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Abstract Many distributed inference problems in wireless sensor networks can be
represented by probabilistic graphical models, where belief propagation, an iterative
message passing algorithm provides a promising solution. In order to make the
algorithm efficient and accurate, messages which carry the belief information from
one node to the others should be formulated in an appropriate format. This paper
presents two belief propagation algorithms where non-linear and non-Gaussian
beliefs are approximated by Fourier density approximations, which significantly
reduces power consumptions in the belief computation and transmission. We use
self-localization in wireless sensor networks as an example to illustrate the perfor-
mance of this method.

Keywords Density approximation - Belief propagation - Distributed inference -
Wireless sensor network

1 Introduction

DVANCES in sensor technology and telecommunications make wireless sensor
network (WSN) an appropriate solution for a wide variety of applications [1, 2].
In a WSN, sensor nodes are spatially distributed to monitor the physical or environ-
mental states. Information can be exchanged through the wireless channel so that
the whole network works in a cooperative fashion. Many estimation problems in
WSNs can be represented by probabilistic graphical models and solved by belief
propagation methods. Belief propagation (BP) is an iterative message passing algo-
rithm in which each node calculates its belief about other nodes and communicates
with them to exchange their beliefs about each other. Compact messages that are
transmitted between nodes carry the necessary information of the beliefs, based
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on which the receiver can reconstruct the transmitter’s belief about it. For discrete
beliefs, messages can be a short vector of probabilities. For continuous beliefs
with Gaussian distribution, it is enough to ensemble the mean and variance in the
message. However, in many applications, beliefs have non-linear and non-Gaussian
distributions so that belief calculation and transmission consumes a lot of power.
That limits its application in WSNs which have strong power constraints. Hence, an
appropriate representation of beliefs which reduces the complexity while keeping
the accuracy is necessary but non-trivial.

Monte Carlo methods can be used where messages contain samples that are
drawn from the distribution to represent the beliefs. Gibbs sampling is a popular
method in this case. However, this is only possible for sufficiently small networks.
Authors of [3] used non-parametric BP method where beliefs are represented by
Gaussian mixtures. It generalizes particle filtering for inference in non-linear, non-
Gaussian time series.

In this paper, we introduce Fourier density approximation (FDA) method to
represent the beliefs. Fourier series were first employed to estimate probability
densities in [4]. Recently, [5] and [6] ensured the non-negativity of Fourier series
by approximating the square root of the density instead of the density itself. The
usage of Fourier series in nonlinear Bayesian filtering is also derived in [5] and [6].
Using Fourier density approximation, the belief can be represented sufficiently by
only a small number of Fourier coefficients. Hence, the transmission power and
time between sensor nodes are significantly saved. Compared to other density rep-
resentations like Gaussian mixture or Monte Carlo methods, the optimal number
of coefficients under a required approximation error with respect to a density dis-
tance metric is more efficiently obtained. Furthermore, the sum-product operations
in BP algorithms can be more effectively calculated in Fourier domain since some
convolution-like integral operations are more easily calculated than in space domain.
Since the Fourier series are orthogonal expansions, the coefficients are derived inde-
pendently and effectively [5]. In practice, this is done by efficient Fast Fourier Trans-
form (FFT).

In this paper, the self-localization in WSNs, a common practice of brief propa-
gation, is used to evaluate the performance of Fourier density approximation. Two
Fourier based algorithms are proposed, which are simplified transmission based on
Fourier density approximation (ST-FDA) and simplified computation and transmis-
sion based on Fourier density approximation (SCT-FDA). ST-FDA reduces the size
of the belief message to save radio transmission power, which is a critical factor
for WSNs. SCT-FDA further simplifies the sum-product algorithm (SPA) to reduce
computation power.

The paper is organized as follows. Section 2 presents BP as a general approach
to the inference problems in WSNs. Fourier density approximation method will be
introduced in Sect. 3. Section 4 uses a sensor self-calibration example to illustrate
the use of Fourier density approximation for BP. ST-FDA and SCT-FDA algorithms
are proposed. Their performances will be evaluated through simulation and the
results will be shown in Sect. 5. Finally, Sect. 6 concludes the paper.



Fourier Density Approximation 361
2 Belief Propagation in Wireless Sensor Networks

This chapter presents the general probabilistice inference problem in sensor
networks and shows that belief propagation is a suitable solution.

2.1 Probabilistic Model of a Wireless Sensor Network

Lets consider a WSN with sensor nodes that are distributed in space. We use x;
to denote the physical state associated with sensor node i and use x to denote
the collection of state variables at all sensor nodes. Each sensor makes a local
noisy observation which we denote by y;. In general, the following assumptions
are valid:

1. Given the state variables, observations at different nodes are independent, i.e.
P, il X) = p(yi| X)p(y;| X).

2. Observation at one node depends only on a subset of state variables, i.e.
POl X) = p(yil Xpacyy) With { Xpa(yy} C { X}

3. Usually, local correlation exists between neighboring nodes. This indicates that
the joint probability of state variables can be factorized into a product of local
functions which present the correlation among the nodes in neighborhoods, i.e.

p(x)=T[. p(x0).

Based on these assumptions and using the Bayes rule, the joint distribution of
state variables and observations can be factorized in the following form:

i=1

N N
= (H p(il xpam)) p(x) = (H p(yil xPa(y[>)> [[r(xo.
i=1 c

i=1

N
p(x, y) = p(yl X)p(x) = (1"[ p(yil x)) p(x)

The conditional independences encoded in (1) can be presented by a graphical
model, e.g. Markov random field [7]. A graphical model consists of a set of vertices
which represent the variables. There exists an edge between two vertices which
indicates the conditional dependence between them. So the whole graph represents
the factorization of a joint distribution of all variables. The relationship between the
graphical model and the joint distribution is given by the Hammersley-Clifford the-
orem [8], that is, a joint probability can be written as a product of potential functions
which are defined on cliques (sub-graphs that are fully connected). In probabilistic
inference in WSNs, we’d like to write this factorization as:
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N

p(x, y) =[] el xe) )
i=1

so that each factor in Eq. (2) can be associated with one sensor node. Such a fac-
torization automatically provides the possibility to distribute the computation. Each
node processes parts of the total computation and results are eventually disseminated
through the communication between nodes.

Each potential function in Eq. (2) is obtained from Eq. (1). We first assign
P(il Xpagy;)) as a factor of ¢;(y;| X.,), then distribute each factors in 1. p(x.) into
one of the potential functions. In many applications, the distribution of [ . p(x,) is
not unique. For the assignment, we should also take factors such as computational
complexity, communication connectivity and transmission power into considera-
tion. Authors of [9] have introduced a method that first constructs a spanning tree
and then assigns factors to the nodes of the tree. Such an assignment eventually
results in a junction tree that can be solved by message passing algorithms [10]. In
some other applications, the final graphical model is a graph with loops.

2.2 Belief Propagation in Wireless Sensor Networks

Inference of the variables defined on a graphical model has been intensively studied.
For a graph without loops, this can be solved by junction tree algorithm. Exact infer-
ence on a graph with loops is generally an N-P hard problem. Approximate methods,
such as loopy BP [11] have produced convictive results in many applications. BP is
an iterative message passing algorithm in which each node calculates its belief about
other nodes and communicates with them to exchange their beliefs about each other.
Each node updates its beliefs when it receives messages from other nodes. Updated
beliefs will be sent in messages to other nodes. This procedure repeats for a number
of iterations or until a defined convergence criterion has been met.

In WSN applications, we are interested in the posterior probability of p(x;|y) for
each state variable x;. Such an inference problem on graphical models can be solved
by using sum-product algorithm, which is a common practice [12].

Having defined the local potentials for each node like in (2), we can write the
analytic formula for the belief updating in SPA at each sensor node. We define
m} j( X;, N X)) to be the message sent from node i to node j in the 1™ jteration.
Having received messages from all neighboring nodes in the ™ iteration, node i
calculates the message to be sent to node j for the ¢ + 1" iteration by:

m?,ﬂ(xq N X,) =0« / i (il Xe,) H i (¥, 0 Xa) ®
. X N xe ) keN\j

where « is a constant value to normalize the message. N (i) denotes the neighbors
of node i. At node i, we can also conclude the marginal probability of the variables
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in ¢;(yi| X,). This is done by combining all the incoming messages with its local
potential:

Plxe) = @il %) [ mi(xe 0 x) )
keN(i)

2.3 Form of the Messages

The computation in SPA is relatively simple if the messages and potential functions
involved in (3) are discrete or Gaussion. However, in many cases, the local potential
functions have a very complex non-Gaussian distribution and there exist high non-
linear relationships between the variables. Discretizing the continuous functions
(uniform sampling method) would be too expensive for many inference problems.
Other forms of representation of the belief functions are needed.

A particle-based method, called non-parametric BP (NBP) is presented in [3] to
solve self-localization problem in WSNs. In NBP, messages are presented by Gaus-
sian particles which are generated from the belief functions. This method enables
the use of SPA. However, calculating products of Gaussian mixtures and generating
proper samples is not a trivial task.

The following part introduces a novel implementation of messages in BP using
FDA method.

3 Fourier Density Approximation

Brunn et al. [5, 6] derived the basic operations using Fourier density approximation.
Here some important equations related to BP are briefly described.

3.1 Definition of Fourier Densities

A d-dimensional density function can be approximated by a d-dimensional Fourier
expansion as:

PO =Dy ¥ =Y (e + B 5)

keK kekK

where x = [x1, xa, . .. x4]" € [—m, 7]% is a multidimensional variable. Ve = Qe+Pi
is the coefficients of the Fourier series. x = [k, k2, .. ./cd]T € K is an index vector,
where K = {—Kf, —ky+1,.. K{’} X ... X {—/c:j, —kg+1,. ../cg} denotes the set
of all valid indices [6].

In practice, the coefficients are obtained by the efficient Fast Fourier Transform
(FFT) which has a complexity of O (n log(n)) where n denotes the number of sam-
pling points.
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3.2 Fourier Density Product

Given two densities p®(x) and p®(x), they are represented by the Fourier density
approximation as:

Pl =y plel (6)
kekK,
and
PP =Y yle™, (7)
KEK[,

their product can be expressed as:

P = pptx) = Y ylel 8)
keK,
with
ve= Y P, ©)
MHEK,

where the bar denotes a valid index:

70 = J_’,i') n e K (10)
" 0 otherwise

of ¥ and y”. The order of p(x) is ]—[7:] (" 4+« %), i.e. as many other approxi-

mation approaches like Gaussian mixture, the number of coefficient is significantly

higher after production. But we can show later that the coefficient reduction in FDA

is much easier than its counterparts.

3.3 Generalized Convolution Integral

Considering the Fourier densities of

..
Xy =) ypelt (1)
neky
and
Py, x) = Z y/f’KejNTerjKTy (12)
nekKy,

keKy
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their generalized convolution integral is given by:

#mzfﬂmwwwwzﬁhwﬂy (13)
keKy
with y¢ = 3 v, v} ..
JEKy
Note that the order of resulting density only depends on the order of function
pP(y, x) not p%(x), which limits the computational complexity.
In addition, if the function pb (y, x) has a form:

pPxy) = pily — %), (14)

(13) becomes

zﬁw=/ﬂmwﬂ®ﬂ=/ﬂv—mw®w
= pP(y) * p“(x) (15)

which is actually a convolution. Thus the coefficients of p(y) are the multiplication
of the coefficients of p’(y) and p“(x). In this way, the computation is simplified
by replacing a high dimensional function p”(x, y) with a low-dimensional function

().

3.4 Coefficient Reduction

For many density mixture approximation approaches like Gaussian mixture, Dirac
mixture or Monte Carlo methods, the number of coefficients increased exponen-
tially after the product operation. Keeping all coefficients are practically impossible.
Determining how many coefficients and which ones are needed is challenging. [13]
provides a progressive way to calculate the parameters of mixture densities opti-
mally. But the computational requirement is relatively high.

The coefficient reduction in FDA is relatively more efficient. As well known, the
signal power in space domain and Fourier domain are equal. The Fourier coeffi-
cients ordered by their squared magnitude reflect the order of their influences to the
square error between true density function and its Fourier approximation. Therefore,
coefficient reduction in FDA is just deleting the coefficients with minimal squared
magnitudes under the required density square error.

3.5 Ensuring Non-Negativity

FDA with reduced coefficients is sometimes negative which brings problem for fur-
ther calculation. [5] proposed to use the square root of density function instead of
density function itself for calculation. In this way, the final approximated density is
ensured to be non-negative.
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3.6 Computational Complexity

Table 1 lists the comparison of computational complexities for density product
and generalized convolution between FDA and uniform sampling method where m
denotes the number of coefficients used by Fourier density approximation. » is the
number of uniform distributed samples. From this table, we see that the computation
power is saved for the generalized convolution given the same number of m and n.
By reducing the Fourier coefficients, both operations can be more efficient.

Table 1 Comparison of computational complexity

FDA Uniform sampling
Generalized convolution O(m) o(n?)
Product O (mlogm) O(n)

4 Sensor Localization Example

In this chapter, we will use a sensor localization example to illustrate the BP method
we proposed. Sensor localization is obtained by combining absolute positioning
information (e.g. GPS) with relative distance information (e.g. time delay or power
decay of the signal transmitted between sensors). In this paper, we restudy the self-
calibration problem presented in [3] where each sensor has noisy measurements
of its distances to neighboring nodes. The problem is formulated as a probabilistic
inference problem that can be presented by probabilistic graphical model. BP algo-
rithm is applied to exchange the calibration information between sensor nodes so
that each sensor can obtain the MAP estimate of its location. Instead of Gaussian
mixtures, FDA will be used to present the messages that are transmitted between
nodes. Relative sensor geometry or the absolute sensor positions can be obtained
depending on whether extra information about absolute positions is available at
certain sensors.

4.1 System Model

Lets assume that we have a WSN with N sensors distributed in a planar space. The
position of sensor i is denoted by x;. The measurement taken at sensor i about its
distance to sensor j takes the form:

dij = ||xi —x; | + vy (16)

where d;; denotes the observation, v;; is additive Gaussian noise with zero mean
and standard deviation of o. ”xi —X; ” calculates the Euclidean distance between
two points. d;; is not always available since sensor i does not always detect its
neighbor j. We use a binary random variable o;; to indicate whether a distance
measurement is available, i.e. 0;; = 1 when observation is made, 0;; = 1 otherwise.
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According to [3], the probability that distance between sensor i and j is available
with a probability of:

=]
ploij = 1|x;,X;) = exp R (17)
1

Furthermore, each sensor has a prior knowledge about its position, which is given by
a prior distribution p(x;). The prior distribution is normally uninformative unless the
sensor has obtained its position information from other resources, e.g. GPS signal.
In this case, the prior distribution might look like a Dirac function.

4.2 Belief Propagation in Sensor Localization

Apparently, the assumptions mentioned in Sect. 2 are valid for this model. The joint
distribution of the sensor locations {x;} and the observations {d;;} and {0;;} can be
factorized as:

p(xi} {dij) {oih) = [ [ ploijixix) [T pol@jlxi,xp] [ px)  (18)

(W) (@, ):0ij=1

Based on Eq. (7), we can define the local potential for sensor i:

¢ (X1, ...xXy) = p(x;) - l_[ p(oij|xi, X;) l_[ po(dij|xi, X;) (19)

i jiiiop=1

so that each sensor has now its local potential function.
Distributed inference can be done by using SPA. For sensor location problem,
the message updating equation, obtained from Eqgs. (3) and (19), takes the form:

mi (1, LX) = g, Xy) ]_[ mt (X1, ...Xy) (20)
keN(@)\Jj

Each message in Eq. (20) involves N variables. The presentation of messages and
the multiplication of messages will be too complicated that it makes the inference
intractable. To simplify the problem, we define a message from node i to node j
to be a function that only involves x;. In another word, message from node i to
node j only contains a summary of sensor i’s belief on the position of j. Position
information about other sensor nodes are summed out. Based on this simplification,
Eq. (20) will be revised to:



368 C. Naetal.

m:/*l(xj) = / (/),'(X],...XN) 1_[ m;a.(x,-)

{x1,.. XN }\X; keN@\j
=« f p) [ | plowlxixe) [ poldiclxioxe) [ mis(x)
R ks ke
= a/p(xi)‘pij(xivxj) l_[ mzi(xi) (21)

M keN(i)\j

where ¢;;(x;, X;) is defined as:

ij = 1%, X;) - p(dij|xi, X;
i (X1, %) = p(oij [xi, X;) - p(dij1X;, X;) 22)
I — plo;; = 1|x;,x;)
The marginal probability of sensor location is given by:
Pl =a - px) [ mix) (23)

keNG)

Although the complexity of messages has been greatly simplified in Eq. (21), calcu-
lation in Egs. (21) and (23) is still complicated because of its non-linearity and the
non-Gaussian distribution. To solve this problem, we use FDA method to approx-
imate the density functions and present the messages as a collection of Fourier
components and their coefficients.

4.3 Algorithm Description

Using FDA and the coefficient reduction method introduce in Sect. 3, the size of the
messages are significantly reduced. This has brought benefits in two folds. On one
side, it reduces the transmission power. On the other hand, it reduces the complexity
of the SPA with a penalty of computing FFT.

We propose two algorithms. The ST-FDA algorithm, depicted in Table 2, uses
FDA only to reduce the transmission power. SCT-FDA, depicted in Table 3, does all
the calculation in the frequency domain thus reduces both the transmission power
and the computational complexity.

5 Simulation Results

To verify the performance of the FDA based BP methods, we simulate the BP for
self-localization problem in a WSN that is illustrated in Fig. 1. The positions of
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Table 2 Description of ST-FDA algorithm

ST-FDA

1. Discretize the local potential functions.

2.  Initialize messages, e.g. a vector of ones.

3. Calculate the outgoing message using Eq. (21). Since now the
potential functions and the messages are discrete, we replace
the integral in Eq. (21) with sum. Use FFT to transform the
outgoing message into the frequency domain and use
coefficient reduction method introduced in Sect. 3 to reduce
the size of the messages.

4. Once a new message (presented by Fourier coefficients) is
received, an IFFT will be used to change the message to the
2D space domain for the SPA.

Run SPA for a defined number of iterations.

6.  Posterior probability can be calculated by using Eq. (23).

e

Table 3 Description of SCT-FDA algorithm

SCT-FDA

1. Discretize the local potential functions.

2. Initialize messages, e.g. a vector of ones.

3. Use FFT to transform all messages and potential functions to

frequency domain. Use coefficient reduction method
(Sect. 3.4) to reduce the number of Fourier components. All
messages stay in frequency domain until the end of the
algorithm.

4. The SPA of Eq. (21) in the frequency domain is implemented by
using Egs. (8) and (15). Coefficient reduction is done in each

step.
5. Run SPA for a defined number of iterations.
6. Finally, use IFFT to convert the posterior probability from

frequency domain into space domain.

sensor node 1, 2 and 3 are known as (0, 0), (1, 0) and (1, 1) respectively. Unknown
sensor nodes 4 and 5 are located at (—1, 0.4) and (—0.2, 0.8). Note that although
the Fourier densities are defined in [—7, 7]¢ in Eq. (5), the definition in a large area
can be also derived by a simple linear mapping. In this paper, we limit the area to
[—7, ]? for simplicity.

The parameter p and R; in Eq. (17) are set to 2 and 3 m respectively. The standard
deviation of distance measurements o in Eq. (16) is set to 0.4 m. The BP is forced
to stop after seven iterations. Figure 2 depicts the estimates of posterior distribution
of sensor positions at node 4 (Fig. 2 (a2)—(a6)) and node 5 (Fig. 2 (a2)— (a6))
by SCT-FDA using different number of Fourier coefficients to represent a single
potential function or a message and compare them with the true result generated
by uniform sampling based method (Fig. 2 (al) and (a2)). The sampling resolu-
tion is 65x65 for all experiments. From the results we can see with 100 Fourier
coefficients, the approximation is already very close to the true value, whereas
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Fig. 1 Sensor distribution 2 T r .
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too few components can not fully characterize the very non-linear, non-Gaussian
distribution.

Figure 3 shows the estimation results from SCT-FDA algorithm using different
sampling resolutions. Sampling resolution of 15 x 15, 25 x 25, 35 x 35, 65 x 65
are applied to Fig. 3 (al) to (a4) and Fig. 3 (bl) to (b4) respectively. The sampling
resolution determines the precision of the estimate. According to Nyquist Theorem,
original function can be recovered from its samples only if the sampling rate is
greater than twice the maximum frequency of that function. Bad results can be
observed from Fig. 3 (b3) and (b4) because the sampling rate is too low. Figure 4

(@) (1) | (ad) (b4)
- -
3 I. - I. I \
— —
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o i components <
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. & |, A
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Fig. 2 Comparison of distribution estimates by SCT-FDA with different number of coefficients
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| (al) (1) | (a3) | (b3)
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Fig. 3 Comparison of distribution estimate by SCT-FDA from different sample resolutions

plots the error of the position estimate of node 4 vs. number of Fourier coeffi-
cients curves of STFDA and SCT-FDA algorithms. It can be seen that, increas-
ing number of coefficients results in a better performance for both methods. But
compared to the result by uniform sampling which requires 4,225 samples to repre-
sent a message, a close result is achieved by much less Fourier coefficients. In the
simulation, 119 messages are transmitted. If sample resolution is 65 x 65 and 50
Fourier coefficients are kept, ST-FDA and SCT-FDA methods transmit 23,800 com-
ponents while uniform sampling based method has to transmit 502,775 components.
Obviously, Fourier density approximation significantly reduces the transmission
power.

ST-FDA method outperforms SCT-FDA methods in Fig. 4 because approxima-
tion is only made for the transmission in ST-FDA while SCT-FDA method also
greatly simplifies the computation by using fewer coefficients in the SPA. Although
SCT-FDA loses some accuracy, it saves the computation power and time. Further-
more, note that ST-FDA performs FFT and IFFT at the transmission and reception

15 T T

#-STFDA node 4

—Uniform sampling
with 4225 samples

©-SCTFDA node 4

Estimate Error (m)

0.5F

®

0 20 40 60 80 100 120 140 160 180 200 220
Mumber of Fourier coefficients

Fig. 4 Comparison of estimation errors in uniform sampling, STFDA and SCT-FDA
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of each message while in SCT-FDA, FFT is only performed at the beginning and
the end of BP, which further reduces the complexity.

6 Conclusions and Future Work

WSNs can be modeled by graphical models, where BP algorithm provides a promis-
ing solution. However, in WSNs, the computational ability and battery life of sensor
nodes are limited. The intensive probability density computation and transmission
between nodes required by BP make a big problem. This paper presents a method
to use Fourier density approximation to represent belief densities. ST-FDA algo-
rithm uses Fourier approximation to compress the complex non-Gaussian densities
in order to reduce the radio transmission which is regarded as the most power con-
suming part in WSNs. Another algorithm SCT-FDA implements the SPA in Fourier
domain so that it saves power consumptions not only in transmissions but also in
belief calculations.

ST-FDA and SCT-FDA use a fixed number of Fourier coefficients. A more
general algorithm with adaptive Fourier coefficient reduction can be investi-
gated. In addition, other density representation like wavelet approximation could
also be considered for the same application. The comparison between Fourier
approximation and standard Gaussian mixture representation in [3] would also be
interesting.
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