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Abstract

We introduce the Unscented von Mises–Fisher Filter (UvMFF), a nonlinear filtering algorithm for

dynamic state estimation on the n-dimensional unit hypersphere. Estimation problems on the unit hyper-

sphere occur in computer vision, for example when using omnidirectional cameras, as well as in signal

processing. As approaches in literature are limited to very simple system and measurement models, we

propose a deterministic sampling scheme on the unit hypersphere, which allows us to handle nonlinear

system and measurement models. The proposed approach can be seen as a hyperspherical variant of the

Unscented Kalman Filter (UKF). The advantages of the novel method are shown by means of simulations.

I. INTRODUCTION

Estimation problems in which the state is represented by a point on the unit sphere or unit hypersphere

have gained interest recently. A number of publications have considered the use of the von Mises–

Fisher (VMF) distribution [1], [2] for hyperspherical estimation problems. Applications include visual

tracking on the unit sphere [3], omnidirectional cameras [4], [5], estimation of crystal orientations in

crystallography [6], high angular resolution diffusion MRI [7], clustering of beam directions for radiation

therapy [8], and signal processing for microphone arrays [9].

Some authors such as [3] have proposed recursive filtering algorithms based on the VMF distribution.

State-of-the-art methods for dealing with VMF distributions are, however, not capable of propagating

the distribution though nonlinear functions. To solve this problem, we propose a novel filter based

on a deterministic sampling scheme that is reminiscent of the Unscented Kalman Filter (UKF) [10].

Compared with stochastic sampling, deterministic sampling yields higher accuracy with a lower number
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of samples [11], [12]. This work constitutes a generalization of the nonlinear circular filters based on

deterministic sampling [13], [14] to a higher number of dimensions. Furthermore, it is related to a similar

approach that we published for the Bingham distribution [15].

The contributions of this paper can be summarized as follows. We present a novel deterministic

sampling scheme for the von Mises–Fisher distribution with an arbitrary number of dimensions. Then,

we propose a nonlinear filtering algorithm based on the novel sampling scheme. Finally, we evaluate the

proposed methods in comparison with the UKF.

II. HYPERSPHERICAL STATISTICS

The von Mises–Fisher (VMF) distribution [1] is given by the unimodal probability density function

(pdf)

VMF(x;µ, κ) = cd(κ) · exp(κ · µTx) , (1)

where x ∈ Sd−1 = {x ∈ Rd : ‖x‖ = 1} is located on the unit hypersphere in Rd where d ≥ 2.

The parameter µ ∈ Sd−1 specifies the location of the mode of the distribution and κ ≥ 0 specifies its

concentration. Moreover, the term cd(κ) refers to the normalization constant given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2)

where Iv(x) is the modified Bessel function of first kind and order v [16, Sec. 9.6].

The VMF distribution is isotropic, i.e., it is rotationally symmetric around µ. This can be seen by

µTx = cos(∠(µ, x)) because the value of the pdf only depends on the angle between µ and x. The von

Mises distribution [17] arises as a special case of the VMF distribution for d = 2.

On the unit circle, it is common to consider trigonometric moments [13], and this concept can be

generalized to the unit hypersphere. In this case, we consider the expectation

m = E(x) =
∫
Sd−1

x · f(x) dx , (3)

also called the mean resultant vector. For the VMF distribution, it can be shown that m = µ · Ad(κ),

where Ad(κ) =
Id/2(κ)
Id/2−1(κ)

. The direction of m can be seen as a hyperspherical mean, and it is identical

to the direction of µ in case of a VMF distribution. The length of m determines the uncertainty of the

distribution and is related to the κ parameter of the VMF distribution.

Let us now consider the problem of parameter estimation for the VMF distribution. Given a set of

n weighted samples x1, . . . , xn with weights w1, . . . , wn > 0, where
∑n

k=1wk = 1, we can calculate

the mean resultant vector according to m =
∑n

k=1wk · xk. It has been shown that matching the mean

resultant vector of a VMF distribution to the mean resultant vector of the samples yields the maximum
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κ = 0.1 κ = 1 κ = 4

Fig. 1. Examples of deterministic sampling of a VMF distribution with µ = [0, 0, 1]T and different values of κ.

likelihood estimate of the given samples, i.e., moment matching is equivalent to maximum likelihood

estimation [18, Sec. A.1]. Solving for the parameters of the VMF distribution yields

µ =
m

‖m‖
, κ = A−1d (‖m‖) , (4)

where m 6= 0 is the mean resultant vector of the samples1. Parameter estimation and an efficient algorithm

for computation of A−1d (·) are discussed in [19]. We later refer to this procedure as ParameterEstimation(·).

III. DETERMINISTIC SAMPLING ON THE HYPERSPHERE

In this section, we derive a deterministic sampling scheme for the VMF distribution. First, we only

consider the case where µ = [1, 0, . . . , 0]T . We will later show how to generalize the proposed approach

to arbitrary µ ∈ Sd−1.

The basic idea of the proposed approach consists in matching the mean resultant vector m of a set of

carefully chosen samples to that of the VMF distribution. We consider 2d−1 equally weighted2 samples,

because closed-form solutions are possible for this number of samples and because it corresponds to the

number of samples used by the UKF [10] in dimension d− 1. These samples are given by

sT1 = [1, 0, . . . , 0] ,

sT2 = [cos(α), sin(α), 0, . . . , 0] ,

sT3 = [cos(α),− sin(α), 0, . . . , 0] ,

sT4 = [cos(α), 0, sin(α), 0, . . . , 0] ,

sT5 = [cos(α), 0,− sin(α), 0, . . . , 0] ,

1If m = 0, µ is undefined and κ = 0, i.e., the VMF distribution is uniform.
2It would be possible to choose a different weight for the sample at µ by introducing a scaling parameter similar to the UKF

[10] or the unscented Bingham filter [15]. For simplicity, we omit this parameter as a solution with equally weighted samples

always exists.
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...

sT2d−2 = [cos(α), 0, . . . , 0, sin(α)] ,

sT2d−1 = [cos(α), 0, . . . , 0,− sin(α)] ,

where α ∈ (0, π) is an angle that remains to be determined. We calculate the mean resultant vector

m = [m1, . . . ,md]
T

m =
1

2d−1

2d−1∑
k=1

sk =
1

2d−1
[1 + (2d−2) cos(α), 0, . . . , 0]T .

Using m1 ≥ 0 for µ = [1, 0, . . . , 0]T , we get ‖m‖ = m1 and

‖m‖ = |1 + (2d− 2) cos(α)|
2d− 1

⇔ cos(α) =
‖m‖(2d− 1)− 1

2d− 2

Observe that ‖m‖ ∈ [0, 1]. Because we have

‖m‖(2d− 1)− 1

2d− 2
≥ 0− 1

2d− 2
≥ −1

and

‖m‖(2d− 1)− 1

2d− 2
≤ (2d− 1)− 1

2d− 2
= 1 ,

the term ‖m‖(2d−1)−1
2d−2 is always in [−1, 1]. Thus, a solution always exists and we can obtain α from

α = arccos

(
‖m‖(2d− 1)− 1

2d− 2

)
. (5)

To generalize this solution to a VMF distribution with arbitrary µ ∈ Sd−1, we rotate all samples using

a rotation matrix Q that ensures µ = Qs1. This rotation matrix is not uniquely determined, so we use

the QR-decomposition of a suitable initial matrix M whose first column is µ to obtain Q (see also [20]).

Pseudocode of the proposed sampling method is given in Algorithm 1, where we collect all samples in

a matrix S = [s1, . . . , s2d−1]. Some examples are shown in Fig. 1. It is worth mentioning that for d = 2

(i.e., on the unit circle), this sampling scheme coincides with the scheme proposed in [13].

IV. NONLINEAR RECURSIVE FILTERING

A novel nonlinear recursive filtering algorithm is now developed based on the VMF distribution. To

deal with the nonlinearity, we use the deterministic sampling scheme introduced in the previous section.

In the following, we do not consider system and measurement functions Sd−1 × Sd−1 → Sd−1 based

on a group operation on the unit hypersphere as it is sometimes done for S1 and S3, e.g., in [21], [22].

Instead, we consider the transition density f(xk+1|xk) and the measurement likelihood f(zk|xk).

A. Prediction Step

In this section, we distinguish between several system models, i.e., different types of transition densities.
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Algorithm 1: Deterministic sampling.
Input: VMF parameters µ, κ

Output: samples S

d← dim(µ);

/* obtain samples for µ = [1, 0, . . . , 0]T */

S← 0d×(2d−1);

S(1, 1)← 1;

m1 ← Id/2(κ)/Id/2−1(κ) ;

α← arccos(((2d− 1)m1 − 1)/(2d− 2));

for i← 1 to d− 1 do

S(1, 2i)← cos(α); S(1, 2i+ 1)← cos(α);

S(i+ 1, 2i)← sin(α); S(i+ 1, 2i+ 1)← − sin(α);

/* rotate samples around µ */

M← [µ, 0, . . . 0];

[Q,R]← QrDecomposition(M);

if R(1, 1) < 0 then
/* ensure that first column of Q is µ rather than −µ */

Q← −Q;

S← Q · S;

return S;

1) Identity System Model: First, we consider a simple identity system model with an optional fixed

rotation defined by a rotation matrix Qk ∈ SO(d) ⊂ Rd×d. We assume the transition density to be given

by a VMF distribution according to

f(xk+1|xk) = VMF(xk+1;µ = Qk · xk, κwk ) . (6)

This system can be seen as a hyperspherical analogue to an identity system model with additive noise,

even though we do not have a true addition operation on the hypersphere. According to the Chapman–

Kolmogorov equation, the predicted density fp(xk+1) is obtained from the previous estimated density

fe(xk) according to

fp(xk+1) =

∫
Sd−1

f(xk+1|xk)fe(xk)dxk . (7)

It has been shown that the resulting density is not, in general, the density of a VMF distribution [23].
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The true density can be approximated using a VMF density with parameters

µp
k+1

= Qkµ
e
k
, κpk+1 = A−1d (Ad(κ

e
k)Ad(κ

w
k )))

as given in [9]. Further discussion can be found in [23].

2) Nonlinear System Model with VMF noise: More generally, we can assume that the transition density

is given by

f(xk+1|xk) = VMF(xk+1;µ = ak(xk), κ
w
k ) , (8)

where ak : Sd−1 → Sd−1 is an arbitrary function that describes the system dynamics. This can be seen

as an analogue to a nonlinear system model with additive noise. Analogous to the circular prediction

algorithm in [13], we can derive the method given in Algorithm 2.

Algorithm 2: Prediction with VMF noise
Input: parameters of estimate µe

k
, κek, concentration parameter of noise κwk , function ak(·)

Output: parameters of prediction µpk+1, κ
p
k+1

se1, . . . , s
e
2d−1 ← DeterministicSampling(µe

k
, κek);

sp1, . . . , s
p
2d−1 ← ak(s

e
1), . . . , ak(s

e
2d−1);

µ, κ← ParameterEstimation(sp1, . . . , s
p
2d−1);

µpk+1 ← µ;

κpk+1 ← A−1d (Ad(κ)Ad(κ
w
k )));

return µpk+1, κ
p
k+1;

3) Nonlinear System Model with Arbitrary Noise: We can derive a VMF-assumed filter for a gener-

alization of the previous system model where we allow the use of an arbitrary noise distribution. In this

case, the transition density is given by

f(xk+1|xk) =
∫
W
f(xk+1|xk, wk)fw(wk)dwk

=

∫
W
δ(xk+1 − ak(xk, wk))fw(wk)dwk , (9)

where ak : Sn−1×W → Sn−1 is an arbitrary function, and W is the space on which the noise distribution

is defined. We assume that a set of weighted samples from the noise distribution is given. Then, we

calculate the Cartesian product of all state and all noise samples and propagate each combination through

the system function. The resulting samples are then approximated by a VMF density (see Algorithm 3).

This method is similar to the non-additive system noise scenario in [14].
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Algorithm 3: Prediction with arbitrary noise
Input: parameters of estimate µe

k
, κek, noise samples sw1 , . . . , s

w
L with weights γ1, . . . , γL, function

ak(·, ·)

Output: parameters of prediction µpk+1, κ
p
k+1

s1, . . . , s2d−1 ← DeterministicSampling(µe
k
, κek);

for j ← 1 to 2d− 1 do

for k ← 1 to L do

sp(j−1)·L+k ← ak(sj , s
w
k );

w(j−1)·L+k ← γk
2d−1 ;

µpk+1, κ
p
k+1 ← ParameterEstimation(sp1, . . . , s

p
L·(2d−1),

w1, . . . , wL·(2d−1));

return µpk+1, κ
p
k+1;
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Fig. 2. Evaluation results. Each cross represents one Monte Carlo run. Points below the diagonal (red) indicate that the VMF

filter performed better whereas points above the diagonal indicate that the UKF performed better.

B. Measurement Update Step

Similar to the system models discussed above, it is also possible to consider different measurement

models.

1) Identity Measurement Model: A common measurement model is given by the identity with an

offset given by a rotation matrix Qk. We assume that the likelihood is given by an unnormalized VMF
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distribution

f(zk|xk) ∝ VMF(zk;µvk = Qk · xk, κvk) . (10)

In this case, we can apply Bayes’ theorem to obtain

f(xk|zk) ∝ f(zk|xk)f(xk) . (11)

Because both the prior f(xk) = VMF(x, µ
p
k, κ

p
k) and the likelihood f(zk|xk) are VMF-distributed, we

can use the exact multiplication formula for VMF distributions (see [3, eq. (2.23)] ). The parameters of

the renormalized product of two VMF distributions with parameters µA, κA and µB, κB are given by

µ =
κAµA + κBµB

‖κAµA + κBµB‖
, κ = ||κAµA + κBµB|| . (12)

2) Nonlinear Measurement Model: If a nonlinear measurement model is given, more sophisticated

approaches are necessary. If the measurement model is given by

f(zk|xk) = VMF(zk;µvk = hk(xk), κ
v
k) (13)

with a nonlinear measurement function hk : Sd−1 → Sd−1, the techniques based on approximation of the

measurement function described in [24] can be used. More generally, if an arbitrary likelihood f(zk|xk)

is given, we can apply the progressive measurement update proposed in [25].

V. EVALUATION

The proposed filter is evaluated in simulations on the sphere S2 ⊂ R3. We provide a comparison with

an Unscented Kalman Filter (UKF) [10] where we constrain the mean vector of the Gaussian distribution

to unit length after every prediction and every measurement update. An evaluation of the propagation

accuracy can be found in the supplementary material for this paper.

We consider three different system functions. First, we investigate the identity system model (6). Then

we consider a nonlinear model with VMF noise (8), where ak(·) is the nlerp-function (normalized linear

interpolation) known from computer graphics [26, eq. (4.62)]

ak(xk, α) =
α · x+ (1− α)uk
‖α · x+ (1− α)uk‖

(14)

(assuming xk 6= −u ), which interpolates between xk and uk. We choose time-variant uk = [cos(c ·

k), sin(c · k), 0]T , where c = 0.01 and α = 0.05. Finally, we use a system model with arbitrary noise

(9), where the system function is given by the nlerp-function, and α is distributed according to a discrete

distribution with probabilities P(α = 0.01) = 0.6, P(α = 0.05) = 0.2, and P(α = 0.1) = 0.2. In all

cases, we restrict ourselves to the identity measurement model (10).
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The noise parameters are given by κwk = 100, κvk = 5 and the initial estimate is set to µe
0
= [1, 0, 0]T ,

κe0 = 0.1, whereas the true initial state is uniformly sampled from S2. For the UKF, the noise parameters

were converted to Gaussians using Monte Carlo integration. In order to avoid an unfair disadvantage for

the UKF as a result of assuming the wrong noise, we performed all simulations twice, once with VMF

noise and once with comparable (normalized) Gaussian noise obtained by Monte Carlo integration.

The system was simulated for K = 100 time steps. We consider the mean cosine error measure (see

[27, eq. (1.3.7)])

1

K

∑K

k=1
1− cos(∠(xk, x

true
k )) . (15)

The results of 100 Monte Carlo runs are depicted in Fig. 2. It can be seen that the performance of

the proposed filter is better than the performance of the UKF in most of the runs. The advantage seems

to be smaller in the case of Gaussian noise compared with the case with VMF noise, but the proposed

method is still clearly superior.

VI. CONCLUSION

We have presented a novel deterministic sampling scheme for the von Mises–Fisher distribution on

the unit hypersphere. Furthermore, we have shown how to derive nonlinear filtering algorithms based on

this sampling scheme. MATLAB implementations of these algorithms will be made available as part of

libDirectional [28].

The proposed algorithm was evaluated with three different system models and Gaussian as well as

VMF-distributed noise. It was shown to outperform a spherical version of the UKF in all considered

scenarios.
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