
Intelligent Sensor-Scheduling for Multi-Kinect-Tracking

Florian Faion, Simon Friedberger, Antonio Zea, and Uwe D. Hanebeck

Abstract— This paper describes a method to intelligently
schedule a network of multiple RGBD sensors in a Bayesian
object tracking scenario, with special focus on Microsoft
KinectTM devices. These setups have issues such as the large
amount of raw data generated by the sensors and interference
caused by overlapping fields of view. The proposed algorithm
addresses these issues by selecting and exclusively activating the
sensor that yields the best measurement, as defined by a novel
stochastic model that also considers hardware constraints and
intrinsic parameters. In addition, as existing solutions to toggle
the sensors were found to be insufficient, the development of
a hardware module, especially designed for quick toggling and
synchronization with the depth stream, is also discussed. The
algorithm then is evaluated within the scope of a multi-Kinect
object tracking scenario and compared to other scheduling
strategies.

I. INTRODUCTION

Building an RGBD-network with multiple Kinects re-
quires addressing several issues. For example, as the sensors
acquire the depth information using an active measurement
principle, interference needs to be considered. Kinects detect
depth information by using an infrared (IR) pattern projected
onto the scene. However, when multiple devices are active
at the same time, these patterns overlap with each other and
cause interference and performance degradation. In addition,
a major challenge is the large amount of raw data being
collected. Assuming a standard VGA resolution of 640x480
pixels with 8 bits for color (before debayering) and 11 bits
for depth, the bandwidth required for 30 fps is 21.8 MB/s
of raw data per individual Kinect.

A. Contribution

The main contribution of this work is an algorithm to
intelligently schedule the activation of devices from a Kinect
network in a Bayesian tracking scenario. The objective is to
minimize the expected uncertainty of the next measurement
update. The presented method takes a stochastic sensor
model for the Kinect depth sensor, the intrinsic parameters,
and hardware constraints into account. This makes the algo-
rithm more reliable and more exact than naı̈ve approaches.
For optimal IR-projector toggling, a new hardware module
was developed that synchronizes to the depth data stream,
marking an improvement upon the existing software and
hardware solutions. A modified Kinect is depicted in Fig-
ure 1.

F. Faion, S. Friedberger, A. Zea, and U. Hanebeck are with the
Institute for Anthropomatics, Intelligent Sensor-Actuator-Systems
Laboratory (ISAS), Karlsruhe Institute of Technology (KIT), 76131
Karlsruhe, Germany {faion|friedberger}@kit.edu,
antonio.zea@student.kit.edu,
uwe.hanebeck@ieee.org.

Fig. 1: Hardware modification for IR-projector-subsystem
on/off-toggling of a Kinect device.

B. Related Work

Multiple Kinects have been used [1] to analyze a scene
to create a so-called “parallel reality” art installation using
a form of telepresence. The “LightSpace” setup [2], which
tracks users using depth cameras and combines the result
with multiple projectors to provide an interactive environ-
ment, also uses a similiar approach. In neither case [1],
[2] were the interference of the depth sensors considered.
Alternative hardware solutions have been considered, for
example a mechanical shutter [3], in the context of dealing
with interferences. However, the lack of synchronization
between the shutter and the Kinect, among other factors, was
shown to be detrimental in other applications, like markerless
motion capture [4]. Work has also been done to solve the
issue of interference [5] by interpolating missing values at
the cost of additional computation time. Several libraries [6],
[7] have been developed to work with the class of point
clouds that are generated by depth cameras. Algorithms have
been developed to track a sphere with dynamic position
using Bayesian principles [8]. In a similar way to this paper,
information theoretic principles have been used for sensor
scheduling [9]. Additional work has been done analyzing the
accuracy of the Kinect depth data [10], on which the sensor
model presented in this work is based.

C. Overview

The remainder of this paper is structured as follows. In
Section II, the considered problem is described in more the-
oretical and practical detail within the scope of an example
tracking application. A stochastic motivation for the intelli-
gent sensor selection is given in Section III. In Section IV,
the developed algorithm is explained, followed by a descrip-



tion of the sensor model in Section V and the presentation of
the toggling device in Section VI. The experimental results
are given in Section VII. This includes a comparison with
other scheduling approaches using as example the mentioned
tracking scenario. Section VIII concludes this paper with a
summary of the authors’ insights and proposals for future
work.

II. PROBLEM FORMULATION

In this work, the problem of scheduling a network
of multiple RGBD sensors in a Bayesian object tracking
scenario is considered. The tracking scenario is assumed
to contain n statically mounted RGBD Sensors S =
{s1, s2, . . . , sn} with given intrinsic {K1,K2, . . . ,Kn} and
extrinsic {H1,H2, . . . ,Hn} calibrations. The vector xk de-
scribes the state parameters of a moving object at a given
time step k. An overview of an example tracking scenario is
depicted in Figure 2.

Fig. 2: Toy train tracking scenario with four Kinects.

The goal is to measure the object using the best sensor
sm ∈ S at each time step k, using time-multiplexing as the
underlying schedule strategy. The advantages of this setup
are:

1) a dramatic reduction of computational complexity and
bandwidth as only one measurement has to be pro-
cessed, and

2) avoidance of Kinect interference issues caused by
overlapping fields of view, as shown in Figure 3.

The proposed setup involves a number of issues that need
to be addressed. First of all, determining the best sensor
requires the definition of a sensor quality measure. Second,
after calculating the quality for each sensor at a certain time
step k, the object could have moved farther, raising the need
for some kind of prediction of future behavior. A further
technical issue is that Kinects on their own do not allow
rapid on/off-toggling of the IR-projector-subsystem.

III. STOCHASTIC BACKGROUND

Tracking can be realized by means of a Bayesian state
estimator, recursively estimating the state parameters xk of

(a) 1 active Kinect. (b) 2 active Kinects.

(c) 3 active Kinects. (d) 4 active Kinects.

Fig. 3: Illustration of raw shift variances, measured over 64
frames for a different number of active Kinects. Green pixels
with varying brightness indicate valid values: black for 0 and
green for 1. Red indicates at least one invalid value.

the object, where xe
k is a random vector1 with estimated

probability density fxe
k
(x). Bayesian tracking by design

includes a time update, predicting the estimated state at a
future time step k+1, and a measurement update, correcting
a predicted state using a sensor measurement y

k+1
. In

consequence, improving quality is equivalent to minimizing
the uncertainty of xe

k+1. In this work, all uncertainties are
assumed to be Gaussian, i.e., xk ∼ N (x̂k,Cxk

) and y
k
∼

N (ŷ
k
,Cyk

).
Given a probability density f from the space of Gaussian

distributions P with f ∈ P , a function

G : P → R (1)

is required to measure its uncertainty. Since the target esti-
mate is modeled as a Gaussian distribution, the determinant
of the covariance matrix was chosen as an appropriate
measure G with

G (f(x, x̂,Cx)) = det(Cx) , (2)

The goal is then to select the Kinect whose measurement
will lead to the smallest expected uncertainty. Let ms be the
set of possible measurements for a sensor s ∈ S, then the
best sensor is given by

sm = argmin
s∈S

E
y
k+1
∈ms

{G(f(x, x̂ek+1,Cxe
k+1

))} , (3)

where Ey
k+1
∈ms

is the expected value over the measure-
ments.

1We further denote predicted state parameters by xp and estimated (after
measurement update) state parameters by xe.



IV. SCHEDULING ALGORITHM

The developed sensor-scheduling algorithm will now be
explained in detail. As mentioned before, a Bayesian state
estimator is assumed for estimating the objects state param-
eters xk ∼ N (x̂k,Cxk

).

A. Sensor Selection

The task of the tracking framework is to allow the sensor
that yields the expected best measurement to perform the real
measurement. More formally, the current estimate xe

k at time
step k will be processed to select the sensor s ∈ S which
minimizes the covariance matrix Cxe

k+1
of xe

k+1, where k+1
is the expected measurement time step. The entire sensor
selection scheme is depicted in Algorithm 1 in pseudocode.

Algorithm 1 Sensor Selection

Input: estimate xe
k, sensors S

1: xp
k+1 = predict xe

k

2: {x̃1, . . . , x̃m} = draw m samples from xp
k+1

3: for s ∈ S do
4: us = 0
5: for x̃ ∈ {x̃1, . . . , x̃m} do
6: {ỹ

1
, . . . , ỹ

n
} = measure n times x̃ with s

7: for ỹ ∈ {ỹ
1
, . . . , ỹ

n
} do

8: x̃e
k+1 = update xp

k+1 with ỹ
9: us+= determinant of covariance of x̃e

k+1

10: end for
11: end for
12: us =

us

m ·n
13: end for
Output: sm = argmin

s∈S
us

First (see Line 1), by predicting the current estimate xe
k for

the next expected measurement time step k+1, the value for
xp
k+1 is obtained. The next step is simulating measurements

of this predicted state xp
k+1 with each sensor s ∈ S by

means of a stochastic sensor model. Such a model calculates
a noisy observation y ∼ N (ŷ,Cy) for a given 3D point ŷ.
An appropriate sensor model for the Kinect is derived in
Section V. Unfortunately, the Kinect sensor model cannot
be directly applied to xp

k+1 due to its nonlinearity. Instead,
an approximation xp

k+1 with m randomly drawn samples
{x̃1, . . . , x̃m} (Line 2) is calculated.

For each sample x̃, n measurements {ỹ
1
, . . . , ỹ

n
} are

simulated with the stochastic sensor model for each sensor
s ∈ S (Line 5), because one measurement would not be
able to capture the probability distribution when the object
is close to the edge of the sensor field-of-view. Based on
these n virtual measurements ỹ for each of the m sample
states x̃, measurement updates are performed (Line 7). Al-
together we now have m ·n expected estimations x̃e

k+1 ∼
N (x̃ek+1,Cx̃e

k+1
) for each sensor s ∈ S.

As explained in Section III, the determinant of the covari-
ance matrix Cx̃e

k+1
is used as a measure for the uncertainty

of x̃e
k+1. It is averaged over all m and n and the result is

one scalar value

us =
1

m ·n
∑
m ·n

det(Cx̃e
k+1

) , (4)

representing the state uncertainty in time step k + 1 for the
current sensor. Equation 4 is analogous to Line 9 and 12.
Finally, after calculating the uncertainty us for each sensor
s ∈ S, the minimum us (Line 13) characterizes the best
sensor sm. This completes the sensor-scheduling and the best
sensor is activated to perform a real measurement y

k+1
. This

measurement is then used to determine the estimation xe
k+1

for the next time step k + 1.

V. STOCHASTIC SENSOR MODEL FOR KINECT

In this section, a stochastic sensor model for the Kinect
depth sensor is derived. This model calculates a Gaussian
distribution y ∼ N (ŷ,Cy) for a given 3D point ŷ that
is visible to the sensor. Based on this distribution, noisy
observations of this point can be produced.

A. Visibility Constraints

Similar to standard RGB cameras, the view region of a
Kinect depth sensor can be modeled as a pyramidal frustum,
whose parameters can be derived from the intrinsic calibra-
tion K and distance constraints inherent to the hardware [11].
These constraints are specified as [0.8 m, 3.5 m]. A scheme
of the viewable area is depicted in Figure 4.

B. Stochastic Model

Kinects do not deliver depth values directly. Instead, the
values received are what in the PrimeSense code [12] is
described as shift values, which are integer 11-bit values
representing an encoded form of the triangulation disparities.
The relationship between shift values and disparities is
assumed to be linear [7].

It is assumed that no unexpected sources of noise, e.g.,
additional Kinects, are present. For a given point ŷ, let smax

and smin be the extrema of the measured shifts. These shifts
can either be invalid (greater than a given threshold, e.g.,
sthresh ≈ 1023 for 5 m), on edges (in which case one can
observe that smax − smin > 2), or are stable (in which
case usually smax− smin = 1). This means that shift values
for stable depths generally vary discretely from one value
to directly adjacent ones, and the influence of angle, the
depth in meters, reflectivity or other factors is not as great
as expected. It should be noted that the noise variance of
measurements is not constant in time, not even in static
scenes, as artifacts in the algorithm (such as vertical bands
appearing in certain frames, among others) cause additional
instability. Some of these effects can be seen in Figure 3.

For the noise model the shift is modelled as s ∼ N (ŝ, σ2
s),

using an upper value of σ2
s = 1

3 . Actual variances are
generally smaller, and this value is only considered as an
upper threshold. Measurements with smaller variances can
be assumed to be stable, while those with greater variances
are usually on edges.



There are a few formulas published to convert the shift
value to a depth value in meters. A formula provided in
[13], shown to be very close to empirical results, is:

z(s) = a · tan(s
b
+ c) , (5)

with a = 0.1236, b = 2842.5, c = 1.1863, and z as the
distance in meters. Observing the transform one can see that
the function between shift to depth is relatively flat in the
interval [ŝ − 1, ŝ + 1] for any given ŝ in the depth interval
from 0.8 m to 3.5 m. This simplifies the transformation of the
shift distribution through linearization in the neighborhood
of ŝ

z(s) ≈ z′(ŝ) · (s− ŝ) + k , (6)

for a constant k, which leads to

σ2
z ≈ (z′(ŝ))2 ·σ2

s =

(
a

b
sec2(

ŝ

b
+ c)

)2

·σ2
s . (7)

Let u and v be the pixel coordinates of y. In order to
unproject a given point (u, v, s)T to 3D-coordinates, it is also
useful to consider noise values for u and v. Given how little
is known about the PrimeSense triangulation algorithm, it is
hard to say authoritatively how certain the pixel coordinates
are. With this in mind, it is reasonable to model u and v as
u ∼ N (û, σ2

u) and v ∼ N (v̂, σ2
v) with σ2

u = σ2
v = 1

3 as
upper estimations.

The transformation from 2D to 3D-coordinates is assumed
to obey the pinhole principle. Assuming

K =

(
fu 0 cu
0 fv cv

)
(8)

as the intrinsic calibration, it follows that

y =

x1x2
x3

 =

u−cu
fu

v−cv
fv

1

 z(s) (9)

holds. Based on these equations, the covariance matrix of
the 3D-coordinates can be calculated as

V ar(x1) =
(û− cu)2σ2

z + z2σ2
u + σ2

zσ
2
u

f2u
, (10)

V ar(x2) =
(v̂ − cv)2σ2

z + z2σ2
v + σ2

zσ
2
v

f2v
, (11)

V ar(x3) = σ2
z , (12)

Cov(x1, x3) =
û− cu
fu

σ2
z , (13)

Cov(x2, x3) =
v̂ − cv
fv

σ2
z , (14)

Cov(x1, x2) =
û− cu
fu

· v̂ − cv
fv

σ2
z . (15)

The sensor model for a given point ŷ leads to the noisy
observation y ∼ N (ŷ,Cy), with

Cy =

 V ar(x1) Cov(x1, x2) Cov(x1, x3)
Cov(x1, x2) V ar(x2) Cov(x2, x3)
Cov(x1, x3) Cov(x2, x3) V ar(x3)

 .

(16)

camera center

viewing frustum
uncertainty covariance

Fig. 4: Scheme of the stochastic Kinect sensor model.
For some selected locations the covariance ellipsoids are
qualitatively depicted in gray.

VI. TOGGLING MECHANISM

A sensor setup using multiple Kinects with overlapping
views will produce interference artifacts due to overlapping
IR patterns, as explained in Section II. This raises the need
for time-multiplexing, where a single Kinect is chosen to be
active at any given time while the other Kinects are powered
down. In this section, two solutions are discussed for toggling
the Kinect IR-projector-subsystem: one in software and one
in hardware.

A. Software Toggling

Software toggling uses the driver functions and is the
first obvious idea to control the IR-projector-subsystem.
However, the software solutions available within the standard
frameworks libfreenect [13], OpenNI [14], and KinectSDK
[15] were found to be insufficient. While toggling of the
IR-projector-subsystem is indeed supported by these drivers,
it turned out that this mechanism takes up to 200 ms from
turning on the projector to obtaining a stable depth image,
causing the loss of at least six frames. Quick toggling was
also observed to cause instability, in a few cases even causing
the driver to cease to respond. This problem makes software
toggling impractical for tracking applications, especially
when fast switching between Kinects is needed.

B. Hardware Toggling

A hardware solution was designed to solve the toggling
issues. The IR-projector-subsystem before modification is
depicted in Figure 5a. The main component of the projector
is a laser diode projecting the IR pattern. In an unmodified
device, the brightness of the projector is constantly monitored
by a photodiode and then transmitted to a controller that
regulates the current of the laser diode. If the IR-projector
subsystem is directly turned off, the controller will stop
receiving the signal and this will cause the Kinect to crash
inevitably.

To solve this, a subsystem (in the following denoted as the
dummy IR-projector-subsystem) was developed to emulate



the IR-projector-subsystem for the controller. A microcon-
troller acts as an electronic switch to toggle between the two
systems. A schematic of the modified system is illustrated
in Figure 5b. Furthermore, to avoid incomplete depth images
caused by turning off the projector while the IR camera is
capturing a frame, a synchronization routine to the toggling
mechanism was added which adjusts the frame valid line of
the IR camera. The output is set to 1 if the current frame
is completely captured, else it is set to 0. The electronic
switch was then only triggered on a frame valid event, which
in turn confidently leads to complete depth images. This
modification is also illustrated in Figure 5b.

IR Cam IR Laser PhotoDiode

IR-Projector-Subsystem

Controller

PC

(a) Before modification.

IR Cam IR Laser PhotoDiode

IR-Projector-Subsystem

Controller

PC

Microcontroller

sync

Switch IR Laser
Dummy

PhotoDiode
Dummy

IR-Projector-Subsystem Dummy

PC

(b) After modification.

Fig. 5: Schematic illustration of the toggling module.

Technical Realization: A top and bottom view of the board
that implements the hardware toggling is depicted in Figure
6. An MSP430 micro controller from Texas Instruments is
used as the core component (1). The board is connected to the
PC via a USB interface (2). This interface is also used as the
power supply of the board. The FFC conducting path from
the IR-projector-subsystem to the controller is redirected
to the board (3). The IR-projector-subsystem emulation re-
quired both the photodiode and the laser to be simulated.
The photodiode dummy consists merely of constant voltage,
implemented by diode (4a) and a resistor (4b), while the
running laser was emulated using the dummy current of a
resistor (5). For synchronization the FFC conducting path
from the IR camera to the Kinect is redirected to the micro
controller (6). A modified Kinect is depicted in Figure 1.

VII. EVALUATION

This section describes the evaluation of the intelligent
scheduling algorithm using the tracking scenario depicted
in Figure 2.

A. Setup

An RGBD camera network, consisting of four rigidly
mounted Kinects, is observing a scenario containing a toy
train tagged with a spherical blue landmark. An Unscented

Fig. 6: Kinect toggling module.

Error All sensors Cycle sensors Intelligent selection
Avg. 5.0 mm 9.8 mm 6.9 mm

Std. dev. 4.1 mm 13.9 mm 4.1 mm
Max. 27.0 mm 200.2 mm 21.2 mm

TABLE I: Comparison of average distances to track.

Kalman Filter [16] is used to track the sphere using the
algorithm presented by [8]. The system behavior is assumed
to evolve according to a constant velocity model.

B. Experiments

Because of the small size of the setup, the camera fields
of view overlap in several places. As mentioned before,
this causes intense interference. Several experiments with
different sensor-scheduling algorithms were carried out and
the resulting tracking accuracies were subsequently analyzed
in detail. A brief description of the applied scheduling
strategies follows.

All Sensors: This is the reference approach. Simultane-
ously measuring with all sensors is a naı̈ve but popular
scheduling strategy. Existing interferences between sensors
are completely ignored. This allows far more measurements
to be used, but many of the potential measurements are
lost due to interference. This approach involves the highest
computational effort as the raw data of every single sensor
has to be processed.

Cycle Sensors: This strategy sequentially cycles through
all sensors (with a period of 1 s) without consideration of
whether the object is visible.

Intelligent Sensor Selection: This scheduling strategy
makes use of the selection algorithm developed in Section
IV that minimizes the uncertainty of the estimated object
position. The optimal sensor for the next measurement is
determined every 200 ms.

C. Results

The ground truth was determined by carefully measuring
and modelling the real world track. Then, for the first 500
time steps, the closest point on the track corresponding to
the measurement was calculated and its distance measured.
The resulting errors are listed in Table I.

On one side, the results show that the naı̈ve approach,
even after considering the interference, produces a slightly
smaller error. This may sound surprising, but it is merely a
consequence of the small size of the scenario. In this case,
the fusion of four measurements with more noise yields a
smaller uncertainty than a single measurement with little



noise. Considering how quickly the noise grows in relation
to depth, a theoretical alternative of increasing the amount of
sensors to compensate for greater distances can be quickly
seen as not viable.

Additionally, it must also be pointed out that using mul-
tiple sensors to compensate for the noise also causes a
dramatic increase in bandwidth and extremely noisy depth
images, which may be unusable for further applications. This
further shows the benefits of using the other two approaches.
Since only one sensor remains active at any given time, the
bandwidth is constant and the quality of the depth image
remains optimal.

Figures 7, 8, and 9 contain the results for one single round
trip of the toy train. Figure 7, 8, and 9 (a) shows the estimates
after a measurement update in the corresponding color of the
measuring Kinect. Figure 7, 8, and 9 (b) shows the direction
of the estimated velocity.

For the cyclic toggling approach, the visibility of the
object is not guaranteed. This causes the corresponding
measurements in some points of the track to be missing,
as can be seen in Figure 8a.

Figure 9a shows that the best sensor, as chosen by the
algorithm, usually defaults to the closest sensor to the mea-
surement. This is quite intuitive and follows directly from
the sensor noise model, which dictates that the uncertainty
increases with the depth distance. This does not have to be
the case, however, in cases when the cameras have different
shift-to-depth or intrinsic parameters. Another exception to
this rule happens when the object is outside the view frustrum
of the closest camera.

VIII. CONCLUSION

In this work, a method was presented to intelligently
schedule an RGBD sensor network for tracking applications.
The proposed algorithm activates the sensor that yields the
best measurement, as defined by a novel stochastic model
that also considers hardware constraints and intrinsic param-
eters. This requires quick toggling and synchronization with
the depth stream, for which a specialized hardware module
was developed.

The evaluation compared the performance of the proposed
intelligent scheduling algorithm against naı̈ve approaches
such as having all sensors activated and cycling through all
sensors. Results showed the intelligent algorithm performing
in a similar way to the “all sensor” strategy, while using
four times less samples, requiring much less bandwidth,
and avoiding issues like interference due to multiple active
sensors.

Furthermore, the presented method can be applied to any
multi-sensor tracking system that can be described using
stochastic sensor models.

Future Work

For simultaneous measurements with more than one sen-
sor, interference needs to be considered by the sensor model.
A horizon of future measurements, i.e., measurement series,
may also be of interest. A more algorithmic improvement
would be to deterministically approximate the predicted
state. Finally, applying sensor-scheduling to extended objects
or entire areas could be useful for applications like free
viewpoint television [17] or telepresence [18].

IX. ACKNOWLEDGEMENTS

We would like to thank Alexander Riffel and Anton Gor-
bunov for implementing the toggling-hardware. Furthermore,
we would like to thank Jannik Steinbring for implementing
the tracking algorithm.

REFERENCES

[1] T. Takeuchi, T. Nakashima, K. Nishimura, and M. Hirose, “Prima:
parallel reality-based interactive motion area,” in ACM SIGGRAPH
2011 Posters, ser. SIGGRAPH ’11. New York, NY, USA: ACM,
2011, pp. 80:1–80:1.

[2] A. Wilson and H. Benko, “Combining multiple depth cameras and
projectors for interactions on, above and between surfaces,” in Pro-
ceedings of the 23nd annual ACM symposium on User interface
software and technology. ACM, 2010, pp. 273–282.

[3] A. Scholz and K. Berger, “Multiple Kinect Studies,” Computer, 2011.
[4] K. Berger, K. Ruhl, Y. Schroeder, C. Bruemmer, A. Scholz, and

M. Magnor, “Markerless Motion Capture using multiple Color-Depth
Sensors,” Sensors (Peterborough, NH), 2011.

[5] A. Maimone and H. Fuchs, “Encumbrance-free telepresence sys-
tem with real-time 3D capture and display using commodity depth
cameras,” 2011 10th IEEE International Symposium on Mixed and
Augmented Reality, pp. 137–146, Oct. 2011.

[6] R. R. B. Rusu, S. Cousins, and W. Garage, “3D is here: Point Cloud
Library (PCL),” in IEEE International Conference on Robotics and
Automation (ICRA), 2011.

[7] ROS.org, “Technical description of Kinect calibration,” 2010. [Online].
Available: http://www.ros.org/wiki/kinect calibration/technical

[8] M. Baum, V. Klumpp, and U. D. Hanebeck, “A Novel Bayesian
Method for Fitting a Circle to Noisy Points,” in Proceedings of the
13th International Conference on Information Fusion (Fusion 2010),
Edinburgh, United Kingdom, 2010.

[9] G. Hoffmann and C. Tomlin, “Mobile sensor network control using
mutual information methods and particle filters,” Control, IEEE Trans-
actions on, vol. 55, no. 1, pp. 32–47, Jan. 2010.

[10] K. Khoshelham, “Accuracy analysis of kinect depth data,” in ISPRS
Workshop Laser Scanning, vol. 38, 2011.

[11] PrimeSense, “Kinect reference,” 2010. [Online]. Available:
https://github.com/adafruit/Kinect/

[12] ——, “PrimeSense/Sensor GitHub repository,” 2012. [Online].
Available: Source/XnDDK/XnShiftToDepth.cpp

[13] “libfreenect Framework,” 2010. [Online]. Available:
http://openkinect.org

[14] the OpenNI organization, “OpenNI Framework,” 2012. [Online].
Available: http://www.openni.org/

[15] Microsoft, “Kinect SDK,” 2012. [Online]. Available:
http://www.microsoft.com/en-us/kinectforwindows/

[16] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear
Estimation,” Computer Engineering, vol. 92, no. 3, 2004.

[17] M. Tanimoto, M. Tehrani, and T. Fujii, “Free-viewpoint TV,” Signal
Processing, no. January, pp. 67–76, 2011.

[18] F. Packi, A. P. Arias, F. Beutler, and U. D. Hanebeck, “A Wearable
System for the Wireless Experience of Extended Range Telepresence,”
in Proceedings of the 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, 2010.



(a) Mean x̂e of updated estimates. (b) Direction of velocity.

Fig. 7: Results of scheduling algorithm all sensors.

(a) Mean x̂e of updated estimates. (b) Direction of velocity.

Fig. 8: Results of scheduling algorithm cycle sensors.

(a) Mean x̂e of updated estimates. (b) Direction of velocity.

Fig. 9: Results of scheduling algorithm intelligent sensor selection.


