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Nonlinear Kalman Filters (KFs) are powerful and widely-used

techniques when trying to estimate the hidden state of a stochastic

nonlinear dynamic system. A novel sample-based KF is the Smart

Sampling Kalman Filter (S2KF). It is based on deterministic Gaus-

sian samples which are obtained from an offline optimization pro-

cedure. Although this sampling technique is quite effective, it does

not preserve the point symmetry of the Gaussian distribution. In

this paper, we overcome this issue by extending the S2KF with a

new point-symmetric Gaussian sampling scheme to improve its es-

timation quality. Moreover, we also improve the numerical stability

of the sample computation. This allows us to accurately approx-

imate thousand-dimensional Gaussian distributions using tens of

thousands of optimally placed and equally weighted samples. We

evaluate the new symmetric S2KF by computing higher-order mo-

ments of standard normal distributions and investigate the estima-

tion quality of the S2KF when dealing with symmetric measurement

equations. Additionally, extended object tracking based on many

measurements per time step is considered. This high-dimensional

estimation problem shows the advantage of the S2KF being able to

use an arbitrary number of samples independent of the state dimen-

sion, in contrast to other state-of-the-art sample-based Kalman Fil-

ters. Finally, other estimators also relying on the S2KF’s Gaussian

sampling technique, e.g., the Progressive Gaussian Filter (PGF), will

benefit from the new point-symmetric sampling as well.
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I. INTRODUCTION

Estimating the hidden state of a stochastic dynamic

system based on noisy measurements is crucial for many

applications in control, object tracking, or robotics.

When considering linear systems corrupted by additive

Gaussian noise, the Kalman Filter (KF) is the optimal

estimator with respect to the mean square error [1]. Un-

fortunately, most practical problems are nonlinear, mak-

ing closed-form solutions intractable. Consequently, ap-

proximative approaches have to be used. Particle Fil-

ters (PFs) [2]—[5] try to approximate the complete, in

general multimodal, system state density with a set of

weighted particles. This comes at the cost of compu-

tational complexity due to the curse of dimensionality.

Another problem is sample degeneracy, in particular for

high-dimensional state spaces, as a consequence of the

particle reweighting using the likelihood function. To

reduce computational complexity and circumvent the

problem of sample degeneracy, the Progressive Gaus-

sian Filter (PGF) [6], [7] approximates the system state

as a Gaussian and moves the particles automatically to

the important regions of the state space. Nevertheless,

those nonlinear filters are still costly compared to linear

filters applied to nonlinear problems.

The Extended Kalman Filter (EKF) explicitly lin-

earizes the underlying models around the current state

estimate to be able to apply the standard KF to the

considered problem [8]. Iterated variants of the EKF

(IEKF) try to improve the EKF approach by iteratively

searching for a more suitable point for the model lin-

earization [8]. A more suitable way of model lineariza-

tion is based on statistical linearization, which can be

performed in the best case analytically or, in all other

cases, by exploiting samples in the form of Linear Re-

gression Kalman Filters (LRKFs) [9]. LRKFs obtain the

required moments by propagating samples through the

system and measurement models and computing sample

mean and sample covariance matrix, respectively. The

most commonly used LRKF is the Unscented Kalman

Filter (UKF) [10]. Its samples are, however, limited in

number and placement, and several attempts exist to

improve the UKF by finding its optimal parameter set-

tings for specific estimation problems [11]. Neverthe-

less, the additional computational time required to find

proper UKF parameters can be used instead to propa-

gate more carefully chosen samples through the models

in order to improve the estimation quality. For exam-

ple, the Gauss-Hermite Kalman Filter (GHKF) intro-

duced in [12] is based on the Gauss-Hermite quadra-

ture rule to generate its samples. Unfortunately, the

GHKF also suffers from the curse of dimensionality,

and hence, is not well suited for larger state spaces.

The fifth-degree Cubature Kalman Filter (CKF) [13]

relies on a fifth-degree spherical-radial integration rule

to construct its samples. However, by design, the num-

ber of samples still grows quadratically in the state di-

mension making the fifth-degree CKF computational
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burdensome when dealing with larger state spaces. A

non-deterministic LRKF was proposed with the Ran-

domized UKF (RUKF) [14], [15]. Here, an arbitrary

number of randomly scaled and rotated UKF sample

sets are combined to a single set of samples. On the

one hand this has the advantage of being able to change

the employed number of samples. On the other hand it

prohibits a reproducible filter behavior and imposes an

additional runtime overhead compared to other LRKFs

due to the creation of several random orthogonal ma-

trices per prediction and measurement update. The esti-

mation quality of any LRKF, regardless of the sampling

it is based on, can be improved by using the iterated

statistical linearization approach [16], [17]. A more de-

tailed overview of linear filters and LRKFs can be found

in [18], [19].

Recently, the Smart Sampling Kalman Filter (S2KF)

was proposed in [19], [20], and already successfully

used for Simultaneous Localization and Mapping

(SLAM) in [21]. The S2KF uses optimal determinis-

tic sampling of a standard normal distribution compris-

ing an arbitrary number of equally weighted samples

based on a combination of the Localized Cumulative

Distribution (LCD) and a modified Cramér-von Mises

distance [22], [23]. The same LCD approach was also

extended to approximate arbitrary Gaussian mixture dis-

tributions [24].

In this paper, we improve the numerical stability of

the LCD approach when dealing with Gaussian den-

sities and, more importantly, extend the S2KF with a

point-symmetric Gaussian sampling. This new sampling

approach offers several benefits. First, it reflects the

point symmetry of the Gaussian distribution and allows

for matching all odd moments of a standard normal

distribution exactly, which results in a more accurate

state estimation. In this regard, the S2KF catches up

to state-of-the-art LRKFs as all of them also rely on a

point-symmetric sampling scheme. Second, due to the

improved numerical stability, it is now possible to com-

pute an optimal approximation of thousand-dimensional

standard normal distributions comprising tens of thou-

sands of samples. Third, as a minor benefit, the required

number of parameters that have to be optimized is re-

duced by half. Consequently, the samples can be com-

puted faster. However, this is only a minor improvement

as the computation is performed offline.

The remainder of the paper is organized as follows.

First, we give an overview of nonlinear Kalman filtering

and its transition to LRKFs. After that, in Sec. III, we

introduce a new point-symmetric version of the S2KF.

In Sec. IV, we evaluate the symmetric S2KF by com-

puting higher-order moments of multivariate standard

normal distributions, showing the advantage of the new

point-symmetric sampling scheme when dealing with

symmetric measurement equations, and performing ex-

tended object tracking. Finally, conclusions are given in

Sec. V.

II. SAMPLE-BASED NONLINEAR KALMAN FILTERING

We consider estimating the hidden state xk of a

discrete-time stochastic nonlinear dynamic system,

where the system model

xk = ak(xk¡1,wk) (1)

describes its temporal evolution.1 Additionally, we re-

ceive noisy measurements ỹ
k
that are assumed to be

generated according to the measurement model

y
k
= hk(xk,vk): (2)

Thus, the received measurements ỹ
k
are realizations of

the random variable y
k
. The noise variables wk and

vk are assumed to be Gaussian and independent of

the system state for all time steps. Their densities are

given by
fwk (wk) =N (wk; ŵk,Cwk )

and
fvk (vk) =N (vk; v̂ k,Cvk),

where ŵ k and v̂ k denote the mean vectors, and C
w
k and

Cvk the covariance matrices.
Our goal is to determine a state estimate of xk in the

form of a conditional state density

fek (xk) := f(xk j ỹ k, : : : , ỹ1)
recursively over time using Bayesian inference. Such

a recursive estimator consists of two parts, namely

the prediction step and the filter step. On the one

hand, the prediction step propagates the state estimate

fek¡1(xk¡1) from time step k¡ 1 to the current time step k
by employing the system model (1) resulting in the

predicted state density

f
p
k (xk) := f(xk j ỹk¡1, : : : , ỹ1):

On the other hand, the filter step incorporates a newly

received measurement ỹ
k
into this propagated state esti-

mate f
p
k (xk) with the aid of the measurement model (2).

In nonlinear Kalman filtering, both state densities

are approximated as Gaussian distributions, and the

predicted state density is given by

f
p
k (xk)¼N (xk; x̂pk,Cpk),

with predicted state mean

x̂
p
k =

ZZ
ak(xk¡1,wk)¢

fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk (3)

and predicted state covariance matrix

C
p
k =

ZZ
(ak(xk¡1,wk)¡ x̂pk) ¢ (ak(xk¡1,wk)¡ x̂pk)T

¢fek¡1(xk¡1) ¢fwk (wk)dxk¡1dwk, (4)

1The subscript k denotes the discrete time step, matrices are printed

bold face, and vectors are underlined.
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respectively. Furthermore, the, in general intractable,

Bayesian measurement update is also approximated to

obtain the posterior Gaussian state density

fek (xk)¼N (xk; x̂ek,Cek),
with posterior state mean

x̂
e
k = x̂

p
k +C

x,y
k ¢ (Cyk)¡1 ¢ (ỹ k ¡ ŷ k) (5)

and posterior state covariance matrix

Cek =C
p
k ¡Cx,yk ¢ (Cyk)¡1 ¢ (Cx,yk )T, (6)

which are the well-known Kalman Filter formulas [8].

In order to obtain (5) and (6), the measurement mean

ŷ
k
=

ZZ
hk(xk,vk) ¢fpk (xk) ¢fvk (vk)dxkdvk, (7)

the measurement covariance matrix

C
y
k =

ZZ
(hk(xk,vk)¡ ŷ k) ¢ (hk(xk,vk)¡ ŷ k)T¢

f
p
k (xk) ¢fvk (vk)dxkdvk, (8)

as well as the cross-covariance matrix of predicted state

and measurement

C
x,y
k =

ZZ
(xk ¡ x̂pk) ¢ (hk(xk,vk)¡ ŷ k)T¢

f
p
k (xk) ¢fvk (vk)dxkdvk (9)

are required.

Unfortunately, computing the above integrals in

closed-form is only possible for a small set of system

and measurement models, but it yields the best possible

Kalman Filter for the given models. In all other cases,

numerical integration methods have to be applied. As

we aim for an online estimation technique, the employed

numerical integration has to possess a real-time capable

computational complexity and still deliver adequate inte-

gration results in order to obtain a good recursive state

estimation quality. When looking at the five integrals, it

can be seen that the last terms are always a product of

two independent Gaussian densities, namely

fek¡1(xk¡1) ¢fwk (wk) =

N
μ·
xk¡1
wk

¸
;

·
x̂
e
k¡1
ŵ k

¸
,

·
Cek¡1 0

0 Cwk

¸¶
(10)

for the prediction and

f
p
k (xk) ¢fvk (vk) =N

μ·
xk

vk

¸
;

·
x̂
p
k

v̂ k

¸
,

·
C
p
k 0

0 Cvk

¸¶
(11)

for the measurement update, respectively. By exploit-

ing this fact, an efficient, i.e., fast but still accurate,

computation of the integrals is possible. This can be

done by replacing the occurring Gaussian distributions

(10) and (11) with proper Dirac mixture densities, that

is, sample-based density representations, and evaluating

the system model (1) and measurement model (2) using

these samples. As a result, emphasis is directly put on

the important regions of the state space, and the regions

covered by only a small portion of the probability mass

of the Gaussian densities are neglected. This approach

leads to the class of Linear Regression Kalman Filters

(LRKFs).

A Dirac mixture approximation of a given proba-

bility density function fk(sk) comprising Mk samples

with sample positions sk,i and sample weights ®k,i is

defined as
MkX
i=1

®k,i ¢ ±(sk ¡ sk,i), (12)

where ±(¢) denotes the Dirac delta distribution and the
sample weights must sum up to one. Such an approxi-

mation can be computed in several ways, e.g., by sim-

ply using random sampling or deterministic approaches

such as done by the UKF.

Now, we assume that an approximation of the Gaus-

sian joint density (10) comprisingMk samples with posi-

tions [xTk¡1,i, w
T
k,i]

T and weights ®k,i is at hand. By replac-

ing the Gaussian joint density in the integrals (3) and

(4) with this Dirac mixture approximation, and using

the Dirac sifting property, we obtain an approximation

for the predicted state mean

x̂
p
k ¼

MkX
i=1

®k,i ¢ ak(xk¡1,i,wk,i)

and the predicted state covariance matrix

C
p
k ¼

MkX
i=1

®k,i ¢ (ak(xk¡1,i,wk,i)¡ x̂pk)

¢ (ak(xk¡1,i,wk,i)¡ x̂pk)T:
The same procedure is used for computing the integrals

required for the measurement update. First, a Dirac mix-

ture approximation of the Gaussian (11) encompassing

Mk samples with positions [x
T
k,i, v

T
k,i]

T and weights ®k,i is

computed. Second, by replacing the joint Gaussian with

its Dirac mixture approximation in the three integrals

(7), (8), and (9), and using once more the Dirac sifting

property, we get an approximation for the measurement

mean

ŷ
k
¼

MkX
i=1

®k,i ¢ hk(xk,i,vk,i),

the measurement covariance matrix

C
y
k ¼

MkX
i=1

®k,i ¢ (hk(xk,i,vk,i)¡ ŷ k)

¢ (hk(xk,i,vk,i)¡ ŷ k)T,
and the cross-covariance matrix

C
x,y
k ¼

MkX
i=1

®k,i ¢ (xk,i¡ x̂pk) ¢ (hk(xk,i,vk,i)¡ ŷ k)T:
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It should be noted that the number of samples for the

time and the measurement update do not have to be

the same. Moreover, both Dirac mixture approximations

can be completely different in the way they are obtained,

although this is usually not the case.

III. THE SMART SAMPLING KALMAN FILTER WITH
SYMMETRIC SAMPLES

In [22], the authors proposed an approach based

on the Localized Cumulative Distribution (LCD) to op-

timally approximate Gaussian distributions with a set

of equally weighted samples. This is done by trans-

forming the approximation problem into an optimiza-

tion problem. Unfortunately, such optimization is very

time-consuming, and hence, not suitable for online non-

linear filtering. To enable the LCD approach for online

filtering, it is used to optimally sample only a stan-

dard normal distribution offline (before filter usage) and

transform these samples online (during filter usage) to

any required Gaussian with the aid of the Mahalanobis

transformation [25]. This is the fundamental basis for

the S2KF [19]. But other nonlinear estimators such as

the Progressive Gaussian Filter also make use of this

Gaussian sampling technique.

However, the current LCD approach can, and will,

arrange the samples in an arbitrary way to optimally

approximate a standard normal distribution. More pre-

cisely, it does not take the point symmetry of the

standard normal distribution explicitly into account so

that not all samples have point-symmetric counterparts.

Here, we extend the LCD approach to approximate an

N-dimensional standard normal distribution with a set

of point-symmetric and equally weighted samples. More-

over, we improve the numerical stability of the LCD

approach when dealing with Gaussian densities to al-

low approximations of very high dimensions. This new

optimal point-symmetric sampling is then used to obtain

a symmetric version of the S2KF.

The use of point-symmetric samples offers several

benefits. First, the proposed sampling reflect the point

symmetry of the standard normal distribution allowing

for more accurate estimation results as will be seen

in the evaluation. Second, the used point symmetry

makes it possible to capture all odd moments of the

standard normal distribution exactly (a proof is given

in Appendix A). Finally, although not the actual goal of

the proposed sampling, the required number of sample

positions, i.e., the parameters, that have to be optimized

is reduced by half, and hence, speeds up the offline

sample computation.

Besides point symmetry, other symmetries such as

axial symmetry could also be exploited. However, this

would prevent us from using an arbitrary number of

samples and would limit the optimizer’s control over

the sample placement.

In the following, we first define the set of parameters

describing point-symmetric Dirac mixtures in Sec. III-

A. These parameters have then to be optimized in or-

der to approximate a standard normal distribution in

an optimal way. This requires the distance measures

between a standard normal distribution and the point-

symmetric Dirac mixtures given in Sec. III-B. Subse-

quently, the gradients of the distance measures are de-

rived in Sec. III-C. Finally, in Sec. III-D, we give a

procedure to compute point-symmetric Dirac mixture

approximations of standard normal distributions based

on the introduced distance measures and their gradi-

ents.

A. Point-Symmetric Dirac Mixtures

First, we have to modify the generic Dirac mixture

(12) to obtain a point-symmetric one. This is performed

by distinguishing between an even and odd number

of samples. For the case of 2L samples with L 2 N+,
that is, the even case, we place the samples point-

symmetrically around the state space origin yielding the

equally weighted Dirac mixture

1

2L

LX
i=1

±(s¡ s i) + ±(s+ s i), (13)

with sample positions s i and ¡s i. For 2L+1 samples,
the odd case, we additionally place a sample fixed at

the state space origin and obtain the Dirac mixture

1

2L+1

Ã
±(s)+

LX
i=1

±(s¡ s i) + ±(s+ s i)
!
: (14)

This preserves the desired point symmetry. As the posi-

tion of the additional sample in the odd case is constant,

the set of parameters

S := fs1, : : : ,sLg
is the same for both Dirac mixtures. That is, S de-

scribes the entire set of 2L or 2L+1 samples form-

ing a density approximation although S contains only

half of the sample positions. Given a set S, the full set

of point-symmetric samples is fs1,¡s1, : : : ,sL,¡sLg or
f0,s1,¡s1, : : : ,sL,¡sLg, depending on whether the even
or the odd case is considered. Moreover, the Dirac

mixtures specified in (13) and (14) are always point-

symmetric no matter what values S will take.

For example, the UKF sample set comprising 2L or

2L+1 (equally weighted) samples [10] is a special case

of these point-symmetric Dirac mixtures. With an even

number of samples, it has the parametrization

s i =
p
N ¢ ei 8i 2 f1, : : : ,Ng,

where ei denotes the unit vector along the ith dimension.

In the odd case, the parametrization is

s i =
p
N +0:5 ¢ ei 8i 2 f1, : : : ,Ng,
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that is, the sample spread is larger due to the additional

point mass at the state space origin.

B. Distance Measures

Our goal is to determine the set of parameters S for

the above Dirac mixtures so that they approximate a

multivariate standard normal distribution in an optimal

way. This requires a distance measure between the

involved continuous and discrete distributions. As the

classical cumulative distribution function is not suitable

for the multi-dimensional case [26], we utilize the LCD

approach in the same way as the asymmetric S2KF.

DEFINITION III.1 (Localized Cumulative Distribution

[19]).

Let f(s) be an N-dimensional density function. The

corresponding Localized Cumulative Distribution is de-

fined as

F(m,b) =

Z
RN
f(s) ¢K(s¡m,b)ds,

with m 2 RN , b 2 R+, and the symmetric and integrable
kernel

K(s¡m,b) = exp
μ
¡1
2

ks¡mk22
b2

¶
:

Here, m characterizes the location of the kernel and b

its size.

The LCD of an N-dimensional standard normal dis-

tribution is an integral of a product of two (unnor-

malized) Gaussians. By using the fact that the prod-

uct of two Gaussian distributions is also an unnormal-

ized Gaussian and the integral over a probability density

equals one, its LCD is obtained by [22]

FN (m,b) =
Z
RN
N (s;0,IN) ¢ (2¼)N=2bNN (s;m,b2IN)ds

=
(2¼)N=2bN

(2¼)N=2
pj(1+ b2)IN j exp

μ
¡1
2

kmk22
(1+b2)

¶

=

μ
b2

1+ b2

¶N=2
exp

μ
¡1
2

kmk22
(1+ b2)

¶
,

where IN denotes the identity matrix of dimension N.

Based on the Dirac sifting property, the LCD of the

Dirac mixture comprising an even number of samples

is given by

Fe± (S,m,b) =
1

2L

Ã
LX
i=1

exp

μ
¡1
2

ks i¡mk22
b2

¶

+ exp

μ
¡1
2

k¡ s i¡mk22
b2

¶¶
,

whereas the LCD of the odd Dirac mixture is

Fo± (S,m,b) =
1

2L+1

μ
exp

μ
¡1
2

kmk22
b2

¶

+

LX
i=1

exp

μ
¡1
2

ks i¡mk22
b2

¶

+ exp

μ
¡1
2

k¡ s i¡mk22
b2

¶¶
:

To compare the standard normal LCD with a Dirac

mixture LCD, we use the modified Cramér-von Mises

distance defined as follows.

DEFINITION III.2 (Modified Cramér—von Mises Dis-

tance).

The modified Cramér—von Mises (CvM) distance D

between two LCDs F(m,b) and F̃(m,b) is given by

D(F, F̃) =

Z 1

0

w(b)

Z
RN
(F(m,b)¡ F̃(m,b))2dmdb,

with weighting function

w(b) =

½
¼¡N=2b1¡N , b 2 (0,bmax]

0, elsewhere:

The new term ¼¡N=2 in the weighting function w(b)
(in contrast with the definition in [19]) is a consequence

of the involved LCDs FN , F
e
± , and F

o
± . Without this

term, the modified CvM distances between these LCDs

would be unbounded for an increasing dimension N,

which in turn would make the distances numerically

unstable. This improvement now allows the S2KF to

compute Dirac mixture approximations for very high

state dimensions, e.g., N > 200.

Note that the LCD approach is closely related to the

concept used in regularized particle filtering [3], [27].

Here, a kernel with a given bandwidth, i.e., kernel

size, is convolved with a set of weighted particles,

i.e., a Dirac mixture, to improve the sample diversity.

Nevertheless, the LCD is also applied to a continuous

density to make it comparable with a discrete one.

Additionally, we also integrate over all kernel locations

m and kernel sizes b.

First, we consider the distance between the standard

normal distribution and the Dirac mixture comprising

an even number of samples, and then extend the results

to the odd case. The distance D(FN ,F
e
± ) can be split into

three terms according to

D(FN ,F
e
± ) =D

e(S) =De1¡2De2(S)+De3(S),
with the sample-independent part

De1 =

Z bmax

0

b

μ
b2

1+b2

¶N=2
db,
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and the sample-dependent terms

De2(S) =

Z bmax

0

2b

2L

μ
2b2

1+2b2

¶N=2

¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
db,

and

De3(S) =

Z bmax

0

2b

(2L)2

LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ks i+ sjk22
2b2

!
db:

The proof is given in Appendix B. Note that the inte-

gration over b is bounded by bmax due to the support of

the weighting function w(b). To speed up the distance

computation, the following theorem can be applied.

THEOREM III.1. For a given bmax, the following expres-

sion for De3(S) can be obtained

De3(S) =
2

(2L)2

LX
i=1

LX
j=1

b2max
2

Ã
exp

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ exp

Ã
¡1
2

ks i+ sjk22
2b2max

!!

+
1

8

Ã
ks i¡ sjk22Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ ks i+ sjk22Ei0
Ã
¡1
2

ks i+ sjk22
2b2max

!!
,

where Ei0(x) is defined as

Ei0(x) :=

½
0, if x= 0

Ei(x), elsewhere

and Ei(x) denotes the exponential integral

Ei(x) :=

Z x

¡1

et

t
dt:

PROOF The proof is given in Appendix C.

Now, we consider the case of an odd number of

samples. Like in the even case, D(FN ,F
o
± ) can be split

into three terms

D(FN ,F
o
± ) =D

o(S) =Do1 ¡ 2Do2(S)+Do3(S):
The first part Do1 is also independent of the samples S

and identical to its even counterpart, i.e.,

Do1 =D
e
1:

The sample-dependent terms Do2(S) and D
o
3(S) can be

expressed in terms of the even case plus additional

terms due to the fixed sample at the state space origin

according to

Do2(S) =
2L

2L+1
De2(S) +

Z bmax

0

b

2L+1

μ
2b2

1+2b2

¶N=2
db

and

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+

Z bmax

0

4b

(2L+1)2

LX
i=1

exp

μ
¡1
2

ks ik22
2b2

¶
db:

The proof is given in Appendix D. Like for the even

case, also the computation of the odd case can be sped

up by using the following theorem.

THEOREM III.2. For a given bmax, the following expres-

sion for Do3(S) can be obtained

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+
4

(2L+1)2

LX
i=1

b2max
2
exp

μ
¡1
2

ks ik22
2b2max

¶

+
1

8
ks ik22Ei0

μ
¡1
2

ks ik22
2b2max

¶
,

where Ei0(¢) is defined as in Theorem III.1.
PROOF The proof is given in Appendix E.

The extra terms in Do2(S) and D
o
3(S), compared to the

even case, reflect the influence of the additional sample,

placed at the state space origin, on the distance between

the Dirac mixture and the standard normal distribution.

The result is that the point mass of the additional

sample will cause the other samples to have a slightly

larger spread compared to a sample set without the

additional sample at the state space origin. Concerning

the above mentioned numerical stability, we also give

a proof for the boundedness of both distances De(S)

and Do(S) in Appendix F. Note also that, like the

standard normal distribution, both distance measures

De(S) and Do(S) are invariant under rotation/reflection

(see Appendix G).

The proposed distance measures can be seen as

constrained versions of the asymmetric LCD distance

measure. Consequently, a Dirac mixture minimizing the

new distance measures can be suboptimal with respect

to the asymmetric distance measure. However, the actual

goal is to approximate a standard normal distribution

as best as possible, not to minimize certain distance

measures. More precisely, the term “best” induces the

utilized distance measure, and in addition to [22], here

“best” also means to preserve the point symmetry of

the standard normal distribution. This, in turn, requires

new distance measures in the form of the proposed

measures De(S) and Do(S).
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C. Gradients of the Distance Measures

In order to optimize the parameters S of a given

Dirac mixture, we chose to apply a gradient-based it-

erative optimization procedure. This requires the par-

tial derivatives of the two distance measures De(S) and

Do(S) with respect to the set of parameters S. For the

even case, the partial derivatives are

@De(S)

@s(d)i
=¡2@D

e
2(S)

@s(d)i
+
@De3(S)

@s(d)i
8d 2 f1, : : : ,Ng,

with its two terms

@De2(S)

@s
(d)
i

=¡s
(d)
i

2L

Z bmax

0

2b

(1+2b2)

μ
2b2

1+2b2

¶N=2

¢ exp
μ
¡1
2

ks ik22
(1+2b2)

¶
db,

and

@De3(S)

@s(d)i
=¡ 2

(2L)2

Z bmax

0

1

b

¢
LX
j=1

(s(d)i ¡ s(d)j )exp
Ã
¡1
2

ks i¡ sjk22
2b2

!

+(s(d)i + s(d)j )exp

Ã
¡1
2

ks i+ sjk22
2b2

!
db:

(15)

Analogous to De3(S), the following theorem can be used

for the computation of its partial derivatives.

THEOREM III.3 For a given bmax, the following expres-

sion for @De3(S)=@s
(d)
i can be obtained

@De3(S)

@s(d)i
=

1

(2L)2

LX
j=1

(s
(d)
i ¡ s(d)j )Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+(s(d)i + s(d)j )Ei0

Ã
¡1
2

ks i+ sjk22
2b2max

!
,

where Ei0(¢) is defined as in Theorem III.1.
PROOF The proof is given in Appendix H.

As with the distance Do(S) itself, its partial deriva-

tives

@Do(S)

@s(d)i
=¡2@D

o
2(S)

@s(d)i
+
@Do3(S)

@s(d)i
8d 2 f1, : : : ,Ng

can be obtained in terms of the even case plus additional

terms according to

@Do2(S)

@s(d)i
=

2L

2L+1

@De2(S)

@s(d)i

and

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

¡ 2s(d)i
(2L+1)2

Z bmax

0

1

b
exp

μ
¡1
2

ks ik22
2b2

¶
db:

To ease the computation of the partial derivatives of

Do3(S), the next theorem can be used.

THEOREM III.4 For a given bmax, the following expres-

sion for @Do3(S)=@s
(d)
i can be obtained

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

+
s
(d)
i

(2L+1)2
Ei0

μ
¡1
2

ks ik22
2b2max

¶
,

where Ei0(¢) is defined as in Theorem III.1.
PROOF The proof is given in Appendix I.

D. The S2KF with Symmetric Samples

Based on the introduced distance measures De(S)

and Do(S), and their partial derivatives, we can compute

a Dirac mixture approximation of a standard normal dis-

tribution comprising an arbitrary number of optimally

placed point-symmetric samples. As this amounts to a

simple shape approximation, it does not guarantee an

identity sample covariance matrix of the resulting Dirac

mixture, a property of key importance in Kalman fil-

tering. Thus, we will additionally constrain the possible

resulting Dirac mixtures with this requirement in mind.

For the sample computation, the remaining integrals

over b in the distance measures and their gradients are

computed with the aid of an adaptive numerical in-

tegration scheme, namely the 31-point Gauss-Kronrod

quadrature [28]. Furthermore, we utilize the low mem-

ory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton

optimization (L-BFGS) [29]. The low memory variant

is essential here as it avoids the explicit computation

and storage of the inverse Hessian matrix of the dis-

tance measures. The set of Dirac mixture parameters S

encompasses L£N single parameters to be optimized.

Hence, the (inverse) Hessian matrix of De(S) or Do(S)

would contain (L£N)2 entries. When now assuming

only a linear increase in the number of samples for an

increasing dimension N, that is, 2L= C ¢N, with a linear
factor C, the size of the Hessian grows with O(N4). This
problem is illustrated in Fig. 1 for two different linear

factors (5 and 10). It can be seen that approximating

a 100-dimensional standard normal distribution with a

thousand samples would require a Hessian of ¼ 20 giga-
bytes, and already a Hessian of over 4 gigabytes in case

of only 500 samples. Consequently, using the inverse

Hessian of De(S) or Do(S) directly in the optimization

is intractable.

The computation of the point-symmetric samples

works as follows.

1) Choose the desired number of samplesM to approx-

imate the N-dimensional standard normal distribu-

tion.

2) Depending on the number of samples M, the even

distance measure De(S) or the odd distance measure

Do(S) is selected.
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Fig. 1. Size of the Hessian matrix for different dimensions and

number of samples.

3) A proper maximum kernel width bmax has to be se-

lected. Generally speaking, the larger the dimension

N is the larger bmax has to be in order to consider all

sample positions during the optimization, and thus,

to get a meaningful approximation. Empirically, we

have found that a value of 70 is large enough for up

to N · 1000 dimensions.
4) The initial parameters of the point-symmetric Dirac

mixture required by the L-BFGS procedure, i.e., the

set S comprising L= bM=2c sample positions, is
obtained by drawing L samples randomly from an

N-dimensional standard normal distribution.

5) The L-BFGS procedure optimizes the point-sym-

metric Dirac mixture parameters such that the dis-

tance measure is minimized, i.e., it moves the ini-

tial L samples (and implicitly their point-symmetric

counterparts) in the state space to approximate the

standard normal distribution in an optimal way. The

point-symmetric Dirac mixture parameters resulting

from the L-BFGS procedure are denoted as fzigLi=1.

Fig. 2. Different LCD-based approximations of a two-dimensional standard normal distribution with samples s i (blue), point-symmetric

counterparts ¡s i (orange), fixed sample at the state space origin in the odd case (green), and 95% confidence interval of the standard normal

distribution (gray). (a) Symmetric approach with 12 samples. (b) Symmetric approach with 13 samples. (c) Asymmetric approach with

12 samples.

6) These parameters finally have to undergo a transfor-

mation so that the resulting Dirac mixture captures

the identity covariance matrix of the standard normal

distribution as much as possible. The transformation

is done by first computing the sample covariance

matrix

Cz =
2

M

LX
i=1

zi ¢ zTi ,

second computing the Cholesky decomposition

Cz = LLT,

and third transforming the parameters according to

s i = L
¡1 ¢ zi, 8i 2 f1, : : : ,Lg:

The proof of the transformation is given in Ap-

pendix J.

7) The desired set of point-symmetric samples finally

approximating the standard normal distribution is

either fs1,¡s1, : : : ,sL,¡sLg or f0,s1,¡s1, : : : ,sL,¡sLg,
depending on whether M is even or odd.

Experimentally, we have found that in situations

where the covariance matrix was added as an explicit

constraint to the optimization procedure, the sample co-

variance matrix of the resulting Dirac mixture was less

accurate compared to the proposed transformation ap-

proach. Moreover, the constraint made the optimization

procedure much more time-consuming. Consequently,

we dropped this approach in favor of the transformation

approach.

The results of different LCD-based approximations

of a two-dimensional standard normal distribution are

depicted in Fig. 2. On the one hand, Figures 2(a)

and 2(b) show approximations using the new point-

symmetric sampling scheme comprising 12 and 13 sam-

ples, respectively. The point-symmetric arrangement

around the state space origin can be clearly seen. Note
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Fig. 3. Two different approximation results with 14 samples of a

two-dimensional standard normal distribution.

also the subtle difference in the sample spread of the

samples near the state space origin between Fig. 2(a)

and Fig. 2(b). This is caused by the additional point

mass from the fixed sample at the state space origin.

On the other hand, Fig. 2(c) shows an approximation

based on the classical asymmetric sampling scheme also

comprising 12 samples. Here, the optimization proce-

dure can position all samples individually, and hence,

the samples are not necessarily arranged in a point-

symmetric way like in the depicted case.

We also have to point out that, due to the random

initialization of the L-BFGS procedure and the rota-

tion/reflection invariance of the distance measures, the

computed samples are not unique. That is, different ap-

proximations with the same number of samples can ei-

ther differ only in a rotation/reflection or can have a

completely different sample placement. For example,

Fig. 3 shows two different approximation results for

the same number of samples where the difference is

not only a rotation or reflection. Concerning the time

needed for the computation, on an Intel Core i7-3770

CPU, our implementation in C++ [30] takes about 4

minutes to approximate a 500D standard normal distri-

bution with 10,000 samples and 35 minutes to approxi-

mate a 1000D standard normal distribution with 20,000

samples.

Using the above described optimal point-symmetric

sampling of a standard normal distribution, we obtain a

symmetric version of the S2KF. Furthermore, to avoid

a re-computation on every program start, we store any

computed Dirac mixture approximation of a standard

normal distribution persistent in the file system for later

reuse. This mechanism is called the Sample Cache and

was already used by the asymmetric S2KF.

IV. EVALUATION

In this Section, we want to compare the new point-

symmetric sampling scheme of the S2KF with its asym-

metric version and other state-of-the-art LRKFs. First,

we take a closer look at the approximation of higher-

order moments of standard normal distributions. Then,

the advantage of using a point-symmetric sampling

scheme, and hence, the new version of the S2KF, is dis-

cussed by means of a simple symmetric measurement

equation. Finally, extended object tracking is performed

to compare the recursive state estimation quality of var-

ious state-of-the-art LRKFs.

A. Moment Errors of a Standard Normal Distribution

First, we investigate how well the employed sam-

pling schemes of state-of-the-art LRKFs approximate

the moments of a standard normal distribution. Thus,

we are interested in the expectation values

E[xn11 x
n2
2 ¢ ¢ ¢xnNN ] =

Z
RN
xn11 x

n2
2 ¢ ¢ ¢xnNN N (x;0,IN)dx,

with
NX
i=1

ni =m, 0· ni ·m

for different dimensions N and moment orders m. This

has the advantage of being independent of a concrete

system and measurement model. For given N and m,

the number of possible combinations JN,m to select the

values for ni is equal to the number of terms in a

multinomial sum with N summands raised to the power

m, that is,

JN,m =

μ
m+N ¡ 1
N ¡ 1

¶
=
(m+N ¡ 1)!
(N ¡ 1)!m! :

Hence, a moment is characterized by JN,m distinct val-

ues.

As all state-of-the-art LRKFs employ a point-sym-

metric sampling scheme and capture mean and covari-

ance matrix, we focus on higher-order even moments.

More precisely, we take a look at the 4th, 6th, and 8th

moment, i.e., m 2 f4,6,8g. In many practical applica-
tions, 3D and 6D Gaussian distributions are of special

interest. For example, the location and orientation in 2D

or the position in 3D can be estimated using a three-

dimensional system state. When additionally consider-

ing velocities in the 2D case or the orientation in the

3D case, a six-dimensional state is required. Thus, we

chose to study the approximations of standard normal

distributions with these two dimensions, i.e., N 2 f3,6g.
We compare the new point-symmetric S2KF, the

UKF with equally weighted samples, the RUKF, the

fifth-degree CKF, and the GHKF with two quadrature

points. To assess the different LRKF sampling tech-

niques, for each dimension N and moment m we com-

pute a normalized moment error according tovuut 1

JN,m

JN ,mX
j=1

(Etruej ¡ELRKFj )2, (16)

where Ej denotes one of the JN,m possible combinations
for the mth moment, the superscript “true” the true mo-

ment value and “LRKF” the LRKF sampling estimate.

It is important to note that the moments computed with

samples are not invariant under rotation. Thus, the same
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holds for the normalized moment error (16). To mit-

igate this, we randomly rotate the sample sets of the

UKF, fifth-degree CKF, and GHKF 100 times and build

the average moment error. Regarding the S2KF and the

RUKF, they do not have unique sample sets, and hence,

for both filters 100 sample sets are generated and the av-

erage moment errors are computed as well. Moreover,

the S2KF and the RUKF are evaluated with different

number of samples. Note that we do not compare the

asymmetric S2KF here due to its errors in the odd mo-

ments. Those errors will likely reduce the errors in even

moments. Because of this, a moment-based comparison

against the other LRKFs is not meaningful.

The results are depicted in Figures 4 and 5. As the

UKF, the fifth-degree CKF, and the GHKF have a fixed

number of samples, they are depicted as a bar at their

respective employed number of samples. Additionally,

for all filters their respective minimum and maximum

moment errors are also depicted. The average moment

errors of the UKF and the S2KF are nearly identical

for the case when both filters use the same number of

samples. This is due to the fact that both sample sets are

equally weighted and the S2KF places its samples like

the UKF (except for the rotation) as this minimize the

utilized distance measure. The RUKF, however, scales

the utilized UKF sample sets randomly. Consequently,

its sample set is not necessarily equally weighted like for

the UKF and the S2KF, and hence, their moment errors

differ. Considering all average moment errors, the S2KF

delivers always smaller errors than the RUKF and the

GHKF (for the same number of samples). The sampling

of the fifth-degree CKF is the only one that matches

the 4th moment exactly. This is based on the fact that

the spherical-radial rule of the fifth-degree CKF has a

5th-degree accuracy [13]. Regarding the spread of the

moment errors, it can be seen that the S2KF and UKF

have nearly the same variability in the errors, and that

the maximum moment errors of the GHKF exceed the

ones of the S2KF. Furthermore, the S2KF has a much

smaller variability in the errors than the RUKF. Most

times the errors of the S2KF are as small as the smallest

errors of the RUKF or are even smaller, especially for

the 6D standard normal distribution.

B. Symmetric Measurement Equations

To illustrate the advantages of using a point-sym-

metric sampling scheme, we consider the two-dimen-

sional system state

x= [a, b]T

combined with the scalar and symmetric measurement

equation

y = h(x,v) =
p
a2 +b2 + v,

where v is zero-mean Gaussian noise with variance

¾2 = 0:01. Hence, we measure a noisy distance from

the system state x to the state space origin. Such a

symmetric measurement equation arises for example in

[31], [32].

We assume that the true system state is

xtrue = [1, 2]
T,

and our goal is to estimate it using a Nonlinear Kalman

Filter initialized with mean and covariance matrix

x̂
p
= [0, 0]T, Cp = diag(4,0:5):

The setup is illustrated in Fig. 6. From the the esti-

mator’s perspective, the received measurement ỹ could

stem from any state located on the gray circle around the

prior mean, not only xtrue. Hence, a Nonlinear Kalman

Filter cannot gain any new information about the hid-

den system state from the measurement ỹ. This situation

is reflected in a zero cross-covariance matrix of state

and measurement Cx,y in (5) and (6). Consequently, the
posterior state estimate (mean and covariance matrix)

equals the prior, no matter what prior uncertainty we

have.

Now, we try to reproduce this result when using

LRKFs. More precisely, we compare the asymmetric

S2KF, its new point-symmetric version (both using 11

samples), and the UKF. We perform R = 100 Monte

Carlo runs. In each run, we reset the initial state es-

timate, and simulate a noisy measurement ỹ to perform

one measurement update. Moreover, both S2KF variants

compute a new set of samples approximating a stan-

dard normal distribution in every Monte Carlo run. We

compute the Root Mean Square Error (RMSE) for the

posterior mean vuut 1

R

RX
r=1

kx̂er ¡ x̂pk22,

where x̂
e
r denotes the estimated posterior mean of run

r. Additionally, we compute the RMSE of the posterior

covariance matrixvuut 1

R

RX
r=1

kCer ¡Cpk2,

where Cer denotes estimated posterior covariance matrix
of run r and k ¢ k the Frobenius norm.
The results of the evaluation are depicted in Fig. 7. It

can be seen that the UKF and the point-symmetric S2KF

do not have any errors. This can be explained with their

point-symmetric sampling scheme. More precisely, the

cross-covariance matrix is computed correctly accord-

ing to

Cx,y =
1

2L+1

·
0

0

¸³
ŷ¡
p
(ai)

2 + (bi)
2

´
+

1

2L+1

LX
i=1

μ·
ai

bi

¸
¡
·
ai

bi

¸¶³
ŷ¡
p
(ai)

2 + (bi)
2

´
=

·
0

0

¸
,
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Fig. 4. Moment errors of a 3D standard normal distribution. (a) Average errors 4th moment. (b) Average errors 6th moment. (c) Average

errors 8th moment. (d) Min/Max errors 4th moment. (e) Min/Max errors 6th moment. (f) Min / Max errors 8th moment.

Fig. 5. Moment errors of a 6D standard normal distribution. (a) Average errors 4th moment. (b) Average errors 6th moment. (c) Average

errors 8th moment. (d) Min/Max errors 4th moment. (e) Min/Max errors 6th moment. (f) Min/Max errors 8th moment.

where ŷ is the measurement mean, L= 2 for the UKF,

and L= 5 for the point-symmetric S2KF. For the asym-

metric sampling scheme, however, point-symmetric

samples cannot be guaranteed, and hence, the cross-

covariance matrix Cx,y do not necessarily evaluates to

zero. In such a case, it introduces (theoretically non-

existent) correlations between the measurement and the

system state. As a consequence, the asymmetric S2KF

slightly changes its state estimate mistakenly. Over time,

those small errors can accumulate to non-negligible es-
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Fig. 6. Symmetric measurement model with prior mean (orange),

prior uncertainty (blue), true system state (green).

Fig. 7. Estimation errors for symmetric measurement model.

timation errors or even result in filter divergence. The

other estimators do not have such a problem due to

their point-symmetric sampling. So even such a sim-

ple scenario demonstrates the advantages of the new

point-symmetric sampling scheme of the S2KF.

C. Extended Object Tracking

Now, we consider estimating the pose and extent of a

cylinder in 3D based on a Random Hypersurface Model

(RHM) [33], [34]. The system state is composed of po-

sition ck = [c
x
k, c

y
k, c

z
k]
T and velocity º k = [º

x
k, º

y
k , º

z
k]
T,

rotation angles Á
k
= [Áxk, Á

y
k]
T and their velocities !k =

[!xk, !
y
k]
T, as well as the cylinder radius rk and length lk

according to

xk = [c
T
k ,º

T
k ,Á

T

k
,!Tk ,rk, lk]

T:

The temporal evolution of the cylinder is modeled

with a constant velocity model

xk =Axk¡1 +w,

with system matrix

A=

26666664

I3 I3 0 0 0

0 I3 0 0 0

0 0 I2 I2 0

0 0 0 I2 0

0 0 0 0 I2

37777775
and zero-mean Gaussian white noise w with covariance

matrix

Cw = diag(10¡6I3,10
¡4I3,10

¡10I2,10
¡5I2,10

¡4I2):

TABLE I

LRKF settings for the measurement update.

LRKF Number of samples

Fifth-degree CKF 2 ¢ 922 +1 = 16,929

RUKF (with 5 iterations) 5 ¢ (2 ¢ 92)+1 = 921

RUKF (with 20 iterations) 20 ¢ (2 ¢ 92)+1 = 1,841

Asymmetric S2KF Freely selectable 461

Asymmetric S2KF Freely selectable 1,841

Symmetric S2KF Freely selectable 461

Symmetric S2KF Freely selectable 1,841

This linear model allows to compute the prediction step

analytically for all LRKFs.

A measurement is a noisy point

ỹ
k
= [ỹxk, ỹ

y
k, ỹ

z
k]
T

from the cylinder’s surface. It is related to the system

state by means of the implicit nonlinear measurement

equation

0 = h(xk, ỹ k,v,s) =

264(m
x
k)
2 + (m

y
k)
2¡ r2k

mzk ¡ s ¢ lk
(mzk ¡ s ¢ lk)2

375 , (17)

where

mk = (R(Á
y
k) ¢R(Áxk))¡1(ỹ k ¡ v¡ ck),

and zero-mean Gaussian white noise v with covari-

ance matrix Cv = 0:01 ¢ I3 and multiplicative white noise
s» U(¡0:5,0:5).2 Furthermore, R(¢) denotes a 3D rota-
tion matrix around the respective axis. It is important

to note that the measurement equation itself depends

on the received measurement ỹ
k
, and the estimator only

takes the so-called pseudo measurement 0 as input. The

reason for this is that the proposed measurement model

tries to minimize the Euclidean distance between the

received measurements ỹ
k
and the cylinder’s surface,

and thus, generates measurements of value zero in the

optimal case. Note also that the quadratic term in the last

row of (17) is necessary when dealing with multiplica-

tive noise in combination with Kalman Filters [33], [35].

At each time step, we receive a set of 20 measure-

ments
Yk = fỹ(1)k , : : : , ỹ

(20)

k
g:

As the order of processing measurements affects the

filtered state estimate, we do not process measurements

sequentially. More precisely, we process all measure-

ments at once, that is, in a single measurement update,

by stacking the measurements into a large measurement

vector according to2664
0

...

0

3775=
2664
h(xk, ỹ

(1)

k
,v(1),s(1))

...

h(xk, ỹ
(20)

k
,v(20),s(20))

3775 :
2As LRKFs can only sample Gaussian distributions, the uniform dis-

tribution will be approximated as a Gaussian using moment matching.
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Fig. 8. Cylinder state (blue) after 360 time steps inclusive its

trajectory (green line) and 20 noisy measurements (orange crosses).

This, in turn, requires a set of 20 ¢ 4 = 80 measure-
ment noise variables in total. Together with the twelve-

dimensional system state, a LRKF has to sample a 92-

dimensional random vector to perform a measurement

update. The number of samples used by the investigated

LRKFs are summarized in Table I. It should be noted

that the GHKF [12] is intractable for the considered

scenario as it relies on a Cartesian product and would

require at least 292 samples. In addition, the UKF is not

able to estimate the cylinder’s height as discussed in

[20], and hence, it is also not evaluated here.

We simulate a nonlinear trajectory of a cylinder

over 500 time steps including rotations in all its three

degrees of freedom as depicted in Fig. 8. Additionally,

the initial cylinder’s length of 1 increases to 1.5 after

200 time steps, and the initial radius of 0.3 increases to

0.4 after further 100 time steps. Finally, at time step 400,

the cylinder’s length shrinks back to 0.5. We perform

100 Monte Carlo runs. In reach run, we initialize the

estimators with

x̂
e
0 = [ĉ

T
,0, : : : ,0,1,2]T

Ce0 = diag(C
c,10¡3I3,10

¡7I4,10
¡2I2),

where ĉ denotes the mean and Cc the covariance

of the first set of measurements Y0. For each in-

vestigated LRKF, we compute the cylinder position

RMSE (Fig. 9(a)), the RMSE of the angle between

the true cylinder longitudinal axis and the estimated

one (Fig. 9(b)), as well as the cylinder volume RMSE

(Fig. 9(c)). Regarding the cylinder position, the RUKF

instances were the filters with the largest errors although

they used the same or twice the number of samples

of the S2KF variants. The asymmetric S2KF was a lit-

tle bit less accurate than the symmetric S2KF and the

fifth-degree CKF. Same results can be observed for the

cylinder orientation error. For the cylinder volume error,

all estimators had noticeable error peaks at time steps

200, 300, and 400. These can be explained with the

abrupt shape changes of the cylinder at the respective

time steps. Furthermore, the fifth-degree CKF is not as

good as in the other estimation quality criteria, and also

the asymmetric S2KF is slightly better than the symmet-

ric S2KF in the beginning.

However, when looking at the runtimes of the re-

spective LRKF measurement updates in Fig. 9(d), the

fifth-degree CKF was the slowest filter due to its large

amount of samples. The runtimes of the asymmetric and

the symmetric S2KF were nearly identical as they used

the same number of samples. For the case when the

RUKF and the S2KF variants used the same number of

samples, the RUKF was slower (11.5 ms compared to

4.5 ms) due to the additional overhead resulting from

the creation of several 92-dimensional random orthog-

onal matrices during each measurement update. All in

all, both S2KF variants were the filters yielding the best

compromise between runtime performance and estima-

tion accuracy. Moreover, this illustrates the advantage

of being able to select the number of samples indepen-

dently of the state/noise dimensions, in contrast to the

fifth-degree CKF.

V. CONCLUSIONS

In this paper, we introduced a new point-symmetric

Gaussian sampling scheme for the Smart Sampling

Kalman Filter. This reflects the point symmetry of the

Gaussian distribution, allows for matching all odd mo-

ments of a standard normal distribution exactly, and im-

proves the estimation quality of the S2KF.

After describing the structure of a sample-based

Kalman Filter, we extended the general Dirac mixture

to a point-symmetric form by distinguishing between an

even and an odd number of samples. Then, we adapted

the existing LCD distance measure to these new Dirac

mixtures and also gave formulas for their respective gra-

dients. These are required by the iterative optimization

procedure which optimizes the Dirac mixture parame-

ters to optimally approximate a multi-dimensional stan-

dard normal distribution with a set of equally weighted

point-symmetric samples. Furthermore, we improved

the numerical stability of the optimization, and together

with the halved number of Dirac mixture parameters

to be optimized, now it is possible to compute optimal

approximations of thousand-dimensional standard nor-

mal distributions comprising tens of thousands of sam-

ples. As the Progressive Gaussian Filter also relies on

the S2KF Gaussian sampling technique, it can directly

use and benefit from the new point-symmetric sampling

scheme.

The evaluations showed that the S2KF can han-

dle symmetric measurement equations now much better

when using the new symmetric sampling scheme. It was

also shown that the S2KF gave the best compromise be-

tween estimation accuracy and filter runtime when deal-

ing with high-dimensional problems such as extended

object tracking. Additionally, this illustrated the advan-

tage of the S2KF being able to use an arbitrary number

of samples independent of the state/noise dimensions.
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Fig. 9. Cylinder tracking simulation results. (a) Cylinder position error. (b) Cylinder orientation error. (c) Cylinder volume error.

(d) Measurement update runtime.

Finally, an open source implementation of the S2KF

including both the new point-symmetric Gaussian sam-

pling and the asymmetric Gaussian sampling is available

in the Nonlinear Estimation Toolbox [30].

APPENDIX

A. Odd Moments of a Point-Symmetric Dirac Mixture

The odd moments of an arbitrary density function

f(x) with x 2RN are defined as

Ef

24 NY
j=1

x
nj
j

35= Z
RN

NY
j=1

x
nj
j ¢f(x)dx,

where

NX
j=1

nj = 2k+1, 0· nj · 2k+1, k 2 N:

For a standard normal distribution, i.e., f(x) =

N (x;0,IN), all odd moments equals zero. Hence, we
have to show that this also holds for a point-symmetric

Dirac mixture density function comprising 2L samples.

By replacing the density f(x) with a point-symmetric

Dirac mixture approximation we obtain

E±

24 NY
j=1

x
nj
j

35= Z
RN

NY
j=1

x
nj
j

1

2L

LX
i=1

±(x¡ xi) + ±(x+ xi)dx

=
1

2L

LX
i=1

0@ NY
j=1

x
nj
i,j +

NY
j=1

(¡xi,j)nj
1A

=
1

2L

LX
i=1

0@ NY
j=1

x
nj
i,j ¡

NY
j=1

x
nj
i,j

1A= 0:
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The same result can be easily obtained for the case of

an odd number of samples 2L+1 where the additional

sample is placed at the state space origin.

B. Proof of Distance De(S)

By using the facts that the distance De(S) is com-

posed of sums of products of unormalized Gaussians

and their product is also an unnormalized Gaussian as

well as the integral over a Gaussian equals always one,

the three terms of the distance De(S) are obtained ac-

cording to

De1 =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+b2

¶N
¢ (2¼)N(1+ b2)NN (m;0,(1+b2)IN)2dmdb

=

Z bmax

0

1

¼N=2bN¡1

μ
b2

1+b2

¶N
¼
N
2 (1+ b2)N=2db

=

Z bmax

0

b

μ
b2

1+ b2

¶N=2
db,

De2(S) =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+ b2

¶N=2
¢ (2¼)N=2(1+ b2)N=2

¢ N (m;0,(1+ b2)IN)
(2¼)N=2bN

2L

¢
LX
i=1

N (m;s i,b2IN)+N (m;¡s i,b2IN)dmdb

=

Z bmax

0

2N¼N=2bN+1

2L

1

(2¼)N=2(1+2b2)N=2

¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶

+exp

μ
¡1
2

k¡ s ik22
(1+2b2)

¶
db

=

Z bmax

0

2b

2L

μ
2b2

1+2b2

¶N=2
¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
db,

and

De3(S) =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
(2¼)N=2bN

2L

¶2
¢
LX
i=1

N (m;s i,b2IN)+N (m;¡s i,b2IN)

¢
LX
j=1

N (m;sj ,b2IN)+N (m;¡sj ,b2IN)dmdb

=

Z bmax

0

2N¼N=2bN+1

(2L)2
1

(2¼)N=2(2b2)N=2

LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!
+exp

Ã
¡1
2

ks i+ sjk22
2b2

!

+exp

Ã
¡1
2

k¡ s i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ksj ¡ s ik22
2b2

!
db

=

Z bmax

0

2b

(2L)2

LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ks i+ sjk22
2b2

!
db:

C. Proof of Theorem III.1

Like in [22], to compute the term De3(S) we use that

for z > 0Z bmax

0

2

b
exp

μ
¡1
2

z

2b2

¶
db =¡Ei(¡1

2

z

2b2max
), (18)

where Ei(x) is the exponential integral defined as

Ei(x) :=

Z x

¡1

et

t
dt:

Moreover, the product rule gives

b2max
2
exp

μ
¡1
2

z

2b2max

¶
=

Z bmax

0

bexp

μ
¡1
2

z

2b2

¶
db

+
z

4

Z bmax

0

1

b
exp

μ
¡1
2

z

2b2

¶
db,

and together with (18) we obtainZ bmax

0

bexp

μ
¡1
2

z

2b2

¶
db =

b2max
2
exp

μ
¡1
2

z

2b2max

¶

+
z

8
Ei(¡1

2

z

2b2max
): (19)

Note that, although Ei(x) is not defined for x= 0, the

integral in (19) still converges for z = 0 and is equal to

b2max=2. Hence, we introduce the function

Ei0(x) :=

½
0, if x= 0

Ei(x), elsewhere
(20)
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to also cover the case z = 0. By replacing Ei(x) in (19)

with Ei0(x), we get the closed-form expression

De3(S) =
2

(2L)2

LX
i=1

LX
j=1

b2max
2

Ã
exp

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ exp

Ã
¡1
2

ks i+ sjk22
2b2max

!!

+
1

8

Ã
ks i¡ sjk22Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+ ks i+ sjk22Ei0
Ã
¡1
2

ks i+ sjk22
2b2max

!!
:

D. Proof of Distance Do(S)

The distance Do(S) differs from its even counter-

part due to the additional sample placed fixed at the

state space origin. This does not effect Do1, and hence,

it equals De1. The other two terms are sums of their

reweighted even counterparts (due to the changed sam-

ple weight) and terms comprising also products of un-

normalized Gaussians. Hence, they are given as

Do2(S)

=
2L

2L+1
De2(S) +

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+ b2

¶N=2
¢ (2¼)N=2(1+b2)N=2N (m;0,(1+ b2)IN)

¢ (2¼)
N=2bN

2L+1
N (m;0,b2IN)dmdb

=
2L

2L+1
De2(S)

+

Z bmax

0

2N¼N=2bN+1

2L+1

1

(2¼)N=2(1+2b2)N=2
db

=
2L

2L+1
De2(S) +

Z bmax

0

b

2L+1

μ
2b2

1+2b2

¶N=2
db

and

Do3(S) =
(2L)2

(2L+1)2
De3(S) +

Z bmax

0

1

¼N=2bN¡1

¢
Z
RN

μ
(2¼)N=2bN

2L+1

¶2Ã
2 ¢ N (m;0,b2IN)

¢
Ã

LX
i=1

N (m;s i,b2IN) +N (m;¡s i,b2IN)
!

+N (m;0,b2IN)2
!
dmdb

=
(2L)2

(2L+1)2
De3(S) +

Z bmax

0

2N¼N=2bN+1

(2L+1)2

¢ 1

(2¼)N=2(2b2)N=2

Ã
2 ¢

LX
i=1

exp

μ
¡1
2

ks ik22
2b2

¶

+ exp

μ
¡1
2

k¡ s ik22
2b2

¶
+1

¶
db

=
(2L)2

(2L+1)2
De3(S) +

b2max
2(2L+1)2

+

Z bmax

0

4b

(2L+1)2

LX
i=1

exp

μ
¡1
2

ks ik22
2b2

¶
db:

E. Proof of Theorem III.2

A closed-form expression for Do3(S) can directly be

obtained by using again (19) and (20) as well as the

closed-form expression for De3(S) resulting in

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+
4

(2L+1)2

LX
i=1

b2max
2
exp

μ
¡1
2

ks ik22
2b2max

¶

+
1

8
ks ik22Ei0

μ
¡1
2

ks ik22
2b2max

¶
:

F. Boundedness of De(S) and Do(S)

We show the boundedness of the distances De(S)

and Do(S) for an increasing dimension N. For a given

bmax it holds

lim
N!1

De1 = lim
N!1

Z bmax

0

b

μ
b2

1+ b2

¶N=2
| {z }
!0 for N!1

db = 0,

lim
N!1

De2(S) = lim
N!1

Z bmax

0

2b

2L

μ
2b2

1+2b2

¶N=2

¢
LX
i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
| {z }

·L

db

· lim
N!1

Z bmax

0

b

μ
2b2

1+2b2

¶N=2
| {z }
!0 for N!1

db = 0,
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and

lim
N!1

De3(S) = lim
N!1

Z bmax

0

2b

(2L)2

¢
LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp

Ã
¡1
2

ks i+ sjk22
2b2

!
| {z }

·2L2

db

· lim
N!1

Z bmax

0

bdb =
b2max
2
:

Hence, the distance De(S) is bounded by bmax accord-

ing to

lim
N!1

De(S) = lim
N!1

De1¡ 2De2(S)+De3(S)·
b2max
2
:

In a similar manner, the same result can be obtained for

the distance Do(S).

G. Invariance under Rotation/Reflection

We want to proof that the distance measures De(S)

and Do(S) are invariant under rotation/reflection. Let

R 2 RN£N be an orthogonal matrix and a,b 2RN . Then,
it holds

kRak22 = kak22
kRa§Rbk22 = ka§ bk22:

Hence, given two point-symmetric Dirac mixtures pa-

rameterized by the sets

A= fs1, : : : ,sLg
and

B = fRs1, : : : ,RsLg,
we directly see that De(A) =De(B) and Do(A) =Do(B).

H. Proof of Theorem III.3

With the aid of (18), the termsZ bmax

0

1

b
(s(d)i § s(d)j )exp

Ã
¡1
2

ks i§ sjk22
2b2

!
db (21)

of (15) can be computed according to

¡1
2
(s(d)i § s(d)j )Ei

Ã
¡1
2

ks i§ sjk22
2b2max

!
: (22)

For the special case of ks i§ sjk22 = 0 also s(d)i § s(d)j
equals zero. Consequently, the integral (21) converges

to zero as well. Like in the closed-form expression

for De3(S), we can replace Ei(x) in (22) with (20) to

handle such cases and obtain a closed-form expression

for @De3(S)=@s
(d)
i according to

@De3(S)

@s(d)i
=

1

(2L)2

LX
j=1

(s
(d)
i ¡ s(d)j )Ei0

Ã
¡1
2

ks i¡ sjk22
2b2max

!

+(s(d)i + s(d)j )Ei0

Ã
¡1
2

ks i+ sjk22
2b2max

!
:

I. Proof of Theorem III.4

A closed-form expression for @Do3(S)=@s
(d)
i can anal-

ogously be obtained by exploiting (18) and (22) as well

as the closed-form expression for @De3(S)=@s
(d)
i result-

ing in

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

+
s(d)i

(2L+1)2
Ei0

μ
¡1
2

ks ik22
2b2max

¶
:

J. Sample Covariance Matrix Correction

Given a point-symmetric Dirac mixture parameter-

ized by fzigLi=1. Our goal is to find a matrix T to trans-
form these parameters according to

s i = T ¢ zi, 8i 2 f1, : : : ,Lg,
such that the sample covariance matrix of the point-

symmetric Dirac mixture given by fs igLi=1 equals the
identity, i.e.,

Cs =
2

M

LX
i=1

s i ¢ sTi = IN ,

whereM = 2L+1 orM = 2L, depending on whether an

additional sample is placed at the origin or not. Hence,

we set

Cs =
2

M

LX
i=1

(Tzi) ¢ (Tzi)T = TCzTT
!
=IN:

With the matrix decomposition Cz =AAT, we see that

IN = (TA)(TA)
T can be satisfied with T=A¡1. A can be

computed, for example, with the eigendecomposition or

Cholesky decomposition of Cz .
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Posterior Linearisation Filter: Principles and Implementa-

tion Using Sigma Points,

IEEE Transactions on Signal Processing, vol. 63, no. 20, pp.

5561—5573, Oct. 2015.
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