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Abstract—We present a novel dual quaternion filter for recur-
sive estimation of rigid body motions. Based on the sequential
Monte Carlo scheme, particles are deployed on the manifold of
unit dual quaternions. This allows non-parametric modeling of
arbitrary distributions underlying on the SE(3) group. The pro-
posal distribution for importance sampling is estimated particle-
wise by a novel dual quaternion unscented Kalman filter (DQ-
UKF). It is adapted to the manifold geometric structure and
drives the prior particles towards high-likelihood regions on the
manifold. The resultant unscented dual quaternion particle filter
(U-DQPF) incorporates the most recently observed evidence,
raising the particle efficiency considerably for nonlinear pose
estimation tasks. Compared with ordinary particle filters and
other parametric model-based dual quaternion filtering schemes,
the proposed U-DQPF shows superior performance in nonlinear
SE(3) estimation.

Index Terms—Filtering, estimation, sensor fusion

I. INTRODUCTION

SPATIAL pose estimation is crucial in many control-related
scenarios [1]–[4]. Mathematically speaking, rigid body

motions, which incorporate both rotation and translation, can
be described by the elements belonging to the special Eu-
clidean group SE(3). For SE(3) estimation, there exist several
different representations of the states. Minimal representa-
tions of spatial rotations typically suffer from singularities or
discontinuities for certain attitudes (e.g., the “gimbal lock”
issue with Euler angles). The widely used 4×4 homogeneous
matrices eliminate such issues via overparameterization, how-
ever, with a large degree of redundancy (w.r.t. the six DoF),
leading to memory inefficiency and numerical instabilities.
A dual quaternion comprises two quaternions, and thus, it
can be expressed as an eight-dimensional vector, inducing
only two degrees of redundancy and no singularity. Therefore,
we employ dual quaternions as state representation in the
proposed rigid body motion estimator.

Due to the nonlinear group structure of SE(3), existing pose
estimation methods often assume local perturbations on the
underlying group (e.g., via Lie algebra) [3]–[5]. This enables
nonlinear state estimation in a locally linearized space using
popular filtering schemes such as the extended Kalman filter
(EKF) or the unscented Kalman filter (UKF) [6], [7]. The
SE(3) states are often augmented by vectors describing the
velocities or accelerations, which demand additional inertial
systems of a high sampling rate. Such an assumption can
be invalid for scenarios without extra motion information,
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e.g., for pose estimation purely based on external perception
sensors [8]–[10]. Furthermore, the assumption can be also
easily violated when there are large transitions and high un-
certainties with system dynamics. Consequently, the estimated
uncertainty (e.g., quantified by a Gaussian distribution) in
the locally linearized space can be warped with a distorted
shape on SE(3) by the exponential map, and thus, does not
correspond to the geodesic distance and has a questionable
interpretation. Dual quaternions representing uncertain rigid
body motions naturally form a nonlinear manifold in R8

(see Sec. II). In this paper, we focus on the conceptual
scenario where dual quaternion SE(3) states are to be estimated
adaptively to its inherent manifold geometry.

The nonlinear structure of the dual quaternion manifold re-
sults from the rotational component represented by unit quater-
nions, which are located on the unit hypersphere S3. Thus,
significant effort has been devoted to applying distributions
from directional statistics [11], [12] to stochastic modeling of
uncertain unit quaternions directly on the hypersphere without
linearization. A quaternion xr ∈ S3 and its antipode −xr
represent the same rotation, thus should be endowed with
identical density values. Therefore, Bingham distribution in R4

has gained popularity as its density is inherently antipodally
symmetric on S3. In [10], the Bingham distribution was used
for Monte Carlo-based orientation estimation. An unscented
orientation estimator was proposed in [13] based on a de-
terministic sampling scheme for the Bingham distribution. It
showed superior tracking accuracy and less runtime than an
ordinary UKF-based quaternion filter.

Further extensions were made for modeling uncertain dual
quaternions based on hyperspherical distributions. In [8],
Bingham-distributed quaternions and Gaussian-distributed
translation terms are combined in an unscented transform-
based dual quaternion filter for visual odometry. A Bingham-
based linear filter was proposed in [14] for static point
cloud registration using the dual quaternion representation
and pseudo-measurements of vertex-pairs. Further parametric
schemes were established in [15]–[18], in which uncertain dual
quaternions are modeled in a unified way for pose estimation
and methods were facilitated with deterministic or stochastic
sampling. Several issues arise in parametric statistical mod-
eling on the manifold of dual quaternions. First, almost no
relevant hyperspherical distribution possesses a normalization
constant in closed form. Some techniques were introduced for
accelerating the computation, e.g., using lookup tables or sad-
dle points for the Bingham distribution [13], [19], yet they are
still time-consuming and sometimes numerically unstable due
to numerical optimizations or approximations. Some models



assume low rotation uncertainty and need complex mixture
models for handling high uncertainties [17], [18].

Particularly, parametric statistical models deny exact mod-
eling of arbitrary distributions on the nonlinear manifold.
Considering that the unit quaternion manifold is bounded and
compact, a discrete quaternion filter was proposed in [20]
using a hyperspherical grid, which allows approximating ar-
bitrary distributions. Based thereon, it is possible to incorpo-
rate translations into dual quaternion representation via Rao–
Blackwellization for pose estimation [21]. However, the major
limitation lies in the uniform or non-adaptive discretization,
which leads to a large grid resolution for nonlinear filtering.
This results in a high computational and storage complexity.

Theoretically, Monte Carlo schemes are applicable for exact
modeling of arbitrary distributions. In practice, however, a
plain dual quaternion particle filter (PF) may suffer from sam-
ple degeneration due to nonlinearities and high-dimensional
state spaces, thereby demanding a large number of particles for
nonlinear SE(3) estimation. Moreover, standard PFs exploit the
transition density as the proposal distribution, and thus, newly
observed evidence from current measurement is disregarded.
This may lead to deteriorated estimation performance with
peaky likelihoods, non-stationary models, as well as heavy-
tailed distributions, etc. In this regard, the unscented particle
filter (UPF), in which each particle runs an individual UKF to
estimate the proposal distribution, was proposed in [22]. It has
been systematically justified that a theoretical convergence is
ensured with the UPF and its convergence rate is dimension-
independent. Consequently, it shows substantial improvements
over standard PFs for nonlinear state estimation. By far, there
exists no such scheme for dual quaternion filtering.

Contributions

We establish a geometry-aware UPF scheme on the mani-
fold of unit dual quaternions for nonlinear SE(3) estimation.
An investigation into the geometric structure of the manifold
is provided. Afterward, random dual quaternion particles are
exploited for exact on-manifold modeling of arbitrary dis-
tributions. The concept of locally augmented tangent space
(LATS) is introduced based on augmented gnomonic projec-
tion/retraction to facilitate a novel UKF-like dual quaternion
filter (DQ-UKF). Then, the proposal distribution is estimated
particle-wise by the DQ-UKF such that the latest evidence
is fused before importance sampling. The resultant unscented
dual quaternion particle filter (U-DQPF), as demonstrated in
evaluation, shows superior performance over the PF and the
Bingham-based dual quaternion filter.

II. PRELIMINARIES

A. Quaternion Representation of Spatial Rotations

By convention, a quaternion r is defined as r0 + r1i +
r2j + r3k. The set {i, j,k} is the standard basis of the three-
dimensional Euclidean space R3, following Hamilton product
⊗ in quaternion composition. For conciseness, we rewrite
quaternions into vector form with r = [ r0, r1, r2, r3 ]> ∈ R4.
The composition of two arbitrary quaternions r and s can then

be reformulated into ordinary matrix–vector multiplications,
namely r⊗ s = Qx

r s = Qy
s r, with

Qx
r =

[
r0 −r1 −r2 −r3
r1 r0 −r3 r2
r2 r3 r0 −r1
r3 −r2 r1 r0

]
, Qy

s =

[
s0 −s1 −s2 −s3
s1 s0 s3 −s2
s2 −s3 s0 s1
s3 s2 −s1 s0

]
. (1)

The norm of a quaternion r is defined as
√

r⊗ r∗, with r∗ =
[ r0,−r1,−r2,−r3 ]> being the conjugate of r. Quaternions
of unit norm are called unit quaternions. They are also of
unit length in the four-dimensional Euclidean space, thereby
located on the unit hypersphere S3 ⊂ R4.

Given an arbitrary unit quaternion r ∈ S3, it can be
proven that its corresponding matrices in (1) belong to the
four-dimensional special orthogonal group SO(4), namely
Q◦r(Q◦r)> = (Q◦r)>Q◦r = I4×4 and det(Q◦r) = 1 (superscript
◦ denotes either x or y). For unit quaternions, therefore, the
Hamilton product denotes hyperspherical rotations geomet-
rically, under which S3 is closed. Given the definition of
quaternion norm, the inverse of a unit quaternion r equals
its conjugate with r−1 = r∗, which corresponds to the inverse
of its matrix expression, i.e., Q◦r−1 = (Q◦r)> = (Q◦r)−1.

Quaternions are popular for representing spatial rotations.
A rotation of angle θ around the axis n ∈ S2 can be
parameterized by a quaternion of the following form

xr = [ cos(θ/2) , n> sin(θ/2) ]> . (2)

As the rotation axis denotes a unit vector in R3, the quaternion
described above is naturally of unit norm, thereby xr ∈ S3. It
can rotate any point p ∈ R3 to p′ via p′ = (xr ⊗ [ 0,p> ]> ⊗
x∗r )2:4. Here, we augment the vector p to its quaternion
form and recover its coordinates by extracting the last three
elements after the quaternion rotation. When applying the
matrix expression in (1) to the unit quaternion xr, one can
establish the connection between quaternion rotation and the
special orthogonal group SO(3). Since xr ⊗ [ 0,p> ]> ⊗ x∗r =
(Qy

xr
)>Qx

xr
[ 0,p> ]>, we obtain (Qy

xr
)>Qx

xr
=
[ 1 03×1

01×3 Rxr

]
.

Rxr ∈ SO(3) is the well-known rotation matrix denoting an
identical spatial rotation as xr.

B. Dual Quaternion-Based Pose Representation

To represent rigid body motions, a dual quaternion x =
xr +εxs can be deployed with the real part xr explained in (2)
and the dual part xs defined as

xs = 0.5 [ 0 , t> ]> ⊗ xr ∈ R4 . (3)

Here, xs encodes the spatial translation t ∈ R3 by aggregating
t with the real part xr. ε is the dual unit and satisfies
ε2 = 0. Based thereon, we denote dual quaternions as eight-
dimensional vectors by concatenating the real and dual parts
together, namely x = [ x>r ,x

>
s ]>. The arithmetic of dual

quaternion is a combination of quaternion arithmetic and dual
number theory (due to the dual unit ε). Dual quaternion com-
positions, denoted by �, can be expressed as matrix–vector
multiplications. For instance, we have x� y = Qp

x y = Qq
y x

for two arbitrary dual quaternions x = [ x>r ,x
>
s ]>, y =

[ y>r ,y
>
s ]> ∈ R8, with

Qp
x =

[
Qx

xr
04×4

Qx
xs

Qx
xr

]
, Qq

y =

[
Qy

yr
04×4

Qy
ys

Qy
yr

]
.



As for quaternions, the norm of a dual quaternion is given
by
√

x� x∗, with x∗ = [ (x∗r )>, (x∗s )> ]> being the so-called
classic conjugate of x [16].

Given the definition in (2) and (3), any point p ∈ R3 can
be transformed by a dual quaternion x according to p′ =
(x�[ 1, 0, 0, 0, 0,p ]>�x�)6:8, with x� = [ (x∗r )>, (−x∗s )> ]>

being the full conjugate of x. We augment p into a dual
quaternion expression and extract the last three entries (6th to
8th) of the resultant dual quaternion to obtain its transformed
coordinates. The transformation essentially denotes a rotation
of xr followed by a translation of t, i.e., p′ = (xr⊗[ 0,p> ]>⊗
x∗r )2:4 + t [16].

C. Manifold Structure of Unit Dual Quaternions

Dual quaternions representing the SE(3) states in (3) are
inherently of unit norm [23] and are thus called unit dual
quaternions. As mentioned in Sec. II-A, real parts representing
rotations are located on the unit hypersphere S3. Due to the
Hamilton product in (3), the dual part is orthogonal to the real
part on S3. Thus, we obtain the unit dual quaternion manifold
DH1 := {[ x>r , x>s ]> |xr ∈ S3, x>r xs = 0} ⊂ R8.

Furthermore, for a unit quaternion xr ∈ S3, the matrix
expression in (1) naturally provides an orthogonal basis of the
four-dimensional Euclidean space R4. More specifically, its
last three columns span the tangent space of the unit quaternion
manifold at xr, namely, TxrS3 = span ({e1, e2, e3}). Here,
we decompose the matrix Q◦xr

as Q◦xr
= [ xr,A◦xr

], with
A◦xr

= [ e1, e2, e3 ] ∈ R4×3. Then, the dual part xs defined
in (3) is a scaled translation term w.r.t. the local basis A◦xr

of TxrS3. Therefore, we have xs = 0.5 [ 0 , t> ]> ⊗ xr =
0.5Qy

xr
[ 0 , t> ]> = 0.5Ay

xr
t. Since Ay>

xr
Ay

xr
= I3×3, the

translation t can be decoded from the dual part via

t = (2 xs ⊗ x−1r )2:4 = 2Ay>
xr

xs . (4)

III. GEOMETRIC-ADAPTIVE STOCHASTIC MODELING FOR
UNCERTAIN UNIT DUAL QUATERNIONS

A. Sequential Monte Carlo Scheme on DH1

The following setup is considered for dual quaternion fil-
tering. The system model is xk = a(xk−1,wk−1), with the
dual quaternion vectors xk−1, xk ∈ DH1 representing the
SE(3) states and wk−1 ∈ W being the system noise. The
measurement model is zk = h(xk,vk), with zk ∈ Z denoting
the measurement and vk ∈ V the measurement noise. Note
that neither the transition a : DH1 ×W → DH1 nor the
observation h : DH1 ×V→ Z is assumed to be of a specific
class of functions (e.g., identity models in [13]).

Following a typical particle filtering scheme [24], we ex-
ploit Dirac mixtures supported by dual quaternion particles
to represent the underlying posterior distribution on DH1.
Thus, f(x0:k | z0:k) =

∑n
i=1 w

i
k δ(x0:k − νik), where wik

is the weight of each particle νik ∈ DH1 at step k and∑n
i=1 w

i
k = 1. Theoretically, sampling particles from the true

posterior density is infeasible. Instead, samples are drawn from
the proposal distribution g(xik |xi0:k−1, z1:k). It is a known

distribution that is easy to sample such that the importance
weight of each particle i can be recursively updated following

wik = wik−1
fL(zk |xik) fT(xik |xik−1)

g(xik |xi0:k−1, z1:k)
. (5)

Standard PFs set the proposal distribution identical to the
transition density, i.e., g(xik |xi0:k−1, z1:k) = fT(xik |xik−1),
leading to an update merely done by the likelihood with
wik = wik−1 f

L(zk |xik). The latest evidence zk is then
disregarded from the proposal distribution, resulting in sample
degeneration in the presence of, e.g., heavy-tailed distributions,
non-stationary models, peaky likelihoods, etc. Inspired by [22]
and considering the manifold structure, we propose a UKF-
like dual quaternion filter on DH1 for particle-wise estimation
of the proposal distribution.

B. Particle-wise Probabilistic Modeling in the
Locally Augmented Tangent Space

As detailed in Sec. II-C, the nonlinearity of the manifold
DH1 mostly results from the real part on S3. Any unit
quaternion xr ∈ S3 can be mapped to the tangent space
at another unit quaternion νr ∈ S3 and backward via the
gnomonic projection and retraction

x̃r = xr / (ν>r xr) ∈ TνrS3, ∀xr ∈ S3 ,
xr = x̃r / ‖x̃r‖ ∈ S3, ∀ x̃r ∈ TνrS3 ,

respectively (see [25], [26]). As introduced in Sec. II-C, the
gnomonic projection/retraction can be further derived w.r.t. the
local basis from the matrix form of unit quaternions as

τr = Pνr(xr) = Ax>
xr

xr / (ν>r xr) ∈ R3 ,

xr = Uνr(τr) = Qx
xr

[ 1, τ>r ]> /
√

1 + ‖τr‖2 ∈ S3 .

Given the dual quaternion ν = [ν>r ,ν
>
s ]> ∈ DH1, the dual

part is by definition located in the hyperspherical tangent space
at the real part, i.e., νs ∈ TνrS3. This allows us to augment
the tangent space TνrS3 with the dual part via (4) w.r.t. the
local basis. Such a locally augmented tangent space (LATS) is
a six-dimensional Euclidean space and enables particle-wise
quantification of the uncertainty on DH1. More specifically,
we propose the augmented gnomonic projection

τ = P⊕νr
(x) = [ τ>r , τ

>
s ]> ∈ R6,∀x = [ x>r ,x

>
s ]> ∈ DH1 ,

with τr = Pνr(xr) ∈ R3, τs = R>νr
(tx − tν) ∈ R3 being

the mapped real and dual parts, respectively. Rνr denotes the
rotation matrix given by the real part νr. A detailed derivation
for the mapped dual part τs is given in Appendix A. Inversely,
the augmented gnomonic retraction is

x = U⊕νr
(τ ) = [ x>r ,x

>
s ]> ∈ DH1,∀ τ = [ τ>r , τ

>
s ]> ∈ R6 ,

with xr = Uνr(τr) ∈ S3, xs = 0.5Ay
xr

(Rνrτs + tν) ∈ TxrS3.
In order to estimate the proposal distribution in (5) with a

UKF-like scheme, a six-dimensional Gaussian distribution is
deployed in the LATS at each particle on the manifold DH1.
As discussed in [25], points on the hypersphere are unbounded
in the tangent space after being mapped via the gnomonic
projection. Therefore, sigma points in the LATS (R6 w.r.t.
its local basis) can always be mapped back to DH1 via the
proposed augmented gnomonic retraction.



Algorithm 1: DQ-UKF

Input: (νk−1,Ck−1) , measurement zk
Output: (νk,Ck)
/* prediction step */

1 {(τ ik−1, vi)}ni=1 ← sampleUT (Ck−1) ;
2 {σik−1}ni=1 ← augRetract (νr,k−1, {τ ik−1}ni=1) ;
3 {σik|k−1}

n
i=1 ← propagate ({σik−1}ni=1) ;

4 νk|k−1 ← average ({(σik|k−1, vi)}
n
i=1) ;

5 {τ ik|k−1}
n
i=1 ← augProj (νr,k|k−1, {σik|k−1}

n
i=1);

6 Ck|k−1 ←
∑
i vi τ

i
k|k−1(τ ik|k−1)> ;

7 {zik|k−1}
n
i=1 ← measure ({σik|k−1}

n
i=1);

/* update step */

8 z̄k|k−1 ←
∑
i vi z

i
k|k−1 ;

9 Cz ←
∑
i vi(z

i
k|k−1 − z̄k|k−1)(zk|k−1 − z̄k|k−1)> ;

10 Cτz ←
∑
i vi τ

i
k|k−1(zik|k−1 − z̄k|k−1)> ;

11 Kk ← Cτz(Cz)−1 ;
12 τk ← Kk(zk − z̄k|k−1) ;
13 Ck ← Ck|k−1 −Kk Cz K>k ;
14 νk ← augRetract (νr,k|k−1, τk) ;
15 return (νk,Ck)

IV. UNSCENTED DUAL QUATERNION
PARTICLE FILTER (DQ-UPF)

Based on the stochastic modeling of dual quaternions in
Sec. III, we propose a UKF on manifold DH1 for estimating
the proposal distribution in a particle-wise manner (shown in
Alg. 1). For each particle, sigma points {τ ik−1}ni=1 ⊂ R6 are
first drawn in the LATS at last posterior real part νr,k−1 with its
covariance Ck−1 based on unscented transform. They are then
mapped back to the manifold via the augmented gnomonic re-
traction and propagated through the system dynamics (Alg. 1,
lines 1–3). The mean value of the propagated dual quater-
nion samples is calculated by averaging the translation and
rotation components separately. The real parts {σir,k|k−1}

n
i=1

are averaged by the intrinsic gradient descent from [27] with
an adaptation to the hyperspherical gnomonic projection. The
LATS is then transported to the prior real part νr,k|k−1, where
the prior covariance Ck|k−1 is computed (Alg. 1, lines 5–6).
Further, we perform the UKF update to fuse the measurement
zk on the LATS at the prior real part νr,k|k−1 w.r.t. to its local
basis (Alg. 1, lines 7–13). In the end, the posterior state τk
in the tangent space is retracted back to the manifold DH1 to
obtain the state νk.

The proposed DQ-UKF is further integrated into the un-
scented particle filtering scheme from [22] to obtain the
proposal distribution particle-wise (Alg. 2, line 2). Afterward,
a random sample τ ik is drawn in the LATS at the poste-
rior νir,k. There, the proposal density g(x̂i |xi0:k−1, z1:k) is
evaluated according to the Gaussian distribution N (0,Ci

k).
The random sample in the tangent space τ ik is then retracted
back to the manifold to compute the likelihood f(zk | x̂ik)
as well as the transition density in the LATS at the prior
real part νir,k|k−1 (Alg. 2, lines 3–4). Then, the weights of

Algorithm 2: U-DQPF

Input: {(νik−1, wik−1,Ci
k−1)}ni=1 , measurement zk

Output: {(νik, wik,Ci
k)}ni=1

1 for i← 1 to n do
/* particle-wise DQ-UKF */

2 (νik,C
i
k)← DQ-UKF(νik−1,C

i
k−1) ;

/* importance weighting */

3 τ̂ ik ← sampleRnd (N (0,Ci
k)) ;

4 x̂ik ← augRetract (νir,k, τ̂
i
k) ;

5 wik ← wik−1
fL(zk | x̂i

k) f
T(x̂i

k |x
i
k−1)

g(x̂i
k|x

i
0:k−1, z1:k)

;

6 {wik}ni=1 ← normalize({wik}ni=1) ;
7 {(νik, wik,Ci

k)}ni=1 ← resample({(νik, wik,Ci
k)}ni=1) ;

8 return {(νik, wik,Ci
k)}ni=1

all particles are updated according to (5) and re-normalized.
As suggested in [24], a resampling is performed to obtain
uniformly weighted particles (Alg. 2, lines 5–7).

V. EVALUATION

The proposed U-DQPF is evaluated in a simulation. We
set up the system model as xk+1 = xk � w2

k. xk+1,xk ∈
DH1 denote the dual quaternion states representing spatial
poses. wk = [ w>r,k,w

>
s,k ]> ∈ DH1 is the uncertain system

input with wr,k = [ cos (θw,k/2),n>w,k sin (θw,k/2) ]> and
ws,k = 0.5 [ 0, t>w,k ]> ⊗ wr,k being the real and dual parts,
respectively. w2

k is defined as wk � wk. We assume the
uncertain rotation angle to be von Mises-distributed and the
rotation axis von Mises–Fisher-distributed [11], i.e., θw,k ∼
VM(φθw, κ

θ
w) and nw,k ∼ VMF(ζn

w, κ
n
w). The mean values

of the rotation angle and axis are φθw = π/6 and ζn
w =

[ 1/
√

3, 1/
√

3, 1/
√

3 ]>, respectively. The concentrations are
κθw = κn

w = 100. The uncertain translation input is state-
dependent with tw,k = (1 − xk,0) t̃k, where xk,0 is the
first element of state xk. The external input t̃k is Gaussian-
distributed, i.e., t̃k ∼ N (µt̃

w,Σ
t̃
w) with µt̃

w = [ 10, 10, 10 ]>

and Σt̃
w = 0.1 · I3×3. The measurement model is

zk =
(
xk � [ 1, 0, 0, 0, 0, z0 ]> � x�k

)
6:8

+ vk , (6)

with zk denoting the coordinates of a point transformed by
state xk from its initial coordinates z0 = [ 1, 2, 1 ]> ∈ R3.

As a comparison, a standard dual quaternion particle filter
(DQPF) is implemented with the transition density being the
proposal distribution in (5). Also, the parametric approach for
modeling uncertain dual quaternions from [8] is employed,
in which the real part is assumed to be Bingham-distributed
and the translation to be Gaussian-distributed. We further
enhance this Bingham–Gaussian dual quaternion filter (BG-
DQF) with the deterministic sampling approaches from [25]
and [28]. Compared with the standard unscented transform-
based scheme, they enable deterministic sampling with user-
configurable numbers of quaternion and translation samples,
further facilitating nonlinear filterings. For the proposed U-
DQPF, 50 particles are deployed, whereas the DQPF uses
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Figure 3: Comparison of the unscented dual quaternion particle filter with existing dual quaternion filters (using boxplot in
MATLAB). The whiskers are limited to 2.7 standard deviations from the median. The lack of a box indicates a total tracking
failure. The U-DQPF gives superior accuracy, efficiency and robustness under different measurement noise levels.

2000 particles, and the BG-DQF relies on 1000 deterministic
samples. We perform the evaluation under different noise
levels for the measurement model in (6), where Σt

v = α I3×3,
with α ∈ {1, 0.5, 0.05}. Moreover, for all the three noise
levels, 100 Monte Carlo runs are performed with 20 time
steps each. We compute the rotation error as the quaternion
arc length (considering symmetry) on S3 and the translation
error as the Euclidean distance in R3.

The parametric model-based BG-DQF fails to perform the
tracking task for all three noise levels due to the highly
nonlinear system dynamics and violation of the parametric
assumption of Bingham–Gaussian uncertainty (see Fig. 3). The
conventional PF suffers from sample degeneration issues as it
neglects the latest observed evidence under the high nonlin-
earity (failure rate denoted by λDQPF). Also, the PF shows
deteriorated tracking accuracy when the likelihood function
becomes peakier (i.e., for lower measurement noise levels).
In the case of the low measurement noise level (e.g., obtained
from highly accurate sensors) with α = 0.05, the DQPF totally
loses tracking. In contrast, the proposed U-DQPF shows no

failure and achieves a higher tracking accuracy and efficiency
than the other filters for all three noise levels.

There are a few outliers in the runtime plots with the
proposed filter. This mainly results from the variable conver-
gence speed when averaging the quaternion samples using the
intrinsic gradient descent algorithm from [27]. Furthermore,
the estimates shown in the plot are computed based on
separately averaged quaternion and translation components.
Averaging approaches on manifolds are still actively studied.
Thus, the U-DQPF can be further improved by introducing a
unified averaging approach that is adaptive to the unit dual
quaternion manifold.

VI. CONCLUSION

We propose a conceptual framework for recursive estimation
of rigid body motions, namely, the unscented dual quaternion
particle filter (U-DQPF). Dual quaternion particles enable
exact modeling of arbitrary distributions on SE(3) group. A
novel UKF-like filtering scheme is established adaptive to the
manifold structure and performed particle-wise to estimate



the proposal distribution. Thus, the latest observed evidence
is fused for importance sampling, resulting in considerable
improvement over existing dual quaternion filters using para-
metric modeling as well as a plain Monte Carlo scheme. In
practical applications in which inertial sensors are available,
extra motion information, e.g., velocities, can be integrated
into the locally augmented tangent space. The proposed frame-
work can then be extended for joint estimation of enlarged
state vectors to handle highly dynamic tracking tasks. Also, the
proposed U-DQPF should be deployed to various real-world
scenarios to validate its superior performance [8], [14].

APPENDIX

A. Augmented Gnomonic Projection on DH1

When mapping any dual quaternion x = [ x>r ,x
>
s ]> ∈

DH1 to the LATS at ν = [ν>r ,ν
>
s ]> ∈ DH1 via augmented

gnomonic projection, the mapped dual part is essentially the
subtracted translation term. As in [16], it can be derived as

∆ = [ ∆>r ,∆
>
s ]> := ν−1 � x =

[
ν−1r ⊗ xr

ν−1r ⊗ xs + ν∗s ⊗ xr

]
,

from which the translation can be derived via (4) as[
0, t>∆

]>
= 2 (ν−1r ⊗ xs + ν∗s ⊗ xr)⊗ (ν−1r ⊗ xr)

−1

= 2 (ν−1r ⊗ xs + ν∗s ⊗ xr)⊗ x−1r ⊗ νr

= 2ν−1r ⊗ xs ⊗ x−1r ⊗ νr + 2ν∗s ⊗ νr

= ν−1r ⊗ [ 0, t>x ]> ⊗ νr + ν∗r ⊗ [ 0,−t>ν ]> ⊗ νr

= ν−1r ⊗ [ 0, t>x − t>ν ]> ⊗ νr .

Therefore, we obtain t∆ = Rν−1
r

(tx − tν) = R>νr
(tx − tν).
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