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Depth sensors, once exclusively found in research laboratories, are
quickly becoming ubiquitous in the mass market. After Apple’s intro-
duction of the iPad Pro 2020 with an integrated light detection and
ranging (LIDAR) sensor, now even tablets and smartphones are ca-
pable of obtaining accurate 3-D information from their environments.
This, in turn, increases the reach of applications from technical fields,
such as SLAM, object tracking, and object classification, which can
now be downloaded on millions of hand-held devices with a couple
of taps. This motivates an analysis of the capabilities, strengths, and
weaknesses of these depth streams. In this paper, we present a study
of the spatial uncertainties of the iPad Pro 2021 depth sensor. First, we
describe the hardware used by the device, and provide an overview
of the machine learning algorithm that fuses information from the
LIDAR sensor with color data to produce a depth image. Then, we an-
alyze the accuracy and precision of the measured depth values, while
giving attention to the resulting temporal and spatial correlations. An-
other important topic of discussion are the tradeoffs involved in the ex-
trapolations that the depth system implements, such as how curvatures
change at different distances. In order to establish a reference baseline,
we also compare the obtained results to another widely known time-

of-flight sensor, the Microsoft Kinect 2.
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[. INTRODUCTION

Depth sensors have been used for several decades
in a wide variety of fields, ranging from robotics to
computer-aided design (CAD), medicine, entertain-
ment, and even the arts. During this time, multiple depth
sensing technologies have been developed based on dif-
ferent operating principles. For example, visual data,
such as RGB or grayscale images, can be processed to de-
termine disparities at given points, which in turn can be
used to reconstruct depth information. Recent advances
in machine learning (ML) [7],[10],[11] can even extrap-
olate depth from a static image by filling in missing in-
formation from previously trained scenes. Light detec-
tion and ranging (LIDAR) sensors measure depth by
projecting a (usually rotating) laser pulse onto a scene
and calculating the time it takes for the pulse to return.
In time-of-flight (ToF) cameras, a specialization of this
technology, the laser pulse is split into a dense array of
thousands of points, measuring an entire scene in a single
scan and achieving a resolution and frame rate compa-
rable to small RGB cameras.

Until about a decade ago, depth sensors in gen-
eral were out of reach of the mass market due to their
price. This changed significantly when Microsoft intro-
duced the Kinect in 2010, an affordable depth cam-
era (150 Euro) based on structured light. Originally
designed as a body tracker for the Xbox 360, it
was quickly adopted everywhere from robotics [19] to
metrology [22] and therapeutics [16]. Since then, depth
sensors have become ubiquitous in the research and
hobbyist communities, with newer generations increas-
ing accuracy and robustness while reducing their size and
price. However, they have generally remained separate
stand-alone devices. This stands in contrast to RGB cam-
eras, most of which are now integrated into PCs, laptops,
and mobile devices.

Among the first commercial attempts to integrate
depth sensors into mobile devices were Lenovo’s Phab 2
PRO in conjunction with Google’s Tango platform [20]
in 2016. Intended applications included immersive aug-
mented reality (AR) experiences, scene reconstruction,
and indoor tracking. However, there were few apps ca-
pable of exploiting these capabilities, leading to low in-
terest from consumers. In turn, Tango was discontinued
in 2017 and replaced with ARCore [13], which extracts
depth information from RGB images and ML postpro-
cessing. Since then, other smartphone manufacturers
have made integration attempts, such as the Samsung
Galaxy S20 with a ToF sensor, but it was discontin-
ued for the release of the S22. Microsoft also inte-
grated ToF sensors into its Hololens devices for AR
(both first- and second-gen), but since 2019, they have
made no concrete announcements about a third-gen
device. These ebbs and flows of depth sensor integra-
tion are a consequence of a developer chicken-and-
egg problem: if there are no apps, users will not buy
the devices, but if users are not interested, then devel-
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Fig. 1.

Example of reconstructed point cloud for a table scene with
objects, captured by an iPad Pro 2021 tablet.

opers have no reason to implement apps in the first
place.

However, this situation is quickly changing with the
introduction of platforms, such as Apple’s ARKit [3],
and the entrance of new competitors, such as Magic
Leap and Facebook (now Meta). The newly introduced
depth sensors of Apple are particularly noteworthy. In
2017 they announced a depth sensing technology on the
iPhone X called “TrueDepth,” which uses an infrared
dot pattern similar to the first generation Kinect and has
a range of up to 40 cm. Later, in 2020, they released a
ToF sensor on the back of the iPad Pro with range of up
to 5 m (see Fig. 1 for an example scene). Currently, all of
Apple’s mid and high-tier smartphones and tablets come
with a depth sensor, and given the significant market
share of their mobile devices, it is likely that their depth
sensing technology will be the most widely used among
nontechnical users in the near future. In this brief time,
the iPad and iPhone LIDARs have already found versa-
tile applications outside of the intended target of AR,
ranging from forestry [12], [29], [31] and architecture
[27] to heritage documentation [23] and geology [18],
and even veterinary medicine [21]. This motivates an
in-depth analysis of these sensors, in order to determine
their usability in fields, such as localization and track-
ing. Similar depth sensors, such as the Microsoft Kinect
(first and second-gen), have been extensively studied
in literature [5], [8], [26], [32]. The TrueDepth system
has already received some attention, for example, in [4]
and [30], where the iPad is contrasted with an industrial
scanner. The measurement accuracy of the iPhone 12
LIDAR [17] and the iPad Pro 2020 LIDAR [23], [30] has
also been evaluated, but in the context of 3-D scanning
and static reconstruction. However, we have not been
able to find works that deal with quantitative models of
spatial uncertainties for the iPad LIDAR.

The rest of this paper is organized as follows.
Section II contains a description of the depth sensor, in-
cluding the hardware and the streams provided by the

API. Section I1I introduces a quantitative analysis of the
measurements provided by the depth streams and their
uncertainties. Finally, Section IV concludes this article.
Throughout the paper, we will compare the iPad depth
sensor to the well-known Kinect 2 device, which will
serve as a baseline for its capabilities. However, we em-
phasize that these comparisons are merely illustrative,
as both devices have different capabilities and are not
aimed at the same range of applications.

[I. 1PAD DEPTH SYSTEM

The iPad depth sensor was introduced with the iPad
Pro 2020 [2], the first Apple device to use a ToF sensor. It
works by fusing depth and color streams together using
ML algorithms. Its main application is in ARKit, Apple’s
AR platform, where it is employed for depth occlusion,
scene understanding, and the detection, segmentation,
and tracking of objects and humans. Fig. 2 shows an ex-
ample of the data streams provided by the device, which
when converted into a point cloud produced the image
seen in Fig. 1.

The LIDAR sensor is located on the back (or rear) of
the tablet, i.e., the side pointing away from the user (see
Fig. 3). The hardware appears to be identical in both the
11 and the 12.9 in variants of the iPad Pro 2020 and the
iPad Pro 2021, and a related study [17] found no differ-
ence with the iPhone 12. Also note that the front of the
device (the display side) provides another depth system
called “TrueDepth,” based on structured light. Its main
use is face recognition for authentication (FacelD) and
face tracking, employed, for example, in Snapchat filters
and “lenses.” Both depth systems also differ in their op-
erating range. While TrueDepth works best at a distance
of at most 40-50 cm [30], the LIDAR sensor can measure
walls up to Sm away with moderate accuracy. This dis-
tinction also affects where they can be used. For example,
while detecting small objects on a table is better suited
for the TrueDepth system, a localization application in a
large room would prefer the LIDAR data instead. Note
that the TrueDepth system will not be considered in this
work.

A. Sensors and Data Streams

We start by introducing the sensors on the back of
the tablet, as shown in Fig. 3. On the top left is a wide-
angle RGB camera, which from our experiments does
not appear to be used in the depth system. On the top
right is the standard RGB camera, with a smaller field
of view but higher resolution. On the bottom left is the
infrared flood illuminator, which ensures that the scene
has an appropriate amount of light for the LIDAR sys-
tem. On the bottom right is the flashlight, also not used
by the depth system. Finally, the ToF sensor at the cen-
ter consists of two submodules [28]. On the one hand,
a vertical-cavity surface-emitting laser (VCSEL) diode
is in charge of emitting a laser pulse which is split by
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(a) Color image (b) Depth image (in colormap) (c) Confidence image (in colormap)

Fig.2. Example capture of the scene from Fig. 1 showing the three video streams of the iPad depth system: the color image (1920 x 1440 px,
RGB), the depth image (256 x 192 px, 32-bit float array), and the confidence image with 256 x 192 pixels, 1 byte/px, and three possible discrete
values: low (black), middle (brown), and high (orange) confidence. (a) Color image. (b) Depth image (in colormap). (c) Confidence image (in
colormap).
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Fig.3. Sensors on the back of the iPad Pro 2021. Width and height of
the panel are around 27 mm.

a lens into 3 x 3 blocks with 8 x 8 dots each [1], [17],
which are then projected onto the scene. A sketch of the
pattern can be seen in the left-hand side of Fig. 4. On the
other hand, a CMOS sensor captures the reflected light
and calculates the distance between the device and each
of those dots. Note that this suggests that each depth
frame is interpolated from only 24 x 24 = 9 x 64 = 576
measurements [1].

The depth data from these pulses are not directly
available from the software library. Instead, the ARKit
platform processes this information internally and fuses
it with the color stream to produce a depth estimate.
The result is a stream of three images at 60 frames/s
(Fig. 4, right-hand side): a color image, a “scene” depth
image, and a confidence image (see Fig. 2). For the sake
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Fig. 4. Sketch of the depth capture process: a pattern of 576 dots is

projected onto the scene, their distances are measured by the depth

sensor, and the result is fused with the data from the RGB camera.

The result are three streams: the color image, the depth image, and
the confidence image.

of completeness, we note that the depth API also pro-
vides other streams, such as a real-time mesh reconstruc-
tion and a point cloud of RGB feature points, which will
not be considered in this work. The values in this paper
were captured using ARKit 5 and iOS 15.2.

The color image [see Fig. 2(a)] is an uncompressed
packed RGB stream with a resolution of 1920 x 1440 pix-
els (px) and 24 bits/px. The original YUV image is also
accessible if desired. The depth image [see Fig. 2(b)] has
a resolution of 256 x 192 px, and each pixel contains a
32-b float describing the depth in meters at that posi-
tion. The depth image is already registered to the color
image and has the same aspect ratio of 4 to 3. The field
of view of both images is about 60° horizontal and 48°
vertical, with slight variations between devices. Finally,
ARK:it also provides a confidence map [see Fig. 2(c)]
which determines how accurate the depth value of each
pixel is. It has the same resolution as the depth image,
but each pixel has an 8-bit integer value, which can be
either 0 (low), 1 (medium), or 2 (high). Unlike sensors,
such as the Microsoft Kinect, an invalid measurement is
not encoded with a depth value of 0. Instead, the corre-
sponding confidence is set to 0, and the depth is extrap-
olated based on surrounding depth values and semantic
cues from the color image. In Fig. 2, a confidence of 0
can be seen around the edges of the table, or at the im-
age borders. However, these gaps are not evident when
looking at the depth image on its own.

The three images in Fig. 2 correspond to the point
cloud that was shown in Fig. 1. Here, the large amount
of “fringe points” (also known as “flying pixels”) at
the borders are clearly visible, as a result of the rel-
atively low LIDAR resolution. Looking at the brown
cardboard box at the back, it is also clear that planar
surfaces are not necessarily shown flat, and that 90° cor-
ners are not usually preserved. More interestingly, we
observe that the measurement noise is strongly spatially
correlated but not temporally correlated. In other words,
unlike depth sensors, such as the Microsoft Kinect 2,
where each measurement moves back and forth inde-
pendently from its neighbors, here we observe entire sur-
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(a) Box with height 2 cm

(b) Chessboard at 20 cm from a wall

Fig.5. [Illustration of how the iPad observes objects with steep depth
changes. (a) Box with height 2 cm. (b) Chessboard at 20 cm from a
wall.

faces appearing to move and deform “coherently” each
frame, but in slightly different ways. This tendency can be
appreciated, for example, in the fringe points of the tall
brown cylinder, which form different curved lines each
frame. These correlations are introduced by the interpo-
lation system, which will be described in Section II-B.

B. ML Interpolation System

The ML interpolation system is in charge of filling
the gaps between the sparse depth measurements by fus-
ing data from multiple streams, in particular from the
LIDAR and RGB sensors. A sketch of its workings can
be found in the patent description [33]. Unfortunately,
as of i0S 15, there is no way to turn it oFr and obtain
the raw data. However, given that it has a significant ef-
fect on the provided measurements, it is of interest to
describe qualitatively how it works and what it does.

Generally speaking, the iPad depth system acts by
aggregating measurements into coherent surfaces and
“smoothing” out sudden changes in depth. This can be
seen in Fig. 5(a), where the back of the white box, be-
ing observed from 1 m away, merges into the floor. The
capability of the iPad to discern depth discontinuities
is reduced by the sensor distance, as can be seen in
Fig.5(b) with the sensor being 4 m away, where the chess-
board “melts” into the wall. These smoothed out mea-
surements can usually be identified by their confidence
level of 1 (medium) or 0 (low), as shown in Fig. 2(c) in
dark brown and black, allowing them to be filtered out.

As mentioned before, pixel positions with no valid
depth are denoted with a confidence level of 0. Invalid
measurements can happen for several reasons, such as a
reflective or bright material, a drastic change in depth,
or the depth being outside of the operative range. Very
narrow objects will also fail to be detected, especially if
their size is less than of about 6% of the image (i.e., 15 px
for the depth image). This value is probably related to
the distance between LIDAR dots, i.e., 256 px/row or
24 dots/row ~ 11 px. Similarly, detection will also fail
if the depth changes quickly at the image edges [see
Fig. 2(c)]. For these regions, the depth image will not
show invalid values. Instead, the ML interpolation sys-

tem will fill in the gaps by “guessing” which depths be-
long there based on data from the color image.

As the ML interpolation combines data from both
the color and depth images, it is of interest to see how
they work when one data stream is unavailable, for ex-
ample, by covering one camera with tape or a piece of
paper. When the color stream is absent, the resulting
depth image appears extremely blurred, lacking sharp
corners and with significant sections of the confidence
image with values of middle or low. When the depth sen-
sor is covered, the entire confidence image has a value
of low, and the depth inference from color is applied
to the entire image. This can produce interesting results,
such as seen in Fig. 6. The setup is an iPad tablet 20 cm
away from a flat monitor that is showing an image of a
rendered cube on a plane. Fig. 6(a) presents the RGB
capture from the color camera. Fig. 6(b) illustrates the
resulting point cloud with the depth and color sensors
active. However, if we cover the color camera, the depth
inference generates a scene with a cube at a distance of
2m [see Fig. 6(c)]. As with the fringe points, these re-
constructed depths possess spatial correlations but lack
temporal correlation, and thus, will change drastically
between frames. Note that these reconstructions do not
only appear if the whole depth sensor is covered. For ex-
ample, a shiny, reflective object somewhere in a scene
(such as a laminated picture) can produce the same
effect.

[lI. MODELING SPATIAL UNCERTAINTY

In this section, we will present a quantitative analy-
sis of the uncertainties in the iPad depth system. First, we
start by analyzing the depth discretization, which tells us
the range of values that the system can provide. Then,
we will measure the measurement bias, that is, the differ-
ence between the measured and the real depths. After
this, we will focus on stochastic uncertainties and estab-
lish a measure for the correlations (in time and space)
between measurements. Finally, we will present an anal-
ysis of how the measured curvature degrades as a func-
tion of distance.

A. Discretization

An important aspect to determine the quality of the
depth stream is to see which depth values can be repre-
sented in the first place. The Kinect 1, for example, can
only produce 2048 depth values spread out over the op-
erating range of 0 to 8 m. The Kinect 2 has a much higher
resolution, but as the depths are provided in millimeters
as 16-b unsigned integers the distance between measure-
ments are necessarily multiples of 1 mm. In contrast to
these sensors, the resolution of the iPad depth system de-
pends on the depth range.

Fig. 7 shows the quantization (also known as dis-
cretization) of the depth values, i.e., the distance between
one value and the next, in function of the depth. This dis-
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(a) Monitor showing a virtual scene

(b) Point cloud with color and depth active

(¢) Inferred point cloud from color image

Fig. 6. Example of ML depth inference where the iPad observes a computer monitor from a closeup distance of 20 cm. When the depth
sensor is covered, the iPad depth system takes the color image and extrapolates it into a new scene where the cube sits at a distance of 2 m.
(a) Monitor showing a virtual scene. (b) Point cloud with color and depth active. (c) Inferred point cloud from color image.
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Fig.7 Discretization of depth values, i.e., the distance between a
value and the next possible one, depending on the distance.

cretization appears to be structured so that, between one
power of two and the next (in meters), there are 1024
values. Thus, between 1 and 2m we will see values at
spaces of 1/1024 m, or around 0.977 mm. However, be-
tween 2 m and 4 m, the space will be 1/512 m instead, i.e.,
twice as large. Thus, the lower the resolution becomes,
the larger the depth value is.

The range of possible values is difficult to measure.
Any object farther than 5m will have its measurements
automatically marked as having confidence 0, and thus,
the received depths will originate from the depth in-
ference system and not from the LIDAR. Still, in our
experiments, we have not observed a depth value above
8 m. Values below 10 cm will similarly be marked as low
or medium confidence, yielding “reconstructed” depths
that may have little relation to the actual physical
distance.

B. Measurement Bias

As usual in real-life sensors, the measured depth val-
ues are not the true depths, as the process of capturing
the data introduces errors, which depend on many fac-
tors, such as the pixel position, material, angle of reflec-
tion, temperature, and others. In order to keep the model
simple, we can divide these errors into two additive com-
ponents: a fixed offset (bias) and a zero-mean stochastic

-0.02 ¢

-0.04 +

Bias in m

-0.06

ot b

1 2 3 4
Distance in m
Fig. 8. Difference between the ground truth depths and the

measured depths at difference distances. The negative bias means
that the measured values are smaller than the ground truth.

noise term. Both terms depend on the depth from which
the measurement originated.

In this section, we will focus on estimating how the
bias behaves at different distances. To achieve this, we
captured 150 frames of a paper chessboard [70 x 49 cm,
see Fig. 5(b)] at different distances, ranging from 1 to
5m. The ground truth depth was obtained by detect-
ing the chessboard in the color stream, estimating the
board plane using MATLAB’s implementation of the
solvePnP algorithm, and finally calculating the depth
that corresponded to the plane center. For the measured
depth, we considered a square 5 x 5 px window around
the center of the detected chessboard, and then calcu-
lated the average of all values for all frames. All of the
considered points have a confidence of 2 (high). Fig. 8
shows the results.

It can be seen that the bias was always negative, that
is, the iPad tells us that the object is closer than it re-
ally is. The bias also appears to increase linearly, but still
remaining with 1% to 2% of the ground truth. How-
ever, this model stops being reliable at about 4 m, given
the tendency of the chessboard surface to “melt” into
the back wall at large distances. In these cases, the aver-
age depth can change significantly depending on where
on the chessboard the window is located. After 5 m, the
depth inference system kicks in, causing the obtained
values to bear little relation to the real depths.
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Fig. 9. Representative probability distributions for nonfringe depths
values at different distances. The gaps between values are due to the
discretization. (a) Depth distribution at 1 m. (b) Depth distribution at
4.5 m.

C. Measurement Noise

In this section, we use the same data collected in
Section III-B to analyze how the noise term of the mea-
sured depth behaves. In particular, we will focus on four
aspects: the probability distribution of the noise, its vari-
ance depending on the depth, and the magnitude of spa-
tial and temporal correlations.

Fig. 9 shows the distributions of nonfringe depths val-
ues captured at representative positions. These are dis-
crete distributions, and the gaps between values corre-
spond to the discretization described in Section I1I-A. At
short distances, the support consists of two or three val-
ues, as shown in Fig. 9(a). For higher distances, the sup-
port becomes slightly wider, reaching up to four values
in Fig. 9(b). In any case, the distributions are consistently
unimodal and appear roughly symmetrical around the
mean (prequantization), and thus, we suspect that ap-
proximating them as Gaussians in practical applications
will not lead to much loss of information.

When dealing with estimators, it is also important to
know the variance that corresponds to a given measure-
ment, preferably without having to wait for additional
measurements from the same position. Fig. 10 shows the
variances of the measurements gathered in the chess-
board dataset from Section III-A. In yellow, we observe
the variance stemming from the discretization, assuming
a uniform distribution that ranges between the previous
and the next possible values. In blue, we see the sample

%1076
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~ —— Polynomial fit
=] 41 Variance of uniform
—
=
.-
)
)
=)
<
or=
g
>
Distance in m
Fig. 10. Empiric variance of measurement noise at different

distances, and a best-fitting polynomial fit.

variance gathered from 150 frames. In red, we see a best-
fitting third degree polynomial with the form

02 =10"°%.(0.072" — 0.322* + 0.64z — 0.02), (1)

which closely approximates this empiric variance and
can be easily integrated into an estimator.

Given a depth value z at the pixel position [u, v]7,
i.e., at column u and row v in the depth image, it is often
necessary to obtain the covariance matrix of the recon-
structed “unprojected” point y € R? in Cartesian coor-
dinates. This can be achieved in a closed form using the
standard pinhole model [6] and the intrinsic matrix K,
which is provided directly by ARKit’s API. To give the
reader an idea, an example intrinsic matrix from an iPad
Pro 2021 has the following form

2124 0 127.0
K=| 0 2124923 |, )
0o o0 1

which corresponds to a horizontal field of view of ap-
proximately 60° and an image size of 256 x 192 pixels.
Assuming no uncertainties, the unprojection step can be
implemented by introducing a screen space vector in ho-
mogeneous coordinates

Y =[u, v, 1" ©)

which in turn yields

y=K".y".z )

We will now extend this step to assume that y*¥ and z are
both uncertain. We assume that u and v have a distribu-
tion of U(—1, 1), i.e., they are uniformly distributed be-
tween the previous and following pixels. Using moment
matching, we obtain

C* = cov (X““) = diag (% % 0) . (5)

Finally, by using the product rule of independent random
variables, we propagate (1) and (5) through (4) to obtain

T
C = K—l (Cqu_ZZ +Xuv (Xuv) Uzz + CuvZZ> (K_I)T.
(6)

D. Measurement Correlations in Time and Space

When discussing the stochastic properties of mea-
surement noise in sensors, the topic of correlations is
usually not mentioned. This omission is justified with
sensors such as the Kinect 2, where measurements are
mostly independent from each other. However, due to
the ML interpolation system, these assumptions cannot
be guaranteed to hold for the iPad. Note that, especially
in probabilistic estimators,ignoring correlations can lead
to estimates with misleading variances, as the estima-
tor cannot compensate for the fact that measurements
with dependent noise terms carry less information. This
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(a) Setup: Cuboid in front of a wall

(b) View from above, Kinect 2

(c) View from above, iPad

Fig. 11.  Setup of the cuboid in front of wall, observed by a Kinect 2 and an iPad positioned next to each other. Note how the Kinect 2
produces spatially uncorrelated noise, while the iPad produces a smooth, almost flat surface that shifts and deforms each frame. (a) Setup:
cuboid in front of a wall. (b) View from above, Kinect 2. (¢) View from above, iPad.
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Fig.12. Distribution of autocorrelation coefficients for multiple

pixels in a 20 x 20 px window around the box center and a shift of

t = 1 frame. (a) Autocorrelations, Kinect 2. (b) Autocorrelations,
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serves as a motivation to study these correlations more
explicitly.

In order to do this, we recorded 150 frames of a rect-
angular cuboid standing in front of a wall with both an
iPad Pro 2021 and a Kinect 2 (see Fig. 11), at a distance
of about 2 m, and analyzed a small window of 20 x 20 px
around the center the object. The Kinect 2 will serve as
a baseline, as estimators using measurements from this
sensor and making no assumptions about dependency
have been shown to produce satisfactory reconstructions
in [14], [15], and [24]. All of the considered points have a
confidence of 2 (high) on the iPad depth image and lie on
the cuboid’s surface. As an aside, the iPad LIDAR pro-
jector was not visible from the Kinect infrared camera,
which suggests that both devices do not interfere with
each other.

We start with autocorrelations,i.e.,how much a series
of measurements stemming from the same source is cor-
related with a time shifted version of itself. This is impor-
tant given that recursive estimators with time-evolving
states, such as the Kalman filter, generally assume that
measurements at different time steps are independent.
Fig. 12 shows how often an autocorrelation coefficient
appears in a 20 x 20 px window around the box center,
for a time shift of ¢ = 1 frame. For the Kinect 2 [see
Fig. 12(a)], we observe that for all positions the autocor-
relation coefficient has an absolute value below 0.2, and
most of them are below 0.1. However, for the iPad [see
Fig. 12(b)], the support of the autocorrelations is wider,

=~ [=2]
[

Probability
Probability

[}

[}
(=]

0 0.5 1 0 0.5 1
Spatial correlation Spatial correlation
(a) Spatial correlations, Kinect 2 (b) Spatial correlations, iPad
Fig.13. Distribution of spatial correlation coefficients for multiple

pixels in a 20 x 20 px window in relation to the center pixel. (a)
Spatial correlations, Kinect 2. (b) Spatial correlations, iPad.

briefly reaching 0.5. This shows that iPad measurements
(mean 0.034) are much more correlated in time than the
Kinect 2 (mean —0.019). This autocorrelation fades with
time, taking ten frames for the iPad autocorrelations to
reach the same spread as the Kinect. Nonetheless, both
are still rather close to 0 most of the time, so we consider
it justifiable to assume them as time independent.

Next we will analyze how measurement samples
from different pixel positions are spatially correlated.
For this, we will take the correlation coefficient of all
measurements in the window in relation to the mea-
surements in the center, and tally how often a correla-
tion coefficient appears. The results are shown in Fig. 13.
The difference between both sensors, here, is much more
remarkable, showing very high correlations across the
board for the iPad, with the mean (0.25) being much
higher than the Kinect 2 (0.09). This effect can be ap-
preciated visually for the wall in Fig. 11. Here, for the
Kinect [see Fig. 11(b), individual measurements can be
seen, giving the appearance of a “dusty” cloud, while
the iPad depth system generates a smooth surface that
moves and deforms between frames [see Fig. 11(c)]. Fur-
thermore, spatial correlations fade much faster for the
Kinect as the distance increases. In Fig. 14(a), for exam-
ple, using a larger 96 x 96 pixel window, we observe that
all measurements farther than 3 px away from the cen-
ter have a correlation with absolute value below 0.2. For
the iPad, however, most of the cuboid surface retains the
high correlations.
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Fig. 14. Absolute value of the spatial correlations for a 96 x 96 px
window, in relation to the pixel in the center. The Kinect 2 image
appears “zoomed in” because it has a higher resolution. (a) Spatial
correlations, Kinect 2. (b) Spatial correlations, iPad.

If desired, spatial correlations can be incorporated
into linear estimators, such as the Kalman filter and
its extensions, quite easily by introducing a composite
measurement and adjusting the measurement equation.
Thus, if two measurements Y, and y, are “close” to each
other and known to stem from the same surface, the es-
timator can use

y
-
)
instead, with covariance matrix
cC C
C = Ly b2}, (8)
((C{z) C

Here, C] and C} are calculated as before from (6). In or-
der to derlve C1 5> We assume that the y** components
are independent from each other and from z; and z,.
Furthermore, it holds that

)

where corr(zy, z2) is the scene-dependent spatial cor-
relation coefficient. Our experiments have shown that
corr(zy, z2) usually hovers around 0.2 if the distance is
less than 20 px and both measurements stem from the
same surface. Finally, the correlation matrix C{’z can be
obtained in closed form yielding

cov(z1, 22) = 0,10, corr(zy, 22)

Q= covly..y,) (o
_ cov (K_1 Y K oy, ) (11)
T T

E.  Working with Curved Surfaces

In the previous sections, we showed that the iPad
produced relatively accurate measurements from large
flat surfaces, such as walls. However, due to the low spa-
tial resolution, smaller objects (in relation to the field of
view) will appear “’smoothened” out, with hard corners

(b) Sphere, iPad

(a) Sphere, Kinect 2

Fig. 15. Plastic sphere of radius 15 cm lying on the ground, being
observed from a distance of 2m by a Kinect 2 and an iPad depth
sensor. (a) Sphere, Kinect 2. (b) Sphere, iPad.

flattened and surfaces fused together. This effect can be
compensated by ensuring that the object size is much
larger than 11 px, as explained in Section II-B. Still, the
tendency to flatten or merge surfaces can become prob-
lematic in applications that require as much knowledge
as possible about the target’s shape, such as extended ob-
ject tracking and classification.

In this section, we will analyze how much informa-
tion about the shape is lost at different distances by es-
timating the extent and position of sphere. A descrip-
tion of the experimental setup follows. The target sphere,
with a ground-truth radius of 15 cm, was already intro-
duced in the scene from Fig. 2. Here, instead, we place
it on the floor, as shown in the example captures from
Fig. 15, and observe it from a height of approximately
1.5m. As a note, in these images, we can also appreciate
the contrast between the noise correlations mentioned
in Section III-D: with the Kinect 2, the floor has a highly
irregular texture, whereas with the iPad, it appears al-
most perfectly flat.

The estimation procedure is as follows. For a given
frame, the sphere is represented using the following
state:

=[p’.r]" e RY, (13)
where p is the position in R3 and r is the radius. The fol-
lowing preprocessing steps are executed. First, the screen
measurements are unprojected into R? using (4) and (6).
Second, the ground plane is estimated using RANSAC,
and all pixels that belong to it with a threshold of 2 cm
are removed. Third, we also eliminate fringe measure-
ments (flying pixels), defined here as any pixel with at
least one neighbor farther than 2 cm away. Finally, we use
the remaining n» measurements yforl <i<nto esti-
mate the state x using least squares shape fitting. Here,
the idea is to minimize the weighted sum of the squared
residuals

g =y o] - (14)
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Fig. 16. Estimated radius of the sphere for the Kinect 2 and the iPad,
viewed from different camera distances. Ground truth in blue, result

means in red, and standard deviations in black (vertical lines).
(a) Estimated radius, Kinect 2. (b) Estimated radius, iPad.

where || - ||? is the square of the Euclidean norm, using

the inverse of the residual variances as weights
1 1
w; = 5 = N
var(R;)  tr(C})

(15)

The resulting x can be obtained with standard nonlin-
ear minimization. This state estimation procedure is re-
peated along multiple frames as the camera moves hor-
izontally from a distance of 1 to 2m away from the
sphere. For the sake of simplicity, the measurements are
assumed to be independent from each other.

Fig. 16 shows the results at distances in intervals of
10 cm. The ground truth of 15 cm in blue, the means are
shown in dark red, and the standard deviations in verti-
cal red lines. Note that, due to the presence of artifacts,
the size of the sphere can vary moderately even in con-
secutive frames. Furthermore, by eliminating fringe pix-
els, we remove measurements around the sphere border.
Thus, it would be expected for the estimated radius to
be lower than the ground truth, which stands in contrast
with both results. This effect, however, is compensated
in the opposite direction by the extent bias caused by
measurement noise, a known effect in shape fitting stud-
ied in [9] and [25] among others. This bias appears con-
stant for the Kinect 2 [see Fig. 16(a)], where the radius is
consistently around 5mm (3%) higher than the ground
truth. However, the iPad, while producing accurate re-
sults at around 1 m, quickly starts losing accuracy [see
Fig. 16(b)] as the camera moves away. This is a conse-
quence of the sensor flattening the measured surface as
it merges into the floor, an effect also observed in previ-
ous experiments, which in turn increases the size of the
estimated sphere.

Example results can be seen in Fig. 17, with the esti-
mated sphere in red. Here, we can see how, at a short dis-
tance, measurement quality is comparable to the Kinect
in Fig. 15(a), yielding a radius estimate of 15.5 cm. How-
ever, after a short distance, measurements become more
sparse and the proportion of fringe pixels increases sig-
nificantly. Furthermore, the patch becomes so flattened
that the increased radius (17.5 cm) pushes the sphere po-
sition into the ground. Note that, at this distance, the
sphere is only 32 px wide. After this point, the radius
reaches 20 cm at a distance of 2.3 m,and beyond that seg-

(a) Sphere at 1 m (b) Sphere at 2m

Fig. 17 Point cloud of the plastic sphere being observed by the iPad
depth sensor. Best-fitting sphere overlaid in red. Floor appears wider
at 2m due to the field of view. (a) Sphere at 1 m. (b) Sphere at 2 m.

mentation starts to become difficult, given much of the
sphere has merged into the floor.

[V. CONCLUSION

In this paper, we presented a quantitative analysis
of the spatial uncertainties for the iPad Pro depth sen-
sor. As motivation, we explained how Apple, with its
high market share in mobile devices, has begun ship-
ping depth sensors integrated in their smartphones and
tablets, increasing the reach of applications in localiza-
tion, tracking, and classification without extra cost to
developers and users. Thus, it makes sense to analyze
the properties, benefits, and pitfalls of these new data
streams. First, we briefly described the direct ToF sen-
sor that the tablet uses to obtain depth images, and
pointed out that the depth stream is most likely extrapo-
lated from only 576 real measurements, which would ex-
plain the observed low spatial resolution. We also noted
that the values provided by the API are not the direct
measured values, and instead, they are generated by an
ML algorithm that incorporates information from the
color stream. As part of the analysis, we measured the
discretization of the depth domain, provided a model
for the measurement bias and error variance, and de-
scribed the temporal and spatial correlations between
measurements. We also showed the tendency of the iPad
depth sensor to merge and flatten surfaces, which is use-
ful when dealing with planes such as walls, but becomes
problematic when estimating the shape of curved ob-
jects, such as spheres.

In general, it can be seen that the iPad depth sen-
sor, in its current iteration, is well suited for simultane-
ous localization and mapping (SLAM) based on planar
surfaces. This is shown by the robust camera tracking
provided by the default libraries. Dealing with other ob-
jects, however, imposes some restrictions on their size
and how far they can be from the sensor. Curved objects,
or objects with steep depth changes, appear flattened
out,which can reduce its applicability in fields,such as ex-
tended object tracking or object classification based on
point clouds, which have higher requirements on mea-
surement quality. Thus, applications that deal with these
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objects should keep in mind the tightened operating
range. Still, these limitations should be balanced with the
advantages provided by the Apple ecosystem, and the
wide reach of potential users available to applications
using it.
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