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Abstract—Fast covariance intersection is a widespread tech-
nique for state estimate fusion in sensor networks when cross-
correlations are not known and fast computations are desired.
The common requirement of sending estimates from one party
to another during fusion forfeits local privacy. Current secure
fusion algorithms rely on encryption schemes that do not provide
sufficient flexibility. As a result, excess communication between
estimate producers is required, which is often undesirable. We
propose a novel method of homomorphically computing the fast
covariance intersection algorithm on estimates encrypted with
a combination of encryption schemes. Using order revealing
encryption, we show how an approximate solution to the fast
covariance intersection weights can be computed and combined
with partially homomorphic encryptions of estimates, to calculate
an encryption of the fused result. The described approach allows
secure fusion of any number of private estimates, making third-
party cloud processing a viable option when working with
sensitive state estimates or when performing estimation over
untrusted networks.

Index Terms—Sensor fusion, Secure estimation, Homomorphic
encryption, Covariance intersection

I. INTRODUCTION

SENSOR data processing and state estimation have been
increasingly prevalent in networked systems [1]. Bayesian

state estimation has become a particularly common application
since the beginning of Kalman estimation theory and has led
to a large interest in the field of state estimation fusion [2]–[4].
Challenges of estimation fusion are closely tied to the handling
and merging of estimation error statistics [5]. Cross-correlations
between estimation errors characterize dependencies between
local estimates and must be considered when performing
consistent or optimal fusion [6], [7]. Methods that keep track
of these cross-correlations may require repeated reconstruction
[8] and typically add local computational complexity. An
alternative strategy sees the approximation of error cross-
correlation based on conservative suboptimal strategies, and has
been implemented in a variety of methods [9]–[11]. Covariance
Intersection (CI) [9] provides one such popular strategy, from
which a less computationally expensive method, the Fast
Covariance Intersection (FCI) [11] has been derived. CI is
particularly well paired with the information form of the
Kalman filter [12], [13]. This algebraically equivalent form
of the standard Kalman filter requires the persistent storing
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of the information vector and information matrix instead of
the usual state estimate and estimate covariance, and reduces
fusion operations to simple summations.

As advancements in distributed algorithms and cloud com-
puting develop, the requirements for privacy and security in
such systems have become more apparent [14], [15]. This is
particularly pertinent for sensor networks, where the desire for
sensitive hardware information or estimation methodology to
remain private may require the privacy of local measurements
and estimates as well, and is a non-trivial problem in networks
containing eavesdroppers or untrusted parties. Encryption
has until recently been primarily used to secure information
transfer between communicating parties, relying on symmetric-
key encryption schemes such as AES [16] to encrypt sent
information, and public-key schemes such as RSA [17] to
distribute symmetric keys. However, recent developments
in public-key Homomorphic Encryption (HE) schemes [18]–
[21], which allow algebraic operations to be performed on
encryptions, are leading to novel secure applications for signal
processing in distributed and cloud computing environments
[22]–[27]. Fully Homomorphic Encryption (FHE) schemes
[18], [19] allow algebraic operations to be performed on
encryptions, and are often theoretically suitable for secure
processing in distributed environments, but current implemen-
tations are still computationally infeasible for large-scale or
real-time processing [28]. Partially Homomorphic Encryption
(PHE) schemes [20], [21], providing only a subset of these
operations, have been a focus for such tasks due to their
reduced computational requirements. [23] use PHE to run a
private distributed Information Filter, [24], [25] to compute
private distributed control aggregation, [26] for private matrix
multiplication, and [27] for private set intersection, however
these works are relatively restricted in application due to the
limited operations provided by PHE. Recent developments in
new encryption schemes, such as Order Revealing Encryption
(ORE) [29]–[31], are now providing new light on the possible
complexity of securely computable algorithms. In this paper, we
develop a method for secure FCI fusion, such that local sensor
information is kept private, using a combination of ORE and
PHE schemes only, which has to the best of our knowledge
not been achieved without the reliance on computationally
expensive FHE schemes.

A. Problem Formulation
Our paper is motivated by a key step in multi-sensor fusion,

the requirement of transmitting local sensor state estimates and



covariance information over a network for the computation of
their fused result. In particular, we consider centralized FCI
fusion, where a party responsible for many networked sensors
capable of computing their local state estimates, wishes to have
their fused state estimate and covariance computed securely
on an untrusted cloud. The same party may query the cloud
fusion center for the fused result at any time. To preserve the
privacy of local sensor measurements and state estimates, we
aim to provide a secure FCI algorithm such that the fusion
center does not learn individual sensor measurements, state
estimates, or covariances. This will be achieved by encrypted
homomorphic fusion, whereby the untrusted cloud learns only
the FCI aggregation weights, which will be shown in section
IV.

As we assume the querying party is the owner of all
individual sensors, the threat model to be considered is that of
network eavesdroppers and a malicious fusion center, with no
possible collusion between sensors and the fusion center.

B. Notation
Throughout this paper we will use the following notation.

Lowercase characters represent scalars, and underlined charac-
ters, x, represent vectors. Uppercase bold characters, M, are
for matrices, where M−1 denotes the matrix inverse, and tr(·)
the trace function. Covariance matrices will be represented by
P. Epk(a) and EORE,k(a) denote the encryption of a using the
public-key pk and ORE key k, respectively, and similarly with
the decryption functions Dsk(·) and DORE,k(·) with secret key
sk, where any required real-number encodings of the number
a are assumed to be performed. E(a) and EORE(a) may be
used for brevity when the encryption keys can be inferred from
context. All encryption of vectors and matrices are defined
element-wise, with elements given by E(Pi,j) = E(P)i,j . Sets
are represented as {·} and ordered lists with [·].

II. COVARIANCE INTERSECTION AND APPROXIMATIONS

Covariance Intersection (CI), introduced in [9], provides
a consistent state estimate fusion algorithm when cross-
correlations are not known. The resulting fused estimate x̂
and covariance P can be easily derived from its equations

P−1 =

n∑
i=1

ωiP
−1
i , P−1x̂ =

n∑
i=1

ωiP
−1
i x̂i . (1)

Note that (1) computes the fusion of the information vectors
and information matrices defined in [11] and reduces the fusion
to a weighted sum. Values for weights ωi must satisfy

ω1 + ω2 + · · ·+ ωn = 1, 0 ≤ ωi ≤ 1 , (2)
which guarantees consistency of the fused estimates. They are
chosen in a way to speed up convergence and minimize error
by minimizing a certain specified property of the resulting
fused estimate covariance. One such property, the covariance
trace, requires the solution to

argmin
ω1,...,ωn

{tr(P)}=argmin
ω1,...,ωn

tr

( n∑
i=1

ωiP
−1
i

)−1
 (3)

for computing weights ωi. However, minimizing this non-linear
cost function can be very computationally costly and has led
to the development of faster approximation techniques.

A. Fast Covariance intersection
The Fast Covariance Intersection (FCI) algorithm from [11]

is a non-iterative method for approximating the solution to (3)
without the loss of guaranteed consistency. It is computed by
defining a new constraint

ωi tr(Pi)− ωj tr(Pj) = 0, i, j = 1, 2, . . . , n (4)

on ωi and solving the resulting equations instead. In the two
sensor case, this results in the solving of

ω1 tr(P1)− ω2 tr(P2) = 0, ω1 + ω2 = 1 . (5)

When computed for n sensors, the highly redundant (4) can
have its largest linearly independent subset represented by

ωi tr(Pi)− ωi+1 tr(Pi+1) = 0, i = 1, 2, . . . , n− 1 , (6)

and requires the solution to the linear problem
P1 −P2 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 Pn−1 −Pn

1 · · · 1 1 1



ω1

...
ωn−1

ωn

 =


0
...
0
1

 , (7)

where we let Pi = tr(Pi).
Our proposed filter aims to solve FCI fusion, namely (1)

and (7), using only encrypted values from each sensor i, and
leaking only the weight values ω1, . . . , ωn.

III. HOMOMORPHIC AND ORDER REVEALING ENCRYPTION

To achieve a secure solution to the FCI fusion problem,
we make use of two types of function-providing encryption
schemes: the Paillier additive PHE scheme [21] that provides
a single homomorphic addition operation and the Lewi ORE
scheme [30] that provides a secure comparison function.

The formal security of an encryption scheme consists of a se-
curity goal and a formal threat model [32]. Indistinguishability
of ciphertexts under the adaptive chosen ciphertext attack model
(IND-CCA2) is commonly considered the strongest security
guarantee, however no homomorphic encryption scheme pro-
vides security against IND-CCA2 due to their apparent ability
to create valid cyphertexts via homomorphic operations. Instead,
PHE schemes aim to protect against the weaker assumption of
the chosen plaintext attack model (IND-CPA) [33]. Similarly,
ORE schemes aim to protect against simulation-based security
defined in [29] or the harder to achieve ordered chosen-plaintext
attack model (IND-OCPA).

A. Paillier Partially Homomorphic Encryption Scheme
We use the Paillier additive PHE scheme due to its imple-

mentation simplicity, and computational speed. The Paillier
scheme provides two homomorphic operations on encrypted
data, namely

Dsk(Epk(a)Epk(b) (mod N2)) = a+ b (mod N) (8)

and

Dsk(Epk(a)c (mod N2)) = c · a (mod N), c ∈ ZN , (9)

where the modulus N is computed as the product of two
large random primes chosen at key-generation. The public
and secret keys are shown as pk and sk respectively, and
plaintext messages a, b ∈ ZN . The Paillier encryption scheme
successfully provides security against the IND-CPA model.



B. Lewi Left-Right Order Revealing Encryption

For ORE, we use the Lewi symmetric-key Left-Right ORE
scheme as it has the added property of only allowing certain
comparisons between cyphertexts. This property can be used
to decide which values may not be compared, which will be
shown in section IV. It is described as follows: two encryption
functions allow integers to be encrypted as either a “Left” (L)
or “Right” (R) encryption by

encLORE(k, x) = ELORE,k(x) ,

encRORE(k, y) = ERORE,k(y) ,
(10)

and only comparisons between an L and an R encryption are
possible, by

cmpORE(ELORE(x), ERORE(y)) = cmp(x, y) . (11)

Note that no decryption function is provided as only encryptions
are required to provide a secure comparison. The Lewi ORE
encryption scheme provides security against the simulation-
based security model [29] but is not secure against the IND-
OCPA model.

C. Real Number Encoding for Homomorphic Encryption

Both encryption schemes in sections III-A and III-B are
defined over positive integers, and the Paillier scheme bounds
the largest encryptable integer by N −1. Due to the prevalence
of real numbers in estimation theory, integer encoding of
real numbers is an active field of research that accompanies
encrypted processing [24], [34], [35], and a requirement for our
estimate fusion algorithm. While some encoding schemes for
additive homomorphic encryption provide additional operations
such as homomorphic division [34], they typically complicate
the homomorphic operations, and in [34] leak exponent
information of the encrypted real number. We have instead
relied on the simpler encoding in [24].

We consider encoding real numbers representable as rational
fixed-point numbers of b bits, consisting of a single sign bit, i
integer bits, and f fractional bits. Thus, each encodable rational
number is defined by its b = 1+i+f bits. As in [24], encoding
is performed to allow for multiplication, which requires an
operation modulus of b + 2f to avoid the requirement for
comparisons. Conversion of any real number a to an encoded
rational fixed-point number is given by

e = b2fac (mod 2b+2f ) . (12)

Multiplication of such encoded numbers requires a factor of
1/2f to be removed. As shown in [24], cases of encoded
multiplication can be computed exactly when using Paillier
encryption, however, FCI guarantees only one homomorphic
multiplication which we handle when decoding for simplicity.
Decoding is defined by

a =

{
2−2f

(
e (mod 2b+2f )

)
e < 2b+2f−1

2−2f
(
(e (mod 2b+2f ))− 2b+2f

)
e ≥ 2b+2f−1

(13)
and will be correct given only a single encoded multiplication
has occurred.

Since the largest encryptable integer is given by N − 1, the
largest encodable real number must account for this. Thus, the
integer bits i and fractional bits f must be chosen such that

N ≥ 2b+2f

≥ 21+i+3f .
(14)

IV. TWO-SENSOR SECURE FAST COVARIANCE
INTERSECTION

In this section, we will introduce the Secure FCI (SecFCI)
fusion algorithm for the two sensor case, before extending
it to the n sensor case in section V. The network model we
consider is described in section I-A, where sensors are capable
of running local estimators, as well as the PHE and ORE
encryption schemes from section III. Each sensor i computes
its state estimate x̂i and covariance matrix Pi and sends relevant
encrypted information to an untrusted cloud fusion center. The
querying party is the key holding party and generates the
PHE public key pk, secret key sk, and ORE symmetric key
k. pk is made available to all parties in the network, and k is
made available to the sensors only, via any standard public-
key scheme such as RSA [17]. When encrypting with ORE
key k, individual sensors are limited to using only L or R
ORE encryption to reduce local information leakage. Thus,
consecutive ORE encryptions from any sensor cannot be used
to infer local information directly, and can only be compared to
encryptions from sensors using the alternate ORE encryption.

From (1), we can see that both CI fusion equations can be
computed on PHE encryptions of sensor information vectors
and information matrices, given valid unencrypted values for
each ωi. For this reason, we allow the leakage of all weights ωi.
Thus, in the two sensor case, homomorphic fusion is computed
by

E(P−1) = E(P−1
1 )ω1E(P−1

2 )(1−ω1) (15)

and
E(P−1x̂) = E(P−1

1 x̂1)
ω1E(P−1

2 x̂2)
(1−ω1) , (16)

where we note that ω2 = 1 − ω1 due to the CI requirement
(2). We also note that in (15) and (16), each resulting value
will have exactly one encoding multiplication factor to remove,
and can be decoded exactly by using (13).

All that remains for computing CI homomorphically, in the
two sensor case, is the calculation of parameter ω1. For this, we
approximate the solution to FCI. Since our encoding scheme in
section III-C does not allow division, the exact result of (5) is
approximated. This is accomplished by discretizing ωi by step-
size s, such that s < 1 and p = 1/s ∈ Z, and approximating (5)
with ORE. An ordered discretization of values ω(x) is defined
by

[ω(1), . . . , ω(p)] = [0, s, . . . , 1− s, 1] , (17)

and computed by each sensor i. Each ω(x) is multiplied by
tr(Pi) and encrypted with ORE key k. Sensor 1’s list is defined
by

[ELORE(ω
(1) tr(P1)), . . . , ELORE(ω

(p) tr(P1))] , (18)

and similarly sensor 2’s by

[ERORE(ω
(1) tr(P2)), . . . , ERORE(ω

(p) tr(P2))] . (19)
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Fig. 1: Approximation of ω1 with discretization step-size s = 0.1.
Only comparisons between line points are used.

Note that Sensor 1 uses only L ORE while sensor 2 uses only
R ORE, and that both lists are ordered. Lists (18) and (19) are
sent alongside PHE encryptions of local information vector
and information matrix estimates to the fusion center which
uses them to estimate the FCI values of ω1 and ω2.

From (5) we know that ω1 must satisfy

ω1 tr(P1) = (1− ω1) tr(P2) . (20)

If we reverse (19), we obtain a list equivalent to one with
values ERORE((1 − ω(x)) tr(P2)) for each discretization step
x. When the reversed list is decrypted and plotted over
(18) the intersection gives the solution to (20) and therefore,
(5). However, (18) and reversed (19) consist of L and R
ORE encryptions respectively, and the intersection must be
approximated by locating consecutive ω(x) discretizations
where the sign of comparisons changes. This can be seen in Fig.
1, and can be performed in O(log p) ORE comparisons using
a binary search. Consecutive ω(x) and ω(x+1) for which list
comparisons differ can be used to estimate the true intersection,
and ω1, by

ω1 ≈ 0.5(ω(x) + ω(x+1)) . (21)

In the case a comparison returns equality, the exact value of
ω(x) can be taken to be ω1.

The fusion center can then use its values for ω1 and ω2 =
1− ω1 and the received PHE encryptions of local information
vectors and information matrices to compute (15) and (16).

V. MULTI-SENSOR SECURE FAST COVARIANCE
INTERSECTION

When computing the SecFCI fusion for n sensors, we solve
(1) homomorphically by computing

E(P−1) = E(P−1
1 )ω1 · · · E(P−1

n )ωn (22)

and
E(P−1x̂) = E(P−1

1 x̂1)
ω1 · · · E(P−1

n x̂n)
ωn . (23)

As with the two sensor case, encoded results from (22) and
(23) contain exactly one multiplication factor to remove and
can be decoded exactly with (13). Again we are just left with
the task of computing the plaintext weights ω1, . . . , ωn.

Our approach to the n sensor case is to solve each n − 1
conditions in (6) using the two sensor method, and combining
partial solutions to compute the final result. When we consider
a Euclidean dimension for each ωi, partial solutions can be
considered geometrically as hyperplanes of n− 2 dimension,
over the n− 1 dimensional solution space given by (2).

This can be visualized in the three sensor case, which
requires solving partial solutions

ω1 tr(P1)− ω2 tr(P2) = 0, ω1 + ω2 = 1− ω3 (24)

and

ω2 tr(P2)− ω3 tr(P3) = 0, ω2 + ω3 = 1− ω1 . (25)

We can use the two sensor method from section IV to solve
(24) exactly when ω3 = 0, and know that when ω3 = 1, then
ω1 = ω2 = 0. These two points are enough to define the two-
dimensional partial solution (24) which can be seen plotted
over the possible solution space in Fig. 2(a). Fig. 2(b) shows
both partial solutions (24) and (25) plotted over the solution
space. The final solution from all partial solutions is computed
by finding their intersection. This can be seen in Fig. 2(b) as
the intersection of the (ω1, ω2) and (ω2, ω3) partial solution
lines.

To simplify computing the partial solution intersection, we
define equivalent planes for each of the partial solutions,
perpendicular to the solution space, in the form

a1ω1 + a2ω2 + a3ω3 + a4 = 0 , (26)

and solve the resulting linear system for finding the intersection
of all planes and the solution space. This is given bya(1)1 a

(1)
2 a

(1)
3

a
(2)
1 a

(2)
2 a

(2)
3

1 1 1


ω1

ω2

ω3

 =

a(1)3

a
(2)
4

1

 , (27)

where a(j)i denotes parameter i of partial solution j, and has
been shown visually in Fig. 2(c).

In the n sensor case, we can similarly solve partial solutions
by first using the method from section IV to solve equations
with two parameters ωk and ωk+1 when letting all ωi = 0, i 6=
k, k + 1. For each equation we can then compute remaining
partial solution points at ωi = 1, i 6= k, k + 1 with ωj =
0, j 6= i. Perpendicular hyperplanes can then be similarly
defined in the form

a1ω1 + · · ·+ anωn + an+1 = 0 . (28)

Due to their inherent orthogonality, and that all meaningful
covariance traces are strictly positive, the n−1 partial solution
hyperplanes are guaranteed to intersect at exactly one point.
The hyperplane intersection results in the linear system

a
(1)
1 a

(1)
2 · · · a

(1)
n

...
...

. . .
...

a
(n−1)
1 a

(n−1)
2 · · · a(n−1)

n

1 1 · · · 1



ω1

...
ωn−1

ωn

 =


a
(1)
n+1
...

a
(n−1)
n+1

1

 , (29)

and gives the solution to the SecFCI ωi weights.
As all O(n log p) ORE comparisons are done between

sequential sensors i and i + 1, L and R ORE encryptions
can be used to the same effect as for the two sensor case. The
ORE ordered list sent from each sensor i is given by

[ELORE(ω
(1) tr(Pi)), . . . , ELORE(ω

(p) tr(Pi))], i odd

[ERORE(ω
(1) tr(Pi)), . . . , ERORE(ω

(p) tr(Pi))], i even .
(30)

When combining (30) with PHE encryptions of local informa-
tion vectors and information matrices, SecFCI can be computed
entirely homomorphically by (22) and (23).
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TABLE I: Computation complexity of encryption operations.

Operation Complexity
Paillier enc. O(log3 N)
Paillier dec. O(log3 N)
Paillier add. O(log2 N)

Paillier scalar mult. O(log3 N)
Lewi L enc. O(log2 N)
Lewi R enc. O(log2 N)
Lewi comp. O(log2 N)

Briefly considering the security of our scheme, we note that
any leaked information from ORE lists (30), as described in
[29], can be considered a subset of knowing the estimated
fusion weights ω1, . . . , ωn, which specify relative sizes of
sensor covariance traces, and we already consider public. Thus
only IND-CPA and IND-OCPA (after accounting for leakage
through public weights) encryptions are made available to the
fusion center.

A. Computational Complexity

Given the state estimates and estimate errors at each sensor,
we wish to show the computational complexity of the SecFCI
algorithm for the n sensor case. We will assume that both
Lewi ORE and Paillier PHE schemes use the same length
security parameter (and equivalently key size), such that
λLewi = λPaillier = logN , where λs represents encryption
scheme s’s security parameter, and N the Paillier modulus
and encryptable integer limit. We also note the distinction
between floating-point or small integer operations, which are
typically treated as having O(1) runtime, and large integer
operations whose complexities are dependent on bit length.
While architectures exist for speeding up encryption operations
[16], we consider software implementations and treat large
integer operations in terms of bit operations explicitly.

From [21], [30], and the assumptions made above, we have
summarized the operation complixites of the two schemes
in Table I. In contrast to some current FHE schemes, these
operations are of a much lower complexity than [36], which
has complexity O(λ10) for integer operations, and [19], which
computes single bit operations in O(λ3.5) adding significant
overhead for integer arithmetic.

Finally, applying the operations from Table I to the SecFCI
algorithm, we summarize the total complexity of SecFCI at the
sensors and the fusion center in Table II, with the unencrypted
complexities of FCI shown for reference.

TABLE II: Computation complexity at sensors and fusion center.

FCI SecFCI
Sensors O(1) O

(
p log2 N + log3 N

)
Fusion O(n3) O

(
n log p log2 N + n log3 N + n3

)
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Fig. 3: Tracking simulation comparing SecFCI and FCI.

VI. SIMULATION RESULTS

We have implemented a simulation to demonstrate the
accuracy of SecFCI approximating FCI. Three sensors in-
dependently measure a constant-speed linear process and
simultaneously run a Kalman filter on their measurements.
Estimates are sent both encrypted and unencrypted to a fusion
center which computes the SecFCI and FCI fusions on the
received data respectively. Encrypted estimates are comprised
of PHE encryptions of the information vector and information
matrix, E(P−1

i x̂i) and E(P−1
i ), in addition to the ORE list

given by (30) with discretization step s = 0.1. Unencrypted
estimates consist of the state estimate x̂i and covariance Pi.
The trajectory and fused estimates are shown in Fig. 3.

To derive an upper bound on the accuracy difference between
SecFCI and FCI, we note the two factors which introduce
inconsistency between the two methods: the encoding method
from section V-A, and the difference in fusion weights. Due
to the possibility of choosing sufficiently large integer and
fractional bit lengths i and f , we will only consider the error
caused by the difference in weights. We will treat this error as
the distance between respective weight vectors

ωSecFCI = (ω1,SecFCI , . . . , ωn,SecFCI)

ωFCI = (ω1,FCI , . . . , ωn,FCI) ,
(31)

where ωi,s denotes weight ωi from algorithm s. From section
IV we see that the largest difference |ωi,FCI − ωi,SecFCI | is
strictly bounded by s/2. As shown in section V, when more
sensors are involved, a tighter bound on this difference is
dependent on the value of ωi,FCI , but will remain strictly
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bounded by s/2. Therefore, we can give a strict upper bound
on the distance between weight vectors as

|ωFCI − ωSecFCI | < 0.5
√
ns2 . (32)

Finally, components of ωi,SecFCI , ωi,FCI and the errors
|ωFCI −ωSecFCI |, have been plotted over time in Fig. 4, and
show the computed error bound when n = 3 and s = 0.1.

VII. CONCLUSION

FCI is a commonly used, and efficiently computable, ap-
proximation to the CI optimization problem that requires the
sharing of local sensor estimates to compute their fusion. We
propose a secure approximation to FCI, SecFCI, to compute
the fused estimate homomorphically. The novel encrypted
fusion approach may find uses in various security-critical
applications or over untrusted networks subject to eavesdrop-
pers and malicious participants. Possible future work includes
run-time comparisons with FHE implementations, giving a
computational bound for its practicality, and quantification of
fusion weight leakages via formal security proofs.
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