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Abstract— State estimation via public channels requires
additional planning with regards to state privacy and infor-
mation leakage of involved parties. In some scenarios, it
is desirable to allow partial leakage of state information,
thus distinguishing between privileged and unprivileged
estimators and their capabilities. Existing methods that
make this distinction typically result in reduced estimation
quality, require additional communication channels, or lack
a formal cryptographic backing. We introduce a method to
decrease estimation quality at an unprivileged estimator
using a stream of pseudorandom Gaussian samples while
leaving privileged estimation unaffected and requiring no
additional transmission beyond an initial key exchange.
First, a cryptographic definition of privileged estimation is
given, capturing the difference between privileges, before a
privileged estimation scheme meeting the security notion is
presented. Achieving cryptographically privileged estima-
tion without additional channel requirements allows quan-
tifiable estimation to be made available to the public while
keeping the best estimation private to trusted privileged
parties and can find uses in a variety of service-providing
and privacy-preserving scenarios.

Index Terms— Encrypted State Estimation, Kalman Fil-
tering, Stream Ciphers

I. INTRODUCTION

THE role of state estimation and sensor data processing
has become increasingly prevalent in modern systems

[1]. Particularly, since the development of Kalman estimation
theory, Bayesian state estimation has found common applica-
tion, varying from autonomous systems to remote estimation
[2], [3]. As advancements in distributed algorithms and cloud
computing develop, the use of wireless and public communi-
cation channels for data transmission has become widespread,
bringing to light the requirements of data privacy and state
secrecy [4], [5].

Typically, use cases for cryptographically guaranteeing data
privacy over public channels involve hiding all transferred
information such that eavesdroppers or untrusted parties learn
no additional information from any observed data. This is
achievable using common encryption schemes such as AES
[6] or RSA [7], which formally capture this requirement
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by satisfying cryptographic ciphertext indistinguishability [8,
Ch. 3]. However, more advanced requirements using pub-
lic channels also exist. When partial information needs to
be made public, or computations need to be performed on
data, homomorphic or aggregation encryption schemes can be
used. In control theory, [9] uses an aggregation scheme to
combine distributed control inputs without learning individual
contributions, while [10], [11] use homomorphic encryption
to allow control inputs to be computed without decryption. In
estimation, [12] proposes navigation where individual sensor
information and measurements remain private, while [13] fuses
encrypted estimates using only their error covariance ratios.
Within the context of estimation, a quantifiable difference in
estimation performance between untrusted and trusted parties
can also provide levels of estimation privilege. This was
achieved in the original Global Positioning System (GPS)
[14], which relied on an additional encrypted channel for
more accurate estimation. In another approach, [15], [16],
additive noise is used to increase eavesdropper estimation error
by using a synchronized chaotic system and at the physical
layer, respectively. These methods provide a solution to the
privileged estimation problem but have not had their security
guarantees cryptographically proven, and in [16], an extension
to multiple estimation privileges would require additional
hardware. Our contribution in this work considers this context
of privileged and unprivileged estimation and is comprised
of a novel formal definition of privileged state estimation,
crucial for cryptographic security, before proposing a scheme
that provides one or more privileged levels of estimation
without reliance on additional secure channels. We accompany
the method with a cryptographic proof sketch and simulation
results.

In section II, we introduce the cryptographic formalization
for privileged estimation followed by the relevant estimation
problem. Section III introduces our proposed privileged es-
timation scheme and in section IV, a cryptographic proof
sketch is given. A simulation of the method is then explained
and demonstrated in section V, while concluding remarks and
future work are discussed in section VI.

A. Notation

Lowercase underlined characters a are vectors and upper-
case bold characters M are matrices. M � 0 and M � 0
denote positive definitiveness and semi-definitiveness, respec-
tively, and M � N is short for M − N � 0. I and 0



are the identity and zero matrices, respectively, with sizes
inferrable from context and the function eig(M) gives the
set of eigenvalues for matrix M. Cov[·] computes the covari-
ance of a random vector, ∼ denotes distribution, ∼̇ denotes
pseudorandom distribution, and A(i) denotes the output of an
arbitrary algorithm A given inputs i.

II. PROBLEM STATEMENT

In this work, we consider the estimation scenario where
system and measurement models are known and stochastic,
and state estimators are either privileged, when holding a
secret key, or unprivileged, without. Our goal is to develop
a scheme that quantifies and cryptographically guarantees the
difference between their estimation errors when models are
Gaussian and linear.

To capture the aim of creating a privileged and unprivileged
estimator, we must first define how to assess estimation
advantage between them, and which algorithms are required to
characterize a privileged estimation scheme. In this section, we
give the relevant formal definitions for security, followed by
the system and measurement models considered in this work.

A. Formal Cryptographic Problem

While we later introduce assumptions on the system and
measurement models, it is more practical to define a broader
security notion that can be satisfied under arbitrary specified
conditions on the models. This allows the use of the security
notion in future literature and is more in line with typical
cryptographic practice. Afterward, we will show that our
proposed scheme meets this security notion under the specific
Gaussian and linear model assumptions.

Typical formal cryptographic security notions are given in
terms of probabilistic polynomial-time (PPT) attackers and
capture desired privacy properties as well as attacker capabil-
ities [8, Ch. 3]. The most commonly desired privacy property,
cryptographic indistinguishability, is not suitable for our esti-
mation scenario due to our desire for unprivileged estimators
to gain some information from measurements. Instead, we will
define security in terms of a time series of covariances, given
arbitrary known models, such that the difference in estimation
error between estimators with and without the secret key is
bounded by the series at all times.

To formalize this, we introduce the following notations and
definitions. We assume the existence of an arbitrary process
(not necessarily Gaussian or linear) following a known system
model exactly, with the state at time step k denoted by
xk ∈ Rn and model parameters MS . Similarly, we assume
the existence of a means of process measurement following a
known measurement model exactly, with the measurement at
time step k denoted by y

k
∈ Rm and model parametersMM .

We can now define a relevant scheme.
Definition 2.1: A privileged estimation scheme is a pair of

probabilistic algorithms (Setup,Noise), given by
Setup(MS ,MM , κ) On the input of models MS and MM ,

and the security parameter κ, public parameters pub and
a secret key sk are created.

Noise(pub, sk, k,MS ,MM , y1, . . . , yk) On input of public
parameters pub, secret key sk, time step k, models
MS and MM , and measurements y

1
, . . . , y

k
, a noisy

measurement y′
k

(with no required model constraints) is
created.

In addition to the scheme above, we also give the following
definitions to help formalize our desired security notion.

Definition 2.2: An estimator is any probabilistic algorithm
that produces a guess of the state xk for a given time step k.

Definition 2.3: A negligible covariance function,

neglCovm(κ) : N→ Rm×m , (1)

is a function that returns a matrix A such that A is a valid
covariance (A � 0 and A = A>) and for each of its
eigenvalues e ∈ eig(A), there exists a negligible function [8,
Def. 3.4] η such that e ≤ η(κ).

We can now introduce the security notion that captures the
formal requirements of the problem we want to solve.

Definition 2.4: A privileged estimation scheme meets no-
tion {D1,D2, . . . }-Covariance Privilege for ModelsMS and
MM if for any PPT estimator A, there exists a PPT estimator
A′, such that

Cov
[
A
(
k, κ, pub,MS ,MM , y

′
1
, . . . , y′

k

)
− xk

]
− Cov

[
A′
(
k, κ, pub,MS ,MM , y1, . . . , yk

)
− xk

]
� Dk + neglCovm(κ)

(2)

for valid covariances Dk and some negligible covariance
function for all k > 0. Here, estimators A and A′ are running
in polynomial-time with respect to the security parameter κ,
and all probabilities are taken over randomness introduced in
models MS and MM , estimators A and A′, and algorithms
Setup and Noise.

Informally, the above definition states that no estimator that
can only access noisy measurements y′

1
, . . . , y′

k
can estimate

a state xk for a time step k with a mean square error (MSE)
covariance less than an equivalent estimator with access to true
measurements y

1
, . . . , y

k
, by a margin of at least Dk. We also

note that by taking probabilities over randomness introduced
in the system model, and therefore the possible true states xk,
the definition fits a Bayesian interpretation of probability for
any stochastic system model.

B. Estimation Problem
With the relevant security definitions above, we now give

the specific estimation models required for our scheme. The
system model we consider gives the state xk ∈ Rn at an
integer time step k and is given by

xk = Fkxk−1 + wk , (3)

with white noise term wk ∼ N (0,Qk) and a known non-zero
covariance Qk ∈ Rn×n. Similarly, the measurement model
gives the measurement y

k
at a time step k and is given by

y
k
= Hkxk + vk , (4)

with white noise term vk ∼ N (0,Rk) and a known non-zero
covariance Rk ∈ Rm×m.



Next, we propose a privileged estimation scheme meeting
definition 2.4 for a derivable series of covariances when
modelsMS andMM are of the form (3) and (4), respectively.

III. PRIVILEGED ESTIMATION

The key idea behind the privileged estimation scheme we
propose is to add pseudorandom noise to existing measurement
noise at the sensor, degrading the state estimation at estimators
that cannot remove it. The added noise is a keystream gener-
ated from a secret key and can be removed from measurements
by any estimator holding the same key.

To allow meeting the cryptographic notion in section II-A,
we focus on Gaussian and linear models, where the minimum
achievable error covariance is easily computable, and add a
keystream of pseudorandom Gaussian noise. The keystream
and added noise are given next.

A. Gaussian Keystream
To generate pseudorandom Gaussian samples, we choose to

rely on first generating a typical cryptographic pseudorandom
bitstream given a secret key sk. This can be done with any
cryptographic stream cipher and will reduce the security of our
scheme to a single, well-studied, and replaceable component.
We interpret the bitstream as sequential pseudorandom integers
qt ∈ N, of a suitable size, for integer indices t > 0 and use
them to generate a sequence of pseudorandom uniform real
numbers ut ∼̇ U(0, 1).

The conversion of qt to ut is cryptographically non-trivial
due to the floating-point representation of ut. Since it cannot
be truly representative of the distribution U(0, 1), the pseudo-
randomness of samples is affected, and meeting the desired
cryptographic notion is complicated. For now, we will assume
that the uniform floating-point numbers (floats) are sufficiently
close to true uniform reals, as is the current industry standard,
and rely on any common method for choosing the bit size
of integers qt and the pseudorandom generation of uniforms
ut, [17]. In section IV, we will state and further discuss this
assumption.

Given the sufficiently uniform pseudorandom floats ut, we
are left with generating a series of pseudorandom standard
normal Gaussian samples, which can be readily computed
using the Box-Muller transform [18], by

zt =
√
−2 ln(ut) cos(2πut+1) (5)

and
zt+1 =

√
−2 ln(ut) sin(2πut+1) , (6)

obtaining two, independent, standard normal Gaussian samples
from two uniform ones. This Gaussian keystream can then
be used by a privileged estimation scheme to add arbitrary
pseudorandom multivariate Gaussian noises.

B. Additional Gaussian Noise
To use the series of pseudorandom Gaussian samples zt,

t > 0, at the sensor and privileged estimator, they need to
be converted to n-dimension zero-mean multivariate Gaussian
samples suitable for use in the measurement model (4), at

every time step k. As we want control over the difference in
estimation error between privileged and unprivileged estima-
tors, we do so by including the symmetric matrix parameter
Z � 0, in a way that added pseudorandom noise p

k
at

time step k is such that p
k
∼̇ N (0,Z). Given Z, p

k
is

computed using the next n Gaussian keystream samples, that
is (k − 1)n+ 1 ≤ t ≤ kn, as

p
k
= A ·

[
z(k−1)n+1 . . . zkn

]>
, (7)

for any matrix A such that AA> = Z. We also note that for
the correct removal of noise terms p

k
by the privileged esti-

mator, index information k is required when communication
channels are lossy or have some delay. While estimation over
the internet may use the indexing information already present
in TCP/IP, for the remainder of the work we consider the case
when all measurements arrive, in order, and neglect additional
index information for the sake of simplicity.

Before estimation, we assume that the secret key sk, re-
quired for generating the Gaussian keystream in section III-A,
has been shared between the sensor and privileged estimator.
During estimation, the sensor modifies measurements y

k
by

y′
k
= y

k
+ p

k
, (8)

resulting in a new measurement model

y′
k
= Hkxk + vk + p

k
, (9)

with vk ∼ N (0,Rk) and p
k
∼̇ N (0,Z). There are now two

estimation problems present for the privileged and unprivi-
leged estimator, respectively.
Privileged estimation The estimator that holds the secret key

sk can compute the Gaussian key stream zt, t > 0, and
therefore the added noise vectors p

k
at every time step k.

Computing y
k
= y′

k
− p

k
given the noisy measurements

results in the original measurements following measure-
ment model (4) exactly.

Unprivileged estimation In the case where pseudorandom-
ness is indistinguishable from randomness, as is the
case at an unprivileged estimator when using a crypto-
graphically secure keystream and sk is not known, noisy
measurements are indistinguishable from those following
the unprivileged measurement model

y′
k
= Hkxk + v′k , (10)

with v′k ∼ N (0,Rk + Z), exactly.
Intuitively, we can see that the two estimators will have

their difference in estimation error dependent on matrix Z.
In the security section, we will show that the best possible
error covariances achievable by the privileged and unprivileged
estimators can be computed exactly for both measurement
models and that the difference between them will give the
series Dk, k > 0, required for the security notion in definition
2.4.

C. Multiple Privileges
In the above scenario, we have considered a single es-

timation privilege with one private key, dividing estimation



error covariance into two groups. As a direct extension, it
may be desirable to define multiple levels of privilege, such
that the best estimation performance depends on the privilege
level of an estimator. Here we will briefly put forward one
such example, where a single secret key corresponds to each
privilege level and noise is added similarly to (8) for each key
individually.

We now have N secret keys ski and covariances for the
added noises Zi, 1 ≤ i ≤ N . Sensor measurements are
modified by

y′′
k
= y

k
+ p(1)

k
+ · · ·+ p(N)

k
, (11)

with p(i)k ∼̇ N (0,Zi), 1 ≤ i ≤ N . From (11), we see that ob-
taining any single key ski leads to a measurement model where
only a single pseudorandom Gaussian sample, of covariance
Zi, is removed, resulting in measurements indistinguishable
from those following the unprivileged measurement model

y(i)
k

= Hkxk + v
(i)
k , (12)

where v(i)k ∼ N (0,Rk +Ei), with

Ei =

N∑
j=1,j 6=i

Zj . (13)

As values Ei directly correspond to the relative estimation
performances of each privilege level, we are also interested
in the numerical restrictions when choosing these matrices.
For the models to be valid for any measurement covariance
Rk, it is clear that Ei � 0 and Ei = E>i must hold for
all 1 ≤ i ≤ N , but due to the dependence of Zi, there is
an additional restriction required to ensure all values of Zi

remain valid covariances as well. From (13) we can write
0 I I · · · I
I 0 I · · · I
...

. . . . . . . . .
...

I · · · I 0 I
I · · · I I 0




Z1

Z2

...
ZN−1
ZN

 =


E1

E2

...
EN−1
EN

 , (14)

which, when rearranged and the conditions Zi � 0 are taken
into account, gives the additional requirement

Ei ≺
1

N − 1

N∑
j=1

Ej (15)

for all 1 ≤ i ≤ N .
From (15) we can see that privilege levels are significantly

restricted in relative estimation performance. We have demon-
strated this method due to its simplicity and relation to the
single level scheme, however, alternative methods involving
multiple or overlapping keys may allow weaker restrictions
and will be considered in future work.

IV. SCHEME SECURITY

The security of the proposed scheme will be primarily
considered in the single level privileged estimation case as
introduced in section III-B and a proof sketch will be provided
to show how the proposed scheme meets the cryptographic

notion in definition 2.4. The extension to multiple privilege
levels as described in section III-C will be informally discussed
afterward.

A. Single Privileged Case

Recalling definition 2.4, we aim to show how the notion is
met by our single privilege level estimation scheme. Before
the proof sketch, we look at our scheme in the context of a
formal privileged estimation scheme with model constraints
and give some relevant optimality properties.

We consider the stochastic system model (3) and mea-
surement model (4) exactly, that is, any linear models with
known covariance, zero-mean, Gaussian additive noises. We
define these as our model conditions and capture all relevant
parameters from the respective equations in MS and MM .
Our scheme fulfills the two required algorithms for a privileged
estimation scheme, Setup and Noise, as follows.
Setup Initialize a cryptographically indistinguishable stream

cipher with the parameter κ, set the secret key sk to the
stream cipher key and include an initial filter estimate x̂0,
error covariance P0 and added noise covariance Z in the
public parameters pub.

Noise Computed by (8), returning y′
k

as the noisy measure-
ment at time step k, with added pseudorandom Gaussian
noise computed from the stream cipher using sk.

Additionally, we note that in the above Setup algorithm, the
inclusion of the initial state and added noise covariance are
not a requirement for the security of the scheme, but merely
make relevant estimation parameters public for completeness.

The idea behind our security proof relies on the optimality
of the linear Kalman Filter (KF) [19]. Given an initial estimate
and its error covariance, the KF produces posterior estimates
with the minimum mean square error (MSE) achievable for
any estimator when all measurements y

1
, . . . , y

k
are observed,

models are Gaussian and linear, and the same initialization is
used. Since the KF also preserves initial error covariance order,

Pk � P′k =⇒ Pk+1 � P′k+1 , (16)

we can define an error covariance lower-bound P
(l)
k for all

possible initialisations by setting P
(l)
0 = 0 and computing the

posterior KF error covariance using the combined predict and
update equations

P
(l)
k =

(
I− (FkP

(l)
k−1F

>
k +Qk)H

>
k ·(

Hk(FkP
(l)
k−1F

>
k +Qk)H

>
k +Rk

)−1
Hk

)
·(

FkP
(l)
k−1F

>
k +Qk

)
.

(17)

This gives us a lower-bound at every time step k, such that

P
(l)
k � Cov

[
A
(
k,MS ,MM , y1, . . . , yk

)
− xk

]
(18)

for any estimator A following definition 2.2 and any Gaussian
and linear modelsMS andMM . This leads us to the security
proof sketch.

Theorem 4.1: Our single privilege estimation scheme in
section III-B meets {D1,D2, . . . }-Covariance Privilege for



Models MS and MM , for a computable series Dk, k > 0
dependent on a noise parameter Z, when MS and MM are
Gaussian and linear.

Proof Sketch: Since a cryptographically pseudorandom
stream cipher is used in section III-A, the stream integers qt,
and therefore the uniform samples ut and normal Gaussian
samples zt, are indistinguishable to those generated from a
truly random stream for any PPT estimator without the secret
key. We persist with the previous assumption that floating-
point representations of zt are sufficiently close to Gaussian
and assume the KF to provide optimal estimation when using
floats, as is standard in the state-of-the-art. Using the Setup
and Noise algorithms for our scheme now leads to pseu-
dorandom noisy measurements y′

k
that are indistinguishable

from measurements following the unprivileged measurement
model (10). We can now compute a lower-bound P

′(l)
k for any

unprivileged estimator as P
′(l)
0 = 0 and

P
′(l)
k =

(
I− (FkP

′(l)
k−1F

>
k +Qk)H

>
k ·(

Hk(FkP
′(l)
k−1F

>
k +Qk)H

>
k +Rk + Z

)−1
Hk

)
·(

FkP
′(l)
k−1F

>
k +Qk

)
.

(19)

Taking the difference of (19) and (17) produces the series

Dk = P
′(l)
k −P

(l)
k , (20)

for k > 0, which can be tuned by the parameter Z. Since both
series P

(l)
k and P

′(l)
k give the lowest possible error covariance

of the respective estimators, an estimator knowing model (4)
can always be created for one knowing only model (10) such
that their error covariances at any time step k differ by at
least Dk. A reduction proof can be easily constructed, where
the existence of an unprivileged estimator in our scheme,
that can produce estimates such that (2) does not hold, can
be used to construct an estimator with an error covariance
lower than P

′(l)
k given a known model of the form (10).

As no such estimator exists, we conclude that our scheme
meets {D1,D2, . . . }-Covariance Privilege for Models MS

and MM , when MS and MM are Gaussian and linear. This
concludes our proof sketch.

In addition to the proof sketch, we stress caution when ac-
cepting a cryptographic guarantee in terms of modelsMS and
MM when used to estimate a measured physical process or
approximate continuous quantities. The following assumptions
are made in this scenario.
Exact models When assigning a model to a physical process,

any cryptographic guarantees concerning the model as-
sume the process follows the model exactly. It is often
the case that models assume a Bayesian interpretation of
probability (a stochastic state) or are chosen to simplify
estimation, resulting in the possibility of better estimation
given alternative or more complicated models. Although
the standard for state estimation, we state the assumption
to highlight the distinction between models and a physical
process.

Floating-point approximation As stated in section III-A and
the proof sketch above, floating-point approximations to

real numbers complicate cryptographic guarantees when
relying on proofs using real numbers such as KF op-
timality. While optimal estimation with floats is beyond
the scope of this work, the prevalence of floats in decades
of state estimation justifies the assumption of sufficient
similarity and the insignificance of associated error intro-
duced to the security notion.

B. Multiple Additional Noises
We have not defined a security notion for multiple levels of

privileged estimation from section III-C, but an intuitive and
informal extension is briefly described here.

A suitable notion would require that for any subset of
corrupted estimators, and thus estimators with any subset
of secret keys S ⊆ {ski, 1 ≤ i ≤ N}, who are given
noisy measurements y′′

k
, an estimator given true measurements

y
k

can be constructed such that the difference between the
corrupted subset’s error covariance and its own is at least D(S)

k

at time step k. Although this definition requires a series D
(S)
k

for every possible subset of keys, S, complicating its formal
specification, it captures the exact advantage of every such
subset producing a general definition.

Given the structure of our scheme in section III-C, it can
be readily seen how the above notion would be met. Similarly
to the single level case, the KF can be used to compute the
minimum error covariances for all compromised key subsets
as well as for an estimator with the true measurements, and
the relevant difference series D

(S)
k can be defined.

V. SIMULATION AND RESULTS

As well as showing the theoretical security of our scheme,
we have simulated the stochastic estimation problem using
linear Kalman filter estimators for the different measurement
models. Simulations have been implemented in the Python
language and use the AES block cipher in CTR mode as a
cryptographically secure stream cipher (AES-CTR) [6].

We consider two simulations, both following the same two-
dimensional time-invariant constant velocity system model,
given by

Fk=


1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

 , Qk=
1

103
·


0.4 1.3 0 0
1.3 5.0 0 0
0 0 0.4 1.3
0 0 1.3 5.0

,
for all k, with differing measurement models. In all cases,
estimators were initialized with the same initial conditions,
equal to the true starting condition of the system they were
estimating, with initial error covariance 0.

The first measurement model measures location and leads
to an observable system with bounded error covariances as
k → ∞. It is given by Hk = [ 1 0 0 0

0 0 1 0 ] and Rk = [ 5 2
2 5 ], for

all k, and the sensor adds pseudorandom Gaussian samples
with covariance Z = 35 · I to create an estimator privilege
level. Figure 1 shows the average error covariance traces
and the mean square error (MSE) of estimation from 1000
runs of our privileged estimation scheme, where the above
models are followed. It can be seen that the trace of the



privileged estimator’s error covariance stays lower than that of
the unprivileged one and that privileged estimation has lower
MSE. The difference in trace between the two estimators has
also been plotted and is equal to the trace of the series (20)
for all time steps k due to the chosen initial error covariance.

Simulation Time
0

5

T
ra

ce

Error Covariance Traces

Simulation Time
0

5
M

S
E

Errors

Priv. Unpriv. Diff.

Fig. 1. Privileged estimation with bounded error covariance.

The second simulation considers an unobservable system
where only the velocity is measured and has an unbounded
error covariance as k →∞. It is given by Hk = [ 0 1 0 0

0 0 0 1 ], for
all k, and uses the same values for Rk and Z as the previous
model. Figure 2 shows the average error covariance traces
and MSE of estimation from 1000 runs using this model and
captures how error covariance boundedness does not affect the
privileged estimation scheme’s properties.

Simulation Time
0
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T
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Error Covariance Traces

Simulation Time
0
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E

Errors

Priv. Unpriv. Diff.

Fig. 2. Privileged estimation with unbounded error covariance.

Lastly, a simulation of multiple privilege levels was also
performed using the bounded error covariance measurement
model and using pseudorandom Gaussian samples such that
E1 = 20 · I, E2 = 14 · I, and E3 = 17 · I for estimators
holding the single keys sk1, sk2 and sk3, respectively. Note
that the three matrices Ei, 1 ≤ i ≤ 3 satisfy (15). Figure 3
again shows the average traces and MSE of estimation from
1000 runs and displays the distinct difference in estimation
error of the different privilege levels. Additionally, two special
cases that bound all estimators are included, one holding all
privilege level keys and another holding none.

Simulation Time
0

5

T
ra
ce

Error Covariance Traces

Simulation Time
0

5

M
S
E

Errors

All Keys

No Keys

sk1
sk2

sk3

Fig. 3. Estimation with multiple privilege levels.

All of the included figures capture the difference in es-
timation error between the best possible estimators given

the simulated processes (in terms of MSE) and support the
proposed security proof sketch given in section IV.

VI. CONCLUSION

In this work, we have presented the idea of a privileged
estimation scheme and given a formal cryptographic definition
for its security. A concrete scheme was provided that meets
this notion and an intuitive extension to multiple privilege
levels was discussed. A simulation demonstrating a simple
use case has been presented, while the benefits of controlling
estimation accuracy on a per-party basis have wide application
from privatized localization hardware to subscription-based
data access. Future work on the topic includes achieving
formal security for broader model requirements and testing our
scheme on dedicated hardware to demonstrate the method’s
real-time capability.
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