetic field caused by magnetic material
in the surrounding of the platform that is to be localized.
Existing magnetic localization methods compare measurements
from a magnetometer with a magnetic field map to estimate the
position of the platform, on which the sensor is mounted. For
the comparison it is typically assumed that the magnetometer
is calibrated. Unfortunately, for some platforms calibration is
not straightforward, particularly when they are large or heavy.
In this paper we therefore propose a simultaneous localization
and calibration approach. The approach is based on a Rao-
Blackwellized particle filter that makes use of the conditional
linearity of magnetometer measurements and calibration param-
eters. The feasibility of the proposed particle filter is evaluated
with three data sets recorded with a differential drive robot in
an indoor environment.

I. INTRODUCTION

Localization is still a challenge in environments where
global navigation satellite system (GNSS) signals are strongly
degraded or completely blocked. Examples of such environ-
ments are the interior of buildings, tunnels, and urban canyons,
where high-rise buildings block some of the satellite signals,
resulting in multipath effects, a poor geometry, and eventually
large position errors. For localization in GNSS-denied areas
a great variety of approaches can be found in the literature.
The proposed approaches range from deploying dedicated
infrastructure for localization, e.g. ultra-wideband devices [1],
and the use of signals of opportunity (SoO) [2], to inertial
sensor-based solutions [3]. In this paper the focus is on the
use of the Earth magnetic field as a SoO. The idea is based
on the observation that magnetic material in the environment,
e.g. the steel in the concrete of a building, distorts the Earth’s
magnetic field which leads to a position dependent variation
of the magnetic field. The feasibility of magnetic field-based
localization was already shown for interiors [4], [5], [6],
roads [7], railways [8] and the airspace [9]. Typically, the
proposed algorithms for magnetic localization are based on
a comparison of magnetometer measurements with a map.
This comparison requires the magnetometer to be calibrated.
Unfortunately, common calibration methods require a rotation
of the sensor and the platform it is mounted on in a homoge-
nous field [10]. For heavy or large platforms this might be
difficult to achieve. We encountered this problem in the context
of magnetic localization of trains, which have very limited
degrees of freedom in their movement and are very large
and heavy. To enable magnetic localization also for trains we
therefore proposed in [11] and [12] a simultaneous localization

and calibration (SLAC) algorithm. The algorithm utilizes a
Rao-Blackwellized particle filter that exploits that conditioned
on the position, the calibration is a linear estimation problem.
In contrast to our previous work, in this paper we propose
a SLAC algorithm for the localization of a differential drive
robot in an indoor environment. The presented algorithm is
evaluated with three different measurements in an indoor
laboratory environment where the ground-truth is provided by
an optical tracking system.

II. SIMULTANEOUS LOCALIZATION AND CALIBRATION

A. Magnetometer Sensor Model
To understand the proposed algorithm, it is crucial to define

the magnetometer model that will be used in the filter. Here a
common linear calibration model is considered, see e.g. [13].
With the linear model the measurement of the magnetometer
z̃b at time step k can be written as

z̃bk = CRb
n,kz

n
k + b+ nk , (1)

where C is a 3×3 calibration matrix, Rb
n,k is the rotation

matrix between the sensor’s body frame b and the navigation
frame n, znk is the three-dimensional true magnetic vector
field given in the navigation frame, and b ∈ R3 is the sensor
bias. Additionally, additive white Gaussian measurement noise
nk ∼ N (0, σ2

nI) is considered. The calibration matrix C
accounts for soft magnetic material in the sensor platform that
interacts with the true external magnetic field znk . In contrast,
the bias vector b is a result of hard magnetic material that has
a permanent magnetization.

For the case that znk and Rb
n,k are known for each measure-

ment z̃bk the estimation of the calibration parameters in (1) is
a linear problem. This becomes clearer by rearranging (1) to

z̃bk =

h
T (Rb

n,kz
n
k ) 01×4 01×4

01×4 hT (Rb
n,kz

n
k ) 01×4

01×4 01×4 hT (Rb
n,kz

n
k )

θ + nk

= H(Rb
n,kz

n
k )θ + nk, (2)

with the function

hT (Rb
n(k)z

n
k ) =

[
(Rb

n,kz
n
k )

T 1
]
. (3)

The parameter vector θ contains the nine elements of matrix
C and the three elements of b

θ =
[
cT1 b1 cT2 b2 cT3 b3

]T
, (4)
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Fig. 1. Magnitude of the magnetic flux density in DLR’s laboratory and the
trajectory of the first measurement run. The black dot marks the start position
of the robot.

where bi is the i-th element of b and ci =
[
ci1 ci2 ci3

]T
is

the transposed i-th row of C. With (2) and the values of Rb
n,k

and znk it is then straightforward to implement a least squares
estimator or a Kalman filter to estimate θ from a sequence of
magnetometer measurements. For the estimation at least four
measurements are required, otherwise the system of equations
is underdetermined. Furthermore, the measurements must be
taken at different attitudes represented by Rb

n,k or different
values of the external field znk to render the parameters
observable. This is also why calibration algorithms require a
rotation of the magnetometer in a homogeneous field. As will
become clear later in this paper, for SLAC we make use of
both, changes in the field and in the attitude to estimate the
parameters θ.

B. Likelihood of Magnetometer Measurements

For magnetic localization a map of the magnetic field is re-
quired that serves as a kind of magnetic “fingerprint” data base.
A comparison of a calibrated magnetometer measurement with
the map then enables to estimate the most likely positions at
which the measurement was performed. Here the magnetic
map is simply a function mn(p) that for a position p returns
the magnetic vector at that position given in the navigation
frame. The measurement model (2) thereof becomes

z̃bk = H(Rb
n,k m

n(pk))θ + nk, (5)

where znk is replaced by the map at position pk. Let us assume
for now that the sensor is calibrated and that θ is known. For
this case the likelihood p(z̃b|p) of a magnetometer measure-
ment at position p can be calculated from the distribution of
the sensor noise

p(z̃bk|pk) = N (z̃b;H(Rb
n,k m

n(pk))θ, σ
2
nI). (6)

Note that the map is always assumed to be known, thus the
conditioning on the map is neglected for brevity in this paper.

In general, the magnetic field and therefore the map is a
nonlinear function of the position. This can be easily seen
from the example in Fig. 1 that shows the magnitude of the
magnetic field measured in DLR’s Holodeck laboratory. The
non-linearity of the map leads to a nonlinear measurement
model. In the remainder of the paper we therefore propose the
use of a particle filter for localization.

C. Particle Filter for Localization

In order to implement the particle filter the state space model
of the platform that should be localized has to be defined. The

Fig. 2. (left) Differential drive robot. On top of the transparent plastic
platform, the IMU and the infrared markers for the Vicon tracking system
can be seen. (right) Differential drive robot in the Holodeck laboratory with
Vicon cameras on the ceiling.

platform used in this paper is the tracked robot shown in the
left part of Fig. 2. The state vector contains the robot’s pose
consisting of the x- and y-position and the heading

xk =
[
px,k py,k φk

]T
=

[
pT
k φk

]T
. (7)

The motion model is set to

px,k = px,k−1 + cos(φk−1)(vk−1 + wv,k)T

py,k = py,k−1 + sin(φk−1)(vk−1 + wv,k)T

φk = φk−1 + (ωφ,k−1 + wω,k−1)T, (8)

where v is the linear speed of the robot, ω its turn rate, T
the sampling period between two time steps, and wv and wω

is the speed and turn rate process noise which is assumed to
be Gaussian. The turn rate is measured with a gyroscope and
the speed is calculated from the two wheel encoders of the
differential drive. The speed is obtained from the equation

vk = rwheel
ωR,k + ωL,k

2
, (9)

with the turn rates of the left ωL,k and right track ωR,k, and
the wheel radius rwheel.

The particle filter approximates the posterior probability
density function (pdf) p(x0:k|z̃b1:k) of the state sequence x0:k

from time step 0 to k conditioned on the sequence z̃b1:k of all
measurements available up to that point. The approximation is
given by a set of particles {x(i)

0:k}
Np

i=1 with associated weights
{w(i)

k }Np

i=1. With the weighted set we can write the posterior
in the form of a Dirac mixture density

p(x0:k|z̃b1:k) ≈
Np∑
i=1

w
(i)
k δ

x
(i)
0:k

(x0:k), (10)

where δ
x
(i)
0:k

(x0:k) is the Dirac distribution that vanishes every-
where in the state space except at the value of the i-th particle
x
(i)
0:k. In the following we use a simple particle filter with

resampling when the effective number of particles falls below
a threshold. As importance density, from which the particles
are drawn, the one-step prediction pdf p(xk|xk−1) obtained
from the motion model (8) is used. For this particular choice
of importance density the weight update is the product of the
likelihood with the previous weight

w
(i)
k = w

(i)
k−1 · p(z̃

b
k|x

(i)
k ). (11)
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When the calibration parameters are known, the likelihood
required in the weight update is given by (6) and the chosen
state vector (7)

p(z̃bk|xk) = N (z̃b;H(Rb
n(φk)m

n(pk))θ, σ
2
nI), (12)

where the rotation matrix from the navigation into the body
frame is a function of the robot’s heading

Rb
n(φk) =

 cos(φk) sin(φk) 0
− sin(φk) cos(φk) 0

0 0 1

 . (13)

D. Joint Estimation of Position and Calibration Parameters

In the previous section the particle filter for magnetic
localization with known calibration parameters was presented.
Unfortunately, performing calibration for heavy and large
platforms is a complicated and laborious task or it is even
impossible. Therefore, we propose to jointly estimate the cal-
ibration parameters during localization in a SLAC algorithm.
From a theoretic point of view, the task is to find the joint
posterior pdf p(x0:k,θ|z̃b1:k) of the state and the calibration
parameters. In principle this task can be directly solved with
a standard particle filter but the particle filter suffers from the
curse of dimensionality, which means that when the dimension
of the state space increases the number of required particles
to densely sample the space increases quickly. For SLAC the
state dimension is at least 15 (2D position, heading and the
calibration parameters) which is already high for a particle
filter. Fortunately, the estimation of the calibration parameters
is a linear problem when conditioned on the position, which
allows for Rao-Blackwellization of the filter. Instead of esti-
mating the joint density in a single particle filter, the posterior
is decomposed into a non-linear and a linear part

p(x0:k,θ|z̃b1:k) = p(θ|z̃b1:k,x0:k)︸ ︷︷ ︸
Kalman filter

p(x0:k|z̃b1:k)︸ ︷︷ ︸
particle filter

. (14)

The decomposition of the posterior in (14) is straightforward
but the implementation requires some thought. One way to
see how the filter can be implemented is by looking on the
weight update of the particle filter. From (11) it is clear that
for the weight update the likelihood p(z̃bk|x

(i)
k ) has to be

evaluated but how do we do this for the case when we do
not know the calibration parameters? The trick that allows us
to evaluate the likelihood for unknown calibration parameters
is to introduce the calibration parameters into the likelihood
and then marginalize over them. With marginalization the
likelihood becomes

p(z̃bk|x0:k,z̃
b
1:k−1) =

∞∫
−∞

p(z̃bk,θk|x0:k, z̃
b
1:k−1)dθk

=

∞∫
−∞

p(z̃bk|θk,x0:k, z̃
b
1:k−1)p(θk|x0:k, z̃

b
1:k−1)dθk

=

∞∫
−∞

p(z̃bk|θk,xk)p(θk|x0:k, z̃
b
1:k−1)dθk. (15)

Note, in (11) the Markov property p(z̃bk|x0:k, z̃
b
1:k−1) =

p(z̃bk|xk) was assumed to hold but for uncertain calibration
parameters this is no longer the case. Only in the last line
of (15) the Markov property for p(z̃bk|θk,xk) was used since
the parameters are considered completely known in this case.
Intuitively this makes sense, the belief in the parameters
p(θk|x0:k, z̃

b
1:k−1), over which the marginalization is per-

formed, depends on the complete history of the observations.
From (15) now the likelihood can be obtained by recognizing
that the posterior pdf p(θk|x0:k, z̃

b
1:k−1) is Gaussian and can

be obtained from a Kalman filter due to the linearity of the
calibration parameters when conditioned on the robot pose.
Since the likelihood p(z̃bk|θk,xk) of the magnetometer is also
considered to be Gaussian the integral in (15) has the closed
form solution

p(z̃bk|x0:k, z̃
b
1:k−1) = N

(
z̃bk; ẑ

b
k, σ

2
nI+Hd(xk)Σ

−
k,θ H

d(xk)
T
)

= N
(
z̃bk; ẑ

b
k, σ

2
nI+ Sk

)
(16)

where Hd(xk) is the shorthand for H(Rb
n(φk)m

n(pk)), ẑbk
is the expected measurement

ẑbk = Hd(xk)θ̂
−
k , (17)

and θ̂
−
k and Σ−

k,θ are the Kalman filter state and covariance
at time step k before the measurement update. From (16)
we see that the marginalization adds the uncertainty of the
calibration parameters Σ−

k,θ projected into the measurement
space to the pure noise covariance. Thus, a high uncertainty
in the calibration parameters results in an high uncertainty of
the likelihood and vice versa. To see how the particle filter
and the Kalman filter interact likelihood (16) is plugged into
the weight update (11) of the particle filter. Here it becomes
clear that due to the conditioning of the likelihood on the state
of the individual particles each particle must have a individual
Kalman filter attached to it.

For SLAC the prediction and update step of the standard
resampling particle filter is modified. The first modification
is that when the robot does not move or turn the filter just
keeps its current weights and particles, this means we do not
perform any prediction or update. The second modification
affects the weight and Kalman filter update. When the robot is
moving or turning the Kalman filters are updated every time
a new magnetometer measurement is available. In contrast,
the particle weights are updated only when the robot has
driven a predefined distance w.r.t. the last weight update. This
modification is done to avoid rapid particle impoverishment.
Imagine the following situation, the robot drives slowly and
has not yet estimated its calibration parameters properly. Due
to the slow movement the magnetic field does not change
significantly and hence the filter gets multiple similar mea-
surements. If now the positions and calibration parameters of a
few particles fit particularly well to that similar measurements
it can happen that only these few particles will remain after
the resampling even though the particles are not following
the correct trajectory. Therefore, the weights are only updated
when the robot has traveled a distance after which one can
expect to measure a considerable change in the magnetic field,
in our case the update is performed every 20 cm. When an
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update of the weights is performed not only the likelihood of
the current measurement is considered. Instead the geometric
mean of the likelihoods of all Nmes measurements received
since the last update is used. The weight update therefore
becomes

w
(i)
k = w

(i)
k−1 ·

k∏
j=k−Nmes+1

p(z̃bj |x
(i)
0:j , z̃

b
1:j−1)

1
Nmes (18)

when the robot has traveled the required distance. Between
two updates the weights are kept constant w

(i)
k = w

(i)
k−1.

The geometric mean is used here because the likelihoods are
multiplied with the weight from the previous step and by using
the mean of the likelihoods we avoid that the filter is over
sensitive to noise and other errors in a single measurement.
A similar idea was also utilized in [5]. To further reduce the
sensitivity of the filter to errors in the magnetic map and the
measurements, the Gaussian likelihood in (16) is replaced with
a Gaussian mixture with two components

p(z̃bk|xk, z̃
b
1:k−1) = 0.3 · N

(
z̃b; ẑbk, σ

2
nI+ Sk

)
+ 0.7 · N

(
z̃b; ẑbk, σ

2
GMMI

)
. (19)

The standard deviation σGMM should be chosen larger than the
noise standard deviation σn, e.g., in this paper the values are
set to σn = 2.5 µT and σGMM = 5 µT. This reduces particle
impoverishment in the presence of deviations in the data that
are not explained by noise. For our experiments with a tracked
robot described in the next section we observed for example
deviations caused by motor currents and non-zero roll and
pitch angles.

III. EVALUATION

The feasibility of the proposed approach is shown on three
complex trajectories driven with a tracked differential drive
robot in DLR’s Holodeck laboratory. The used robot and the
laboratory are shown in Fig. 2.

A. Experimental Setup

For logging the magnetic field components and angular
velocities, we placed an Xsens-MTi-G700 IMU on top of the
robot, at a height of approximately 23 cm above ground. The
IMU features both a three-axis magnetometer and a three-axis
gyroscope and was placed on a transparent plastic platform
10 cm above the robot to mitigate the effects of the motors’
magnetic fields. With this setup, we recorded the magnetic
field components and angular velocities at a rate of 100Hz.
Additionally, we measured the robot’s linear velocity at 20Hz
with encoders placed at the motors on both sides of the robot.
For obtaining the ground truth pose, we recorded the IMU’s
6D pose with an optical Vicon tracking system with sub-
centimeter accuracy at a rate of 100Hz. All signals were
logged on a laptop connected wirelessly to the robot.

For building the magnetic map used for localization the
robot drove a meander course through the laboratory using a
path planner for control. The obtained data was then calibrated
via ellipsoid fitting [10] with a previously recorded data set,
measured on a meadow at the DLR site without any buildings
nearby. Based on the calibrated data, we interpolated each

TABLE I
POSITION AND HEADING ERROR STATISTICS

SLAC Odometry
Traj. RMSEp RMSEφ MaxAEp MaxAEφ RMSEp RMSEφ MaxAEp MaxAEφ

[m] [◦] [m] [◦] [m] [◦] [m] [◦]

1 0.090 1.829 0.241 6.216 1.616 32.147 4.293 59.478
2 0.094 1.695 0.297 6.881 2.556 45.863 5.786 79.976
3 0.072 1.381 0.161 3.668 2.390 52.502 5.187 91.431

component of the magnetic field with an individual Gaussian
process (GP) on a 5mm regularly spaced grid using a squared
exponential kernel. To do so, the Matlab GPML Toolbox [14]
was employed.

For evaluating the SLAC algorithm, the robot drove three
complex trajectories in an area of 10m by 3m through the
laboratory. The speed during the measurements was varying
between 0.3m/s and 0.7m/s. The resulting trajectories have
a duration of 135 s-186 s. In Fig. 1 the trajectory of the first
measurement is shown on top of the magnitude of the magnetic
field obtained from the GP regression.

B. Filter Setup
In the evaluation the filter uses 3000 particles and the

Gaussian mixture model described in (19). With this amount
of particles and an update rate of 10Hz the processing time
of the filter in Matlab was roughly one third of the data set
length showing that the filter can be implemented in real time.
The states of the Kalman filters are initialized randomly from
a Gaussian distribution. The biases are drawn independently
from N (0, (5 µT)2). For C the diagonal elements are drawn
from N (1, 12) and the off-diagonal elements from N (0, 12).
The mean values of the Gaussian distributions are therefore
chosen such as for a perfectly calibrated sensor, for which the
biases and off-diagonal elements of C are all zero and the
diagonal elements are one. The positions and headings of the
initial particles are drawn from a normal distribution centered
at the ground truth. The standard deviation of the Gaussians
is set to 10 cm for the position states and 10◦ for the heading.

C. Results
To evaluate the performance of the proposed SLAC algo-

rithm 100 Monte Carlo runs were performed for each of the
three trajectories to see if the filter works also for different
realizations of the process noise. For the evaluation we then
selected the Monte Carlo run that led to the highest posi-
tion root-mean-square-error (RMSE) although no run deviated
considerably from the others. In Tab. I the RMSE and the
maximal absolute error (MaxAE) for the 2D position and
the heading is shown for SLAC and the unaided odometry
(obtained from the linear speed and gyro turn rate). From
Tab. I it is clearly visible that the pure odometry is worse than
the proposed SLAC algorithm showing that the magnetic field
significantly improves the odometry performance. Overall, the
SLAC algorithm achieved an RMSE in the position below
10 cm and an absolute error below 30 cm. For the heading
the RMSE is below 2◦ and the MaxAE below 7◦. We also
evaluated a particle filter that used the magnetometer data
without calibration. The performance of this filter w.r.t. the
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Fig. 3. Position and heading errors over time for trajectory one. The errors are
indicated by a blue line and for the lower three plots the red lines show three
times the standard deviation of this errors estimated by the Rao-Blackwellized
particle filter.
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Fig. 4. Estimation error of the bias vector b = [b1 b2 b3]
T . The errors

are shown in blue and in red three times the standard deviation estimated by
SLAC is shown.

position RMSE is in the range of 0.42 to 6.43m and varies
considerably not only between different trajectories but also
between different Monte Carlo runs for the same trajectory.
From what we saw in the results we would even argue
that the particle filter without calibration does not track the
robot position and the performance is somewhat random and
sometimes even worse than the odometry.

In Fig. 3 the estimation errors of SLAC for the first trajec-
tory from Fig. 1 are shown. For the heading and the position
error in the x- and y- direction in addition three times the
standard deviation estimated by the Rao-Blackwellized particle
filter is shown by red lines. To obtain the errors the minimum-
mean-square-error-estimate (MMSEE) is calculated by taking
the weighted mean over all particles. The resulting MMSEE is
then compared to the ground truth pose of the robot from the
Vicon system. As seen from Fig. 3 the errors in the beginning
are close to zero, this is because the particle cloud is scattered

0 20 40 60 80 100 120
−1

−0.5
0

0.5
1

er
ro

r
of

c 1
1 error ±3 standard deviation

0 20 40 60 80 100 120
−1

−0.5
0

0.5
1

er
ro

r
of

c 2
2

0 20 40 60 80 100 120
−1

−0.5
0

0.5
1

Time / s

er
ro

r
of

c 3
3

Fig. 5. Estimation errors of the diagonal elements of calibration matrix C.
The errors are shown in blue and in red three times the standard deviation
estimated by SLAC is shown.
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Fig. 6. Estimation error of the bias vector when the data of the first
magnetometer axis is scaled by a factor of two. The errors are shown in blue
and in red three times the standard deviation estimated by SLAC is shown.

around the true position and heading as mentioned above. But
that does not mean that the filter exactly knows the starting
position and heading since the initial particles are randomly
drawn from a Gaussian distribution and all have the same
weight. At the beginning of Fig. 3 the robot is at standstill and
hence also the filter is not updated leading to a constant error
(besides some noise in the Vicon ground truth). After roughly
20 s the robot starts driving and the filter begins updating the
weights. As a result, the error and the size of the particle cloud
increases, noticeable by the increasing standard deviation. But
as can be seen from Fig. 3 SLAC is able to bound the errors
by incorporating information from the magnetic field to aid
the odometry. The standard deviation estimated by the filter
is well above the true errors which shows the filter is able to
produce conservative estimates and does not underestimate its
own uncertainty.

In Fig. 4 and Fig. 5 the estimation errors of the bias vector
b and the diagonal elements of the calibration matrix C are
shown with three times the corresponding standard deviation
estimated by SLAC. The errors are calculated by comparing
the MMSEE of SLAC, i.e., the weighted mean over all Kalman
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Fig. 7. Estimation errors of the diagonal elements of calibration matrix C
when the data of the first magnetometer axis is scaled by a factor of two.
The errors are shown in blue and in red three times the standard deviation
estimated by SLAC is shown.

filter states, with the parameters obtained from ellipsoid fitting
with the calibration data set. As for the position and heading,
the parameter estimates are conservative. For b1 and b2 the
initial error and standard deviation is reduced after the robot
starts driving, showing that the biases are actually observable.
Bias b3 is relatively close to zero and since all biases are
initialized from a zero mean Gaussian pdf the error is pretty
small at the beginning and already within the accuracy SLAC
can achieve. For the diagonal elements of C, called also scale
factors here, a similar behavior as for b3 can be observed in
Fig. 5. Since the true scale factors are close to one and we
initialized all scale factors by sampling from a Gaussian with
mean one, the errors are from the beginning on relatively small
and within the achievable accuracy indicated by the standard
deviation after convergence of the filter. For the off-diagonal
elements of C a similar behavior is observed and hence the
results are not shown here for brevity.

In order to test if the proposed SLAC algorithm can also
cope with large deviations in the scale factors, another evalua-
tion was performed in which the magnetometer measurements
of the first trajectory were scaled. To achieve this, we simply
multiplied the measurements of the first magnetometer axis by
a factor of two before providing them to the SLAC algorithm.
After multiplying the data, the scale factor is close to two and
the bias is doubled. As seen in Fig. 6 and Fig. 7 the initial error
of bias b1 and scale factor c11 is now considerable larger than
in Fig. 4 and Fig. 5. Fortunately, SLAC can also cope with
this larger initial deviations in the parameters and can reduce
the errors as soon the robot starts driving. With respect to
the accuracy only a small degradation is observed, the RMSE
for the position is 0.096m and for the heading 2.107◦. The
MaxAE has increased to 0.251m for the position and slightly
decreased to 5.681◦ for the heading.

IV. CONCLUSION

In this paper we showed how a tracked robot can be
localized in an indoor environment with the distortions of the
Earth magnetic field and the measurements of an uncalibrated
magnetometer. In order to achieve this, a real time capable

simultaneous localization and calibration (SLAC) algorithm
was proposed. In the SLAC algorithm a Rao-Blackwellized
particle is used to jointly estimate the robot pose and the
calibration parameters.

The feasibility of the algorithm was shown is an evaluation
using three data sets recorded in DLR’s Holodeck laboratory.
From the evaluation we could conclude that the proposed
SLAC algorithm works and can achieve a position RMSE
in the range of 10 cm and a heading RMSE around 2◦.
Furthermore, the results showed that the calibration parameters
are observable and that the algorithm can also cope with large
initialization errors in the parameters.
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