
Haptic Rendering of Arbitrary Serial Manipulators
for Robot Programming

Michael Fennel1, Antonio Zea1, Johannes Mangler2, Arne Roennau2, Uwe D. Hanebeck1

Abstract— The programming of manipulators is a common
task in robotics, for which numerous solutions exist. In this
work, a new programming method related to the common
master-slave approach is introduced, in which the master is
replaced by a digital twin created through haptic and visual
rendering. To achieve this, we present an algorithm that enables
the haptic rendering of any programmed robot with a serial
manipulator on a general-purpose haptic interface. The results
show that the proposed haptic rendering reproduces the kine-
matic properties of the programmed robot and directly provides
the desired joint space trajectories. In addition to a stand-alone
usage, we demonstrate that the proposed algorithm can be
easily paired with existing visual technology for virtual and
augmented reality to facilitate a highly immersive programming
experience.

I. INTRODUCTION

The programming of manipulators is a common problem
in robotics and appears in many fields, including industrial
automation, humanoid robots, and even surgical applications.
Despite tremendous efforts to abstract and automate the
programming and control of robotic manipulators, no uni-
versal approach exists that covers all possible aspects of
complex problems like painting or assembly. Furthermore,
increased sensing capabilities and environmental information
in a machine-readable form are required, which are not always
available, especially in cost-sensitive applications, complex
or unstructured environments, or in situations with frequent
reprogramming. To overcome these issues and to leverage
the cognitive capabilities of a human operator or programmer,
several programming methods are available [1]–[3].

One option is text-based programming, but this requires
special knowledge and a high level of abstraction. Beyond
that, it is not guaranteed that a given program with its motions
can be executed correctly by the robot due to kinematic and
environmental constraints. Another option is programming by
demonstration. In its basic forms, the programmer moves the
end effector of the programmed robot (PR) either by directly
touching it or by moving the end effector of a possibly scaled
master robot that is linked with the PR acting as a slave.
The disadvantages of both methods are apparent: In the first
case, physical interaction with the PR is required causing

1 The authors are with the Intelligent Sensor-Actuator-Systems
Laboratory, Institute for Anthropomatics and Robotics, Karlsruhe Institute
of Technology, Adenauerring 2, 76131 Karlsruhe, Germany. E-mails:
michael.fennel@kit.edu, antonio.zea@kit.edu,
uwe.hanebeck@kit.edu

2 The authors are with the FZI Research Center for Information
Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany. E-mails:
mangler@fzi.de, roennau@fzi.de

This work was supported by the ROBDEKON project of the German
Federal Ministry of Education and Research.

digital twin (DT)

haptic robot (HR) programmed robot (PR)
kinematic information

AR/VR headset

environment information

planned trajectory

other sources

Fig. 1. General structure of the proposed digital twin setup for robot
programming using haptic feedback and virtual/augmented reality.

safety issues. In the latter case, each PR type requires its
own, costly master robot with a matching kinematic structure.
Another variant of programming by demonstration is the
use of a marker (i.e., an object that can be tracked by the
programming system) moved by the programmer [1]. Again,
physical access to the robot environment is required and the
resulting motion might not be compatible with the kinematic
constraints of the PR. Additionally, there is no way for the user
to feel interaction forces from the PR and its environment.

To overcome these issues while maintaining the idea of
programming by demonstration, we propose a novel digital
twin (DT) system as depicted in Fig. 1. With this system,
we leverage existing virtual and augmented reality (VR/AR)
techniques in combination with a new method for haptic
feedback for the programming of robot motions. To achieve
this, the kinematic behavior of the arbitrary PR is rendered by
a general-purpose haptic interface, which we will call a haptic
robot (HR). With the proposed solution, the programming
person will be enabled to feel and explore properties like
reach, dexterous workspace, and joint limits of the PR
independent of the visual rendering technology. At the same
time, undesired properties such as gravity can be removed,
while assistive features can be easily added. Due to the
potential usage of VR/AR, it is not just possible to display
the target environment and the state of the PR, but also to
give the programming persons a highly immersive feeling.
Ideally, they will get the impression that they are operating
the PR in its real environment by guiding the end effector
along desired trajectories.

II. RELATED WORK

The application of haptic feedback for path planning or
selection tasks is an active topic of research. In [4], an



DT

HR

H

R

E

F

Fig. 2. Definition of the used coordinate frames.

algorithm is presented that supports the user while they
choose a path, based on a pre-planned, collision-free path
and guiding forces. Kinematic constraints of the PR are not
respected. Another concept for haptic guidance during the
path selection phase for car-like vehicles is given in [5].
Although this approach respects the kinematic constraints
and the limitations of the steering angle, it cannot be applied
to other mechanical structures, which disqualifies it for the
task of rendering kinematics.

A more general approach for realizing constraints on a
haptic interface is the so-called virtual fixture as proposed in
[6]. While this approach allows constraining the motion on a
path or surface, it cannot deal with complex manifolds as they
appear in the workspace description of average manipulators.
In [7], a method specifically designed for the haptic rendering
of surfaces in 3D space is presented. Similar to virtual fixtures,
this approach is limited to surfaces (i.e., two degrees of
freedom) and cannot be generalized for more degrees of
freedom, making it unsuitable for the haptic rendering of
arbitrary manipulators.

Independent of haptic feedback, the usage of VR and AR
tools in robotics grew in the last decade due to the increasing
accessibility of suitable devices [8]. Examples for this are
given in [9] and [10], where robot trajectories are either
recorded in a fully virtual environment or in the real robot
environment that is augmented with a virtual model of the
actual robot. The combination of both haptics and VR/AR
was demonstrated recently for the application example of
welding robots [11]. Although the idea presented therein is
independent of a priori environmental knowledge, it does not
take into account the kinematic limitations of the robot.

As of this writing, we are not aware of any system for robot
programming that combines haptic feedback with VR/AR
and that respects all kinematic constraints of the PR.

III. PROBLEM STATEMENT

A. Coordinate Systems and Notation

Throughout this paper, vectors are printed underlined and
matrices are printed bold. Positions are denoted with

¯
p and

orientations are denoted using the roll-pitch-yaw angles
¯
θ. A

translation and a rotation can be combined into a pose
¯
x =[

¯
pT,

¯
θT
]
T. Orientations and poses can also be expressed as

rotation matrices R and homogeneous transformation matrices
T, respectively. Furthermore,

¯
f is used for 3D-forces,

¯
m for

3D-torques,
¯
q for generalized joint angles, and

¯
τ for joint

torques. Superscripts denote the reference coordinate frame in
which a quantity is expressed, whereas the subscripts indicate
a point or a pose. For example,

¯
pAB represents the position of

point B given in coordinates of frame A. To reference the
i-th element of a vector, [i] is appended to the subscript. All
quantities are given in SI units unless otherwise specified.

In the remainder, the coordinate frames as illustrated in
Fig. 2 are used. The frame F denotes the flange of the HR
and is assumed to be coincident with the position of its
force/torque sensor. The frame H denotes the reference frame
of the HR. Moreover, the reference frame of the DT is defined
as R and the end effector frame of the DT coincident with
the programmer’s handle is denoted as E.

B. Objective

In the following, the PR is assumed to be a serial kinematic
structure with n ∈ N+ joints, that are a mixture of prismatic
and revolute joints. As the PR might be incompatible with
the size of the HR or the user, static up- or downscaling is
allowed. The kinematic model of the scaled PR corresponds
to the forward kinematics of the DT and is given as

¯
xR

E =
¯
f (q) , (1)

¯
qmin ≤

¯
q ≤

¯
qmax . (2)

Additionally, it is assumed that the linkage, i.e., the point
where the user touches the HR to move the end effector of
the DT, and the position of the DT with respect to the HR
are known and fixed. Formally, this can be expressed with
the transformations TE

F and TH
R .

The HR is any haptic interface, whose dexterous workspace
is a superset of the DT’s workspace and that accepts Cartesian
pose setpoints

¯
xH∗

F for its flange. Moreover, force and torque
measurements at the flange are available, i.e.,

¯
fH

F and
¯
mH

F ,
are known. Note, that these properties do not require a
manipulator specifically designed as a haptic interface.

Given these conditions, the goal is now to develop a system,
that lets the handle attached to the HR behave like the user is
moving the real kinematic structure of the PR. This requires

1) a haptic rendering algorithm for a kinematic structure
defined by (1) and (2), and

2) a visual rendering of the DT in AR or VR.
This paper mainly deals with the former, whereas the visual
rendering is covered only briefly. Interested readers are
therefore invited to refer to [12] for detailed information
about the visual rendering.

IV. HAPTIC RENDERING OF MANIPULATORS

In the following, the essential parts of the proposed haptic
rendering algorithm are presented.

A. Transformation of Forces and Torques

Force and torque are measured with respect to the reference
frame of the HR. In order to use these measurements, the
reference frame needs to be changed first, using[

¯
fR

F

¯
mR

F

]
=

[
RR

H
¯
fH

F
RR

H ¯
mH

F

]
. (3)



Based on this, the force acting on E,[
¯
fR

E

¯
mR

E

]
=

[
¯
fR

F

¯
mR

F +
(
RR

E
¯
pE

F

)
×

¯
fR

F

]
, (4)

must be calculated. This expression assumes that E and F are
rigidly linked and that the mass of the handle is negligible
or compensated for by the force-torque-sensing method.

B. Simulation of Dynamics

To simulate the behavior of the DT under the influence of
the programmer’s grasp, a dynamic system model of the DT
is used. The key idea here is to calculate the joint movements
based on the forces and torques acting on the end effector of
the DT. In contrast to standard physic engines, that model
each link as a body with 6 degrees of freedom and each
joint as a constraint [13], the presented approach performs
all calculations directly in the joint space. The simulated
joint angles are then forwarded to the HR (see Section IV-
C), resulting in a structure similar to an admittance control
scheme.

It is well-known from robot dynamics, that

¯
τ = H

(̄
q
)
¯
q̈ +

¯
c
(̄
q,

¯
q̇
)

+
¯
g
(̄
q
)

(5)

holds, where H represents the joint space inertia matrix,
¯
c

the torques occurring due to centrifugal and coriolis forces,
and

¯
g the torques induced by gravity. The torque

¯
τ can be

split into

¯
τ =

¯
τdri +

¯
τcon −¯

τdis , (6)

with the driving torques
¯
τdri, the constraint torques

¯
τcon, and

the dissipative torques
¯
τdis. To make the DT compliant to

the forces and torques applied to its end effector, the driving
torques are determined according to [14] by

¯
τdri = JT

(̄
q
) [

¯
fR

E

¯
mR

E

]
, (7)

where J is the Jacobi-matrix of the kinematics defined in (1).
Other driving torques, e.g., due to joint actuation, are set to
zero. For a more pleasant user experience,

¯
g is set to zero

as well. This means that the user does not have to hold the
static weight of the DT.

Now, solving (5) for
¯
q̈ and inserting (6) and (7) yields

·[
¯
q

¯
q̇

]
=

 ¯
q̇

H−1
(̄
q
)(

JT
(̄
q
)[

¯
fR

E

¯
mR

E

]
+

¯
τcon−¯

τdis−¯
c
(̄
q,

¯
q̇
)) (8)

for the momentary joint speeds and accelerations. In this
system of differential equations, H and

¯
c are determined using

the composite-rigid-body algorithm (CRBA) and the recursive
Newton-Euler algorithm (RNEA), respectively. After that, an
explicit integration scheme is used to obtain the desired joint
positions. Implicit integration schemes are not applicable, as
the mentioned algorithms do not provide gradient information
with respect to

¯
q and

¯
q̇.

1) Inertia Matrix: The joint space inertia matrix H
(̄
q
)

reflects all masses that are present in the DT and its real
counterpart. Consequently, all link inertia values must be
known for the matrix calculation. Simply taking the physical
link inertia values of the PR is a conceivable option for
this purpose, but it has two drawbacks: First, precise inertia
data is not always available, and second, the inertia of a
real robot arm might be higher than that which a user can
handle comfortably. For this reason, a new artificial inertia
distribution is constructed, which concentrates the majority
of the user-configurable inertia (mmain and Imain) in the
end effector E. Additionally, all other links are assigned small
inertia values (mother and Iother) to avoid ill-conditioned, and
hence non-invertible, H-matrices. This way, the felt inertia
is concentrated at the user’s hand and can be tuned to a
comfortable value independent of the real inertia.

2) Friction: It is desired that a passively moving manipula-
tor reaches a resting state after some time without any driving
forces and torques, as is the case with any real manipulator.
This can be achieved by introducing friction into the model
defined in (8), which also permits an effective limitation of
the end effector speeds assuming that the force and torque
exerted by the user are limited in magnitude.

To realize the friction,
¯
τdis is set to the sum of two terms.

The first component is the viscous joint friction

¯
τdis,jnt = djnt

¯
q̇, (9)

with friction coefficient
¯
τdis,jnt and the second component is

based on a Cartesian, isotropically acting viscous friction
defined by [

¯
fR

E

¯
mR

E

]
dis,cart

=

[
dcart,pI 0

0 dcart,θI

]
¯
ẋR

E , (10)

where
¯
ẋR

E = J(q)
¯
q̇. The parameters dcart,p and dcart,θ char-

acterize the translational and rotational friction, respectively.
Analogous to (7), this yields the dissipative joint torques

¯
τdis,cart = JT

(̄
q
) [dcart,pI 0

0 dcart,θI

]
J(q)

¯
q̇ . (11)

Both friction components are required for a safe and com-
fortable user experience. While the former is mainly meant
for damping high joint speeds near singularities, the latter
one ensures that the damping force felt by the user is not
dependent on the link lengths of the PR as long as the
kinematic properties are respected.

3) Joint Limits: Robotic manipulators usually have a
limited range of joint motion, which restricts their working
range and introduces properties of a non-trivially solvable
hybrid system. To incorporate this into the presented haptic
rendering algorithm, joint limits must be mimicked as well.
A simple way to achieve this is the modeling of each active
joint limit as a virtual spring. However, this method results
in indistinct joint limits and stiff differential equations that
facilitate oscillations.

For this reason, joint limits are interpreted as contacts
between rigid bodies, which allows the application of the
contact modeling described in [15]. The idea behind this



approach is to use the yet unknown constraint torques
¯
τcon

introduced in (6) and to summarize all known quantities in
(5) as

¯
τ̂ =

¯
τdri −¯

τdis −¯
c
(̄
q,

¯
q̇
)

(12)

yielding
H

¯
q̈ =

¯
τ̂ +

¯
τcon. (13)

For the modeling of the contacts, let m be the number of
joint limits that are currently active and l (i) ∈ {1, . . . , n}
the joint number of the i-th joint at its limit. Furthermore,
the sign of the joint limit is defined as

s (i) =

{
−1 if

¯
q[l(i)] ≥

¯
qmax[i]

+1 if
¯
q[l(i)] ≤

¯
qmin[i]

. (14)

Now, the constraint torques can be substituted with

¯
τcon = F

¯
α , (15)

where F ∈ Rn×m is a directional matrix given as

F =
[
s (1)

¯
el(1) · · · s (m)

¯
el(m)

]
. (16)

Here,
¯
ek denotes the k-th unit vector. The vector

¯
α ∈Rm

contains the yet unknown constraint torque coefficients, which
can be interpreted as the sought constraint torque magnitudes,
since all columns of F are orthonormal. For each contact i,(

¯
α[i] =0 ∧ s(i)

¯
eTl(i)

¯
q̈>0

)
∨
(

¯
α[i]≥0 ∧ s(i)

¯
eTl(i)

¯
q̈=0

)
(17)

must hold. This boolean expression states, that the currently
active joint limit either becomes inactive (i.e., the constraint
torque is zero and the joint is accelerating away from the
limit) or remains active (i.e., no acceleration, but a constraint
torque). If these conditions are reformulated and merged for
all contacts, the vector notation(

diag (
¯
α)FT

¯
q̈ = 0

)
∧
(
¯
α+ FT

¯
q̈ ≥ 0

)
(18)

is obtained. Inserting (13) and (15) into the previous expres-
sion yields the quadratic equality/inequality system(

diag (
¯
α)FTH−1 (

¯
τ̂ + F

¯
α) = 0

)
∧(

¯
α+ FTH−1 (

¯
τ̂ + F

¯
α) ≥ 0

)
,

(19)

which can be solved for
¯
α using the root finding algorithm

given in [15]. The eventually calculated value for
¯
τcon is

then fed back into (8) before integration.
Although the above-mentioned steps ensure that joint limits

are always respected, it does not guarantee that the mechanical
impulse of the DT is preserved, when physically possible. To
avoid this uncomfortable effect for the user, the impact model
between rigid bodies during the compression phase [15] is
applied before each integration step. In this, the sought change
in joint velocity ∆

¯
q̇ is physically described through

∆
¯
q̇ = H−1F

¯
γ , (20)

where
¯
γ ∈ Rm can be interpreted as a yet unknown impulse

strength. Similar to (17),(
¯
γ[i] = 0 ∧ s(i)

¯
eTl(i)

(̄
q̇ + ∆

¯
q̇
)
> 0
)
∨(

¯
γ[i] ≥ 0 ∧ s(i)

¯
eTl(i)

(̄
q̇ + ∆

¯
q̇
)

= 0
) (21)

Algorithm 1 Simulation of the DT’s dynamic behavior for
the haptic rendering.

1: procedure UPDATE(∆t,
¯
fR

E , ¯
mR

E)
2: H← getInertiaMatrix

(
model,

¯
q
)

. CRBA
3: ∆

¯
q̇ ← calculateVelocityDelta

(
F,H,

¯
q̇
)
. (20), (22)

4:
¯
q̇ ←

¯
q̇ + ∆

¯
q̇

5: J← getJacobian
(
model,

¯
q
)

6:
¯
c← getCoriolisTerm

(
model,

¯
q,

¯
q̇
)

. RNEA
7:

¯
τdri ← JT

[
¯
fRT

E ,
¯
mRT

E

]
T

8:
¯
τdis ← ¯

τdis,jnt +
¯
τdis,cart . (9), (11)

9:
¯
τ̂ ←

¯
τdri −¯

τdis −¯
c

10:
¯
τcon ← calculateConstrTorques(F,H,

¯
τ̂) . (15), (19)

11:
¯
q̈ ← H−1 (

¯
τ̂ +

¯
τcon)

12:
(̄
q,

¯
q̇
)
← integrate

(̄
q,

¯
q̇,

¯
q̈,∆t

)
13: F← calculateFMatrix(model,

¯
q) . (14), (16)

14:
¯
q ← max

(
min
(̄
q,model.

¯
qmax

)
,model.

¯
qmin

)
15: end procedure

has to be true. Here, the former condition represents a contact
that is in the process of breaking (i.e., the new velocity causes
the joint to move away from its active limit) and the latter
condition represents a contact that is still active (i.e., new
velocity must be zero). Combining (20) and (21) for all
contacts yields the system(

diag
(
¯
γ
)
FT
(̄
q̇ + H−1F

¯
γ
)

= 0
)
∧(

¯
γ + FT

(̄
q̇ + H−1F

¯
γ
)
≥ 0
)
,

(22)

whose solution scheme for
¯
γ is the same as that for (19).

Following this, ∆
¯
q̇ is obtained using (20) and added to

¯
q̇.

With this, all steps involved in the dynamic simulation of
the DT and thus for the haptic rendering are known. If the
operations are now executed as outlined in Algorithm 1, a
full cycle of the dynamic simulation is performed.

C. Output Preparation

After each simulation cycle (i.e., integration step of
differential equation (8)),

¯
q is passed to the forward kinematics

(1) of the DT. The resulting pose
¯
xR

E is then transformed to
the desired flange pose of the HR with respect to its reference
frame using

TH∗
F = TH

R TR
E TE

F , (23)

which is then sent to the HR for execution.

V. IMPLEMENTATION

A block diagram of the proposed haptic rendering method
is depicted in Fig. 3. The loop closure is achieved through
the user’s hand-arm-system acting as a variable mechanical
impedance.

For validation, the whole system was implemented as a
ROS-node in C++. To ensure reusability, the code is kept robot-
agnostic with respect to the PR and the HR. Therefore, the
HR is commanded via Cartesian pose-setpoints and the entire
geometry and joint information of the PR is provided through
an URDF-based robot description, that can be downscaled if
necessary. The implementations of the CRBA and the RNEA
as well as the kinematic operations are taken from the Orocos



force torque
sensor

pose offsets
TE

F and TH
R

¯
xH∗

F

URDF
- geometry information
- joint limits

¯
fR

E ,

¯
mR

E
¯
q

¯
xR

E ¯
fF

H,

¯
mF

Hhaptic robot including
inverse kinematics

dynamic model

¯
q̈ =

¯
h
(̄
q,

¯
q̇,

¯
fR

E ,
¯
mR

E

) forward kinematics

¯
xR

E =
¯
f
(̄
q
) arm of human user¯

xH
F

Fig. 3. Block diagram of the proposed haptic rendering method for serial manipulators. Blocks drawn in red correspond to the HR, while blocks drawn in
blue correspond to the DT.

(a) Liebherr excavator
(4 joints).

(b) SCARA (4 joints)
with prismatic joint.

(c) Franka Emika
Panda (7 joints).

Fig. 4. Robot models used as PR during the evaluation. The joints are
numbered ascending from the base to the tip for each robot.

Kinematics Dynamics Library (KDL) [16]. For the integration
of (8), the fourth-order Runge-Kutta method was used.

For the visual rendering of the DT and other information
such as forces and environmental information, the iviz
visualization platform [12] is deployed. By leveraging the
Unity Game Engine and a high-performance ROS interface,
iviz enables effortless robotic visualization on a variety
of AR/VR devices, including systems running Apple iOS,
Microsoft Windows, and Google Android. Due to the full
compatibility with ROS and the URDF-format, iviz requires
zero porting effort for existing ROS applications and has a
function range that is comparable with the ROS-tool rviz.

VI. EXPERIMENTAL RESULTS

For the evaluation, a Universal Robots UR16e manipulator,
which can be considered as a low-end haptic device, was
used as an HR. This choice was made to demonstrate that
the presented algorithms do not rely on the availability of
special haptic interfaces. The Cartesian pose control of the
UR16e was realized using the inverse kinematics algorithm
presented in [17]. The control loops were set to a frequency
of 500 Hz running on a laptop with an Intel Core i7-9570H
CPU. To demonstrate the capabilities of the proposed haptic
rendering method, a set of different PRs as depicted in Fig. 4
was selected. The chosen manipulators include a variety of
kinematic structures reaching from classical industrial to more
exotic manipulators. In addition, prismatic and revolute joints
are included as well as a redundant kinematic structure.

For all experiments, the friction parameters were chosen
empirically as djnt = 0.8 N m s, dcart,p = 17.0 N s m−1,
and dcart,θ = 1.5 N m s. The inertia values were set to
mmain = 30.0 kg, Imain = 0.03 kg m2, mother = 6.0 kg, and
Iother = 6.0× 10−3 kg m2. These values result in a user
experience with reasonable required user forces without being
susceptible to force/torque sensor noise or exceeding the
driving capabilities of the actuators.

Fig. 5. Recorded joint space trajectories of the excavator’s DT. The upper
and lower joint limits are drawn as dashed lines. The black line marks the
point in time when a velocity impulse is applied to joint 3.

Fig. 6. Joint space trajectories of the SCARA manipulator’s DT, when
singularities (

¯
q
[2]

= 0) are passed.

A. Joint Limits

In order to test the behavior of the DT’s joint limits, the
manipulator of an excavator as shown in Fig. 4(a) was used
as the PR. Therefore, the end effector of the DT, i.e., the
shovel, was moved around by hand to hit the joint limits on
purpose. The resulting joint space trajectories are depicted
in Fig. 5. Clearly, it can be seen that all joint limits are
respected without oscillations at the boundaries, independent
of the number of joints at the limit. At t = 14 s, joint 2 (boom)
reaches its lower limit causing a sudden change in the velocity
of joint 3. This demonstrates that the impulse preservation
described in Section IV-B.3 works as expected. In general,
the obtained joint trajectories are ready to be processed for
validation or to be directly sent to the executing robot.

B. Singularities

The SCARA arm from Fig. 4(b) features a singularity if
it is stretched to its full extent (

¯
q[2] = 0). As illustrated in

Fig. 6, this singularity neither restricts the movements of
the remaining joints nor the proposed rendering algorithm
in general. The manipulator can be moved into and out of
singularities at any time if suitable forces are applied as one
might expect from the real mechanical structure.



Fig. 7. Translational and rotational tracking error between HR and DT for
different maximal forces and torques. The ∞-symbol in the legend indicates,
when the maximal forces and torques are not bounded.

C. Tracking Error

For the goal of accurate robot programming, it is crucial
that the HR closely follows the DT and vice versa. As
explained in Section IV-C, the pose of the DT is used
as an input for the Cartesian controller of the HR. This
implies that the achievable tracking error depends on the
controller properties of the HR. To examine the accuracy,
the tracking errors for the translation

¯
pH

H∗ and the rotation

¯
θH

H∗ were evaluated for different maximal forces and torques
exerted by the user, when the robot in Fig. 4(c) was moved
around randomly. The results depicted in Fig. 7 indicate that
the expected errors are bound. From this, it also becomes
apparent that lower errors can be achieved by limiting the
force/torque artificially without changing the HR or its control.

D. Integration with VR/AR

Due to the implementation as a ROS node, seamless
interoperability with iviz is enabled. This was successfully
tested through the haptic rendering and visualization of
the manipulators shown in Fig. 4. An example for the
visualization, that was performed with the HTC Vive (VR), the
Apple iPad (AR) as well as the Microsoft Hololens (AR) can
be found in Fig. 8. We refer the reader to the supplementary
material of this paper for more examples.1

VII. CONCLUSIONS

In this paper, a haptic rendering algorithm suitable for the
programming of serial manipulators was presented. Practical
tests demonstrated that the presented rendering method
provides a feasible solution for the joint space trajectories
of the PR, independent of the presence of singularities or
the kinematic structure. Furthermore, it was shown that the
achievable tracking accuracy mainly depends on the controller
of the HR and the magnitude of input force and torque. The
overall system is well integrated with VR/AR methods.

Future research will involve the integration of an HR with
a faster Cartesian controller, the application in a real-world

1https://youtu.be/5t37cfeE7E0

Fig. 8. Iviz visualization of the programming process for an excavator. The
robot model is rendered in real-time onto the camera image of an Apple
iPad.

programming scenario, and the design of assistive features
such as the display of forces due to collisions between the DT
and its environment. Additionally, the presented programming
approach will be evaluated with a group of test subjects.
At the theoretical level, the stability of the system during
human-robot interaction needs to be studied. Especially the
observation, that a limited force input yields a bounded
tracking error, which would imply stability, needs to be proven
mathematically.

REFERENCES

[1] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proceedings of the Australasian conference on robotics
and automation, 2003.

[2] G. F. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. A.
Fuhlbrigge, “Easy robot programming concepts: An industrial perspec-
tive,” in 2013 IEEE International Conference on Automation Science
and Engineering (CASE), 2013, pp. 1119–1126.

[3] V. Villani, F. Pini, F. Leali, C. Secchi, and C. Fantuzzi, “Survey
on human-robot interaction for robot programming in industrial
applications,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 66–71, 2018.

[4] N. Ladeveze, J. Y. Fourquet, B. Puel, and M. Taı̈x, “Haptic assembly
and disassembly task assistance using interactive path planning,” in
2009 IEEE Virtual Reality Conference, 2009, pp. 19–25.

[5] M. Fennel, A. Zea, and U. D. Hanebeck, “Haptic-guided path generation
for remote car-like vehicles,” IEEE Robotics and Automation Letters,
2021, to appear.

[6] P. Marayong, M. Li, A. M. Okamura, and G. D. Hager, “Spatial
motion constraints: Theory and demonstrations for robot guidance
using virtual fixtures,” in 2003 IEEE International Conference on
Robotics and Automation, vol. 2, 2003, pp. 1954–1959.

[7] N. Zafer, “Constraint-based haptic rendering of a parametric surface,”
Proceedings of the Institution of Mechanical Engineers, Part I: Journal
of Systems and Control Engineering, vol. 221, no. 3, pp. 507–517,
2007.

[8] Z. Makhataeva and H. A. Varol, “Augmented reality for robotics: A
review,” Robotics, vol. 9, no. 2, 2020.

[9] H. Fang, S. K. Ong, and A. Y. Nee, “Robot programming using
augmented reality,” in 2009 International Conference on CyberWorlds,
2009, pp. 13–20.

[10] A. Burghardt, D. Szybicki, P. Gierlak, K. Kurc, P. Pietruś, and R. Cygan,
“Programming of industrial robots using virtual reality and digital twins,”
Applied Sciences, vol. 10, no. 2, 2020.

[11] D. Ni, A. W. W. Yew, S. K. Ong, and A. Y. C. Nee, “Haptic and
visual augmented reality interface for programming welding robots,”
Advances in Manufacturing, vol. 5, no. 3, pp. 191–198, 2017.

[12] A. Zea and U. D. Hanebeck, “iviz: A ROS visualization app for mobile
devices,” Software Impacts, vol. 8, 2021.

[13] D. Baraff, “Physically based modeling,” in SIGGRAPH 99 course notes,
1999.

[14] R. Featherstone and D. E. Orin, “Dynamics,” in Springer Handbook
of Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg:
Springer, 2008, pp. 35–65.



[15] R. Featherstone, Robot dynamics algorithms. Boston, Dordrecht,
Lancester: Kluwer Academic Publishers, 1987.

[16] P. Soetens, T. Issaris, H. Bruyninckx, S. Joyeux, R. Smits et al. (2021,
Feb.) KDL overview – Orocos documentation. [Online]. Available:
https://docs.orocos.org/kdl/overview.html

[17] S. Scherzinger, A. Roennau, and R. Dillmann, “Inverse kinematics
with forward dynamics solvers for sampled motion tracking,” in 2019
19th International Conference on Advanced Robotics (ICAR), 2019,
pp. 681–687.


