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Abstract This paper is devoted to methods for localizing individual sensor nodes
connected in a network. The novelty of the proposed method is the model-based
approach (i.e., rigorous exploitation of physical background knowledge) using local
observations of a distributed phenomenon. By exploiting background phenomena,
the individual sensor nodes can be localized by only locally measuring their sur-
rounding without the necessity of heavy infrastructure. Two approaches are intro-
duced: (a) the polynomial system localization method and (b) the simultaneous
reconstruction and localization method. The first approach (PSL-method) is based
on restating the mathematical model of the distributed phenomenon in terms of a
polynomial system. Solving the system of polynomials for each individual sensor
node directly leads to the desired locations. The second approach (SRL-method)
regards the localization problem as a simultaneous state and parameter estimation
problem within a Bayesian framework. By this means, the distributed phenomenon
is reconstructed and the individual nodes are localized in a simultaneous fashion,
while considering remaining stochastic uncertainties.

1 Introduction

The research work presented here is a modified version of [1], however explana-
tions about the novel localization process are given in considerably extended way,
with the focus on describing the actual estimation process with its different stages,
i.e., identification/calibration stage and actual application stage. For more details
about the used Bayesian estimator and its prospective applications, we refer to our
previous research work [1-5].
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Recent developments in various areas dealing with sensor networks and the fur-
ther miniaturization of individual nodes make it possible to apply wireless sensor
networks for observing natural large-area physical phenomena [6]. Examples for
such physical quantities are temperature distribution [4], chemical concentration [7],
fluid flow, structural deflection or vibration in buildings, or the surface motion of a
beating heart in minimally invasive surgery [8].

For the reconstruction of such distributed phenomena, the individual sensor
nodes are densely deployed either inside the phenomenon or close to it. Then, by
distributing local information to a global processing node, the phenomenon can be
cooperatively reconstructed in an intelligent and autonomous manner [3,9, 10]. In
such scenarios, the sensor network can be exploited as a huge information field
collecting data from its surrounding and then providing useful information both to
mobile agents and to humans. Hence, the corresponding tasks are accomplished
more efficiently, thanks to the extended perception provided by the sensor network.
By this means, sensor networks can forecast or prevent dangerous situations, such
as forest fires, seismic sea waves, or avalanches [11].

For most sensor network applications, the sensory data has only limited util-
ity without location information. In particular for the accurate reconstruction of
distributed phenomena, the locations of the individual sensor nodes are necessary.
Manually measuring the location of every node in the network becomes infeasible,
especially when the number of sensor nodes is large, the nodes are inaccessible or
in the case of mobile sensor deployments. This makes the localization problem one
of the most important issues to be considered in the area of sensor networks.

Classification of Localization Methods In general, the main goal of a localiza-
tion system is to provide an estimate about the location of the individual nodes in
the sensor network in the area of interest. There are several ways to classify the
huge diversity of localization methods. In this work, they are classified into active
localization methods and passive localization methods, depicted in Fig. 1.

e Active localization methods: Active localization methods obtain an estimate of
the sensor node location based on signals that are artificially stimulated and
measured by the network itself or by a global positioning system. The stimuli

L Localization methods

[(a)Active localization J [ (b)Passive localization J
® Global positioning system ® Based on natural physical systems
o Artificial signals between nodes - Field strength distribution

= Acoustic wave propagation
= Temperature distribution
= Topological surface map

Fig. 1 Classification of localization methods: (a) Active localization, such as methods based on
artificial signals between nodes and global positioning systems, and (b) passive localization, such
as methods based on locally measuring a naturally existing distributed phenomenon
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usually used in such scenarios consist of artificially generated acoustic events. It
is obvious that the active localization process is performed in fairly controlled
and well accessible environments. As it stands, these circumstances incur sig-
nificant installation and maintenance costs. A comprehensive survey on active
localization methods can be found in [12].

e Passive localization methods: In the case of passive localization methods, which
in contrary occur in a non-controlled and a possibly inaccessible environment,
the stimuli necessary for the localization process occur naturally. In Fig. 1 (b)
prospective examples of natural physical systems are stated, which can be used
as stimuli for localizations. The clear advantage of using passive methods for
the localization is that they do not need additional infrastructure. This certainly
keeps the installation and maintenance costs at a very low level. In addition, these
methods become particularly important for applications where global positioning
systems are simply not available. This is for example the case of sensor networks
for monitoring the snow cover [11], applications in deep sea, indoor localization
[5,13, 14], or robotic-based localization [15].

There are various techniques and methods that can be considered for localization
systems using different kind of infrastructures in different scenarios. In general, for
the estimation of a distributed phenomenon by a sensor network, the existing infras-
tructure could consist of both a number of sensor nodes with known locations and
nodes with unknown or uncertain locations. For the minimization of the installation
and maintenance costs, it is benefical to develop a method that requires no addi-
tional hardware such as a global positioning system or other heavy infrastructures.
Moreover, there are various application scenarios without the possibility to access
a global positioning system for the localization, such as the indoor localization of
mobile phones [5, 16] or sensor networks deployed deep inside the snowpack for
predicting snow avalanche risks, to name just a few. For that reason, a novel passive
process is proposed that does not require such a global positioning system or the
localization based on landmarks. It is important to emphasize that the passive local-
ization technique proposed in this work can be employed in combination with other
localization methods for further improving the location accuracy.

Key Idea of the Proposed Localization Method For the passive localization of
sensor nodes, we present model-based approaches based on local observations. The
novelty of the methods introduced in this work is the rigorous exploitation of a
strong mathematical model of the distributed phenomenon for localizing individual
sensor nodes. Furthermore, within this framework, the often remaining uncertainties
in the sensor node locations can be considered during the reconstruction process of
the distributed phenomenon [4]. The use of such a mathematical model for node
localization was proposed in [11]. However, there was no consideration of uncer-
tainties naturally occuring in the measurements and in the used model. The key
idea of the proposed localization approach is depicted in Fig. 2. Roughly speaking,
for localizing sensor nodes, the mathematical model and the resulting distribution of
the spatially distributed phenomenon is exploited in an inverse manner. That means,
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(a) Given distribution of physical system (b) Estimation result of localization process
(e.g., temperature distribution)
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Fig. 2 Visualization of the key idea of the proposed novel localization method based on locally
measuring a distributed phenomenon. (a) Possible distribution py(x, y) of a physical system char-
acterized by a strong mathematical model. (b) Sectional drawing of the system at a specific location
in x-direction. Depicted are the possible locations (deterministic case) and the respective density
function f "(r,‘zy) (stochastic case)

locally measured physical quantities are used to obtain possible locations where the
measured values could have been generated.

In this research work, we introduce two different methods for the model-based
passive localization of sensor nodes based on local observations: (a) the polynomial
system localization method, and (b) the simultaneous reconstruction and localiza-
tion method. The first approach (PSL-method) is purely deterministic, meaning
that neither uncertainties in the model description nor in the measurements are
considered. This direct method is based on restating the model of the distributed
phenomenon in terms of a polynomial system including the state of the physical
system and the location to be identified. Then, solving a system of polynomial equa-
tions leads directly to the desired location of the sensor node. The second approach
(SRL-method) considers uncertainties both in the mathematical model and the mea-
surements during the localization process. It is shown that the localization problem
can be regarded as a simultaneous state and parameter estimation problem, with
node locations as the parameters to be identified. This leads to a high-dimensional
nonlinear estimation problem, making the employment of special types of estima-
tors necessary. By this means, the sensor nodes are localized and the distributed
phenomenon is reconstructed in a simultaneous fashion. The improved knowledge
can be exploited for other nodes to localize themselves.

2 Problem Formulation

The main goal is to design a novel localization method for sensor network applica-
tions, where individual nodes are able to locally measure a distributed phenomenon
only. We assume to have a strong mathematical model of the phenomenon, i.e., with
known model structure and model parameters. This model could possibly result
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Fig. 3 Visualization of two tasks for the estimation of a distributed phenomenon. The individual
tasks are managed by a planning and scheduling process (not considered in this research work)

from an earlier identification task, visualized in Fig. 3 (a). Based on this mathemat-
ical model and local measurements, newly deployed or movable sensor nodes can

be efficiently localized without using a global positioning system, see Fig. 3 (b).

Considered Distributed Phenomenon Throughout this paper, we consider
the localization based on the observation of a distributed phenomenon
described by the one-dimensional diffusion equation

ap(r, 1)
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I p(r, 1)
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where p(r, t) denotes the distributed state of the phenomenon at the spatial
coordinate r and at the time ¢. The diffusion coefficient o can be varying in
both time and space. Given an estimated solution p(-), the aim is the estima-
tion of the location ' of the individual sensor nodes based on local measure-
ments y of a reahzatlon of the distributed phenomenon p(-). In this work,
we con51der the worst-case scenario where the node locations are completely
unknown and the phenomenon p(-) still contains some uncertainties. The same
methods can be utilized for simply considering uncertainties in the locations
during the reconstruction of distributed phenomena (i.e., without localizing

sensor nodes).

3 Overview of the Passive Localization Method

The model-based passive localization method proposed in this research work can
be considered as a two-stage technique: The first stage is the so-called identifi-
cation/calibration stage, which is responsible for building a sufficiently accurate
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probabilistic model of the considered physical phenomenon and its environment.
This can be regarded as a system identification and training phase. Then, during
the localization stage, the previously created and identified model is exploited to
estimate the location of individual sensor nodes by local measurements of the dis-
tributed phenomenon. This stage can be seen as the usage stage performing the
actual localization task based on locally measuring the distributed phenomenon.

3.1 Identification/Calibration Stage

For the derivation of a sophisticated model describing the underlying distributed
phenomenon exploited for the localization, a series of calibration measurements is
required. This can be performed by using a certain number of sensor nodes sens-
ing the physical quantity at known locations. Here, these nodes are assumed to be
responsible only for identifying the underlying phenomenon, however, not necessar-
ily for the actual localization process. At each sensor node with the precisely known
position r,?s", a realization of the distributed phenomenon py(-) is locally measured.

For physical phenomena distributed over a wide area, gathering the measure-
ments can become tedious. However, the automation of this process can be achieved
using mobile devices (with an accurate independent navigation system) moving in
the area of interest in an autonomous and self-organized manner. Such a system
was, for example, proposed in [17], where a mobile robot autonomously collects
information about the signal strength for indoor localization purposes [13, 18].

The identification or calibration stage strongly differs in the way they actually
make use of the measurements obtained. In this research work, the localization
based on static as well as dynamic phenomena is of interest. In particular, depending
on the type of the system, the description to be obtained during the identification
stage is different. For static systems, a mathematical model only in terms of a
probability density function is required, whereas for dynamic systems additional
parameters describing the dynamic and distributed behavior need to be identified
and calibrated.

Static Phenomena In the case of localizing sensor nodes based on a static dis-
tributed phenomenon, the identification stage consists only of finding an appropriate
model description in terms of the conditional density function f¢(p|r), as visualized
in Fig. 4. This description characterizes the distribution of the considered physical
quantity and its uncertainty in the area of interest. In this sense, for each position r
a density function about the distributed phenomenon is obtained. There are several
ways for the actual derivation of the model describing the distribution of the phys-
ical quantity. For example, this can be achieved by data-driven approaches [19],
which use the calibration measurements to directly estimate the underlying den-
sity function f¢(p|r) of the static distributed phenomenon. Another possibility is to
use probabilistic learning techniques, such as the simultaneous probabilistic local-
ization and learning method (SPLL-method) proposed in [20], which additionaly
allows the simultaneous localization during the identification and calibration stage.
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Fig. 4 Visualization of the
model description for the
localization of sensor nodes
exploiting static and
distributed physical
phenomena. The model is
given in terms of a
conditional density function
f¢(plr) over the position r
and the distributed physical
system p; here depicted for
the one-dimensional case for
simplicity purposes only

position r/m

Dynamic Phenomena For dynamic distributed phenomena, it is not sufficient to
derive a description only about the current spatial distribution of the physical quan-
tity, rather additional parameters characterizing the dynamic behavior are neces-
sary. The main advantage of exploiting dynamic phenomena for the localization is
that additional information about the dynamics allows excluding specific values of
the otherwise possibly ambiguous location estimates. However, this advantage is
opposed by the more sophisticated and costly identification/calibration stage that
must be accomplished before or simultaneous to the actual localization stage. That
means, the precise identification of the structure and the parameters of the model
description for the distributed phenomenon is required. This can be achieved by the
Simultaneous Reconstruction and Identification method (SRI-method), see [3].

3.2 Localization Stage

In the localization stage, the individual sensor nodes with unknown location r;’ mea-
sure the underlying distributed phenomenon locally, e.g., temperature distribution or
signal strength distribution. The locations of the N sensor nodes to be identified are
collected in the parameter vector Ql’{” , according to

M .__ sl 52 sN1T N
n, ._[rk,rk,...,rk ] e RY.

In the following, two different approaches for the passive localization are intro-
duced: (a) the polynomial system localization method (PSL-method) and (b) the
simultaneous reconstruction and localization method (SRL-method).
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4 Polynomial System Localization Method

This section is devoted to a deterministic approach for the localization of indi-
vidual nodes in a sensor network based on local measurements of a distributed
phenomenon. The key idea of the proposed direct method is to solve the partial
differential equation (1) in terms of the unknown node locations. This leads to a
straightforward solution as long as the resulting nonlinear equations can be readily
solved. Solving these equations for all sensor locations is called the Polynomial
System Localization Method (PSL-method). The PSL-method basically consists of
two steps: (1) spatial and temporal discretization of the mathematical model, and
(2) reformulating and finally solving the resulting system of polynomial equations
in terms of the desired locations.

1. Spatial and Temporal Discretization The simplest method for the spatial
and temporal discretization of distributed phenomena is the finite-difference
method [10, 11]. In order to solve the partial differential equation (1), the deriva-
tives need to be approximated with finite differences according to

i—1

i+1 i i
i i 2 s S s
ap(r, t) _ pk+1 — DPr J p(r, f) _ r,’(*l—r;( r,’(—r]':1 (2)
at At ar? GARE |

where At is the sampling time. The superscript i and subscript & in p, denote the
value of the distributed phenomenon at the discretization node i and at the time
step k. Plugging the finite differences (2) into the mathematical model of the dis-
tributed phenomenon (1), in general, leads to a system of polynomial equations
of degree three. However, for the case of one unknown sensor node location, this
reduces to a single quadratic equation, as shown in the next subsection.

2. Solving Polynomial System Equations Based on the spatial and temporal dis-
cretization, the partial differential equation (1) may be expressed as a finite dif-
ference equation and put in the following form at each discretization point, p;,
in the interval in question

0= AL — )l —riHe =i

— Bi(rl =Y+ Clari =]y, 3)
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At this point, it is important to mention that r; represents the unknown location
of the sensor node to be localized and r,i“ and r,i_l are the known locations of
neighboring nodes. The derived system equation (3) can be simply regarded as an
explicit relation between three positions on a line (two known endpoints and one
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unknown location between them), and four values of the measured phenomenon (all
known and one at each location at time ¢ and one at the unknown location at time
t + 1). In order to derive the unknown location r,i of sensor node i, the polynomial
system of equations (3) needs to be solved and the root selected, which best fits the
conditions (e.g., must be between the two known locations ;' and r{ ™).

The PSL-method assumes a densely deployed sensor network in which every
node i communicates with its neighboring nodes i — 1 and i 4 1. This means that
measurements of the distributed phenomenon p,i_l and pffl need to be transmit-
ted between adjacent nodes. It can be stated that the denser the sensor nodes are
deployed, the more accurate the individual nodes in the network can be localized.
The proposed localization approach involves neither errors in the mathematical
model nor uncertainties in the measurements. However, it can be easily implemented

and has low computational complexity.

5 Simultaneous Reconstruction and Localization Method

For the state reconstruction of distributed phenomena, the precise knowledge about
the node locations is essential for deriving precise estimation results. However, using
any kind of positioning system, some uncertainties in the location estimate remain.
In order to obtain consistent and accurate reconstruction results, these uncertainties
in the node location need to be systematically considered during the reconstruction
process. Hence, the simultaneous method proposed in this section does not only
allow (a) the localization of sensor nodes, but especially (b) the systematic consid-
eration of uncertainties in the node locations during the state reconstruction process.

After the derivation of a finite-dimensional model for the node localization based
on a system conversion, a method for the Simultaneous Reconstruction of dis-
tributed phenomena and node Localization (SRL-method) is introduced. There are
four key features characterizing the novelties of the proposed method: (a) approach
is based on local measurements only, (b) systematic consideration of uncertain-
ties in the model description and the measurements, (c) derivation of an uncer-
tainty measure for the estimated node location in terms of a density function,
and (d) improvement of the estimation of distributed phenomena thanks to the
simultaneous approach.

5.1 Conversion of Distributed Phenomena

The model-based state reconstruction of distributed systems based on a distributed—
parameter description (1) is quite complex. The reason is that a Bayesian esti-
mation method usually exploits a lumped—parameter system description. In order
to cope with this problem, the system description has to be converted from a
distributed—parameter form into a lumped—parameter form. In general, the conver-
sion of the system description (1) can be achieved by methods for solving partial
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differential equations, such as modal analysis [8], the finite-difference method [10,
11], the finite-element method [4], and the finite-spectral method [21]. Basically,
these methods consist of two steps, namely spatial decomposition and temporal
decomposition.

1. Spatial decomposition By means of the spatial decomposition, the partial dif-
ferential equation (1) is converted into a set of ordinary differential equations [4].
First, the solution domain £2 = [0, L] needs to be decomposed into N, subdo-
mains §2°. Then, the solution p(r, 7) in the entire domain §2 is represented by a
piecewise approximation according to

Ny
pir)y =Y W)X, )

i=1

where W(r) are analytic functions called shape functions and x*(t) their respec-
tive weighting coefficients. It is important to note that the individual shape
functions ¥'(r) are defined on the entire solution domain. The essence of all
aforementioned conversion methods lies in the choice of the shape functions
wi(r), e.g., piecewise linear functions, orthogonal functions, or trigonometric
functions [4].

2. Temporal discretization In order to derive a discrete-time system model the sys-
tem of ordinary differential equations (derived from the spatial decomposition)
needs to be discretized in time. The temporal discretization produces a linear
system of equations for the state vector x, containing the temporal discretized
weighting factors x; of the finite expansion (4). The resulting discrete-time
lumped-parameter system represents the distributed system (1).

In the case of linear partial differential equations (1), the aforementioned meth-
ods for the spatial and temporal decomposition always result in a linear system of
equations according to

Xpp1 = Ak)_ck + By (ﬁk + wi) . (5

The global state vector x, characterizes the state of the distributed system and the
vector wy represents the system uncertainties. The structure of the system matrix Ay
and the input matrix B; merely depend on the applied conversion method [4].

5.2 Derivation of Measurement Model

In this section, we derive the measurement model for the purpose of localizing
sensor nodes based on local observations of a physical phenomenon. The sensor
nodes are assumed to measure directly a realization of the distributed phenomenon
p(r,‘zi, 1) at their individual locations r,ﬁs. Then, the measurement equation for the
entire network is assembled from the individual shape functions ¥/ (-) as follows
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el - e
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where v, denotes the measurement uncertainty and N, represents the number of
sensor nodes used in the network. The measurement model (6) directly relates the
measurements 9} to the state vector x, characterizing the distributed phenomenon
and to the location vector QkM . The structure of the measurement matrix H; for local-
izing sensor nodes in a network is shown in the following example:

Example of Measurement Model In this example, we visualize the structure
of the measurement matrix H; subject to piecewise linear shape functions.
The entire solution domain 2 is represented by N, = 4 shape functions &' (-).
In addition, there are two sensor nodes located at r,ﬁl and r,§2 in the subdomains
' and 22. Then, the measurement model is given as follows

Y w2(rih) 1

X
k

N 1

y,: _ cl—i—czrk c3+c4r,i 0 0 x,f " v,l

)Ai,% 0 cl—i-c%r,ﬁz c%—l—cir,fzo x,f v,% ’
4
X

v2(ri?) i)

where the constants ¢/ arise from the definition of the piecewise linear shape
functions in each subdomain and thus the geometry of the applied grid for the
finite elements. The extension to orthogonal polynomials and trigonometric
functions can be derived in a straightforward fashion [3,4].

From the previous example, it is obvious that the structure of the measurement
matrix H; merely depends on the location collected in the parameter vector 77
of the individual sensor nodes. That means, for the accurate reconstruction of the
distributed phenomenon (1) based on a sensor network, the exact node locations are
necessary. Due to this dependency, deviations of true locations from the modeled
node locations lead to poor estimation results, as shown in our previous research
work [1]. On the other hand, thanks to the dependency of the measurement matrix
H;. on the node locations, the localization problem can be stated as a simultaneous
state and parameter estimation problem. By this means, the distributed phenomenon
can be reconstructed and the nodes can be localized in a simultaneous fashion.
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5.3 Augmented System Description for Node Localization

For the simultaneous node localization and reconstruction of distributed phenom-
ena, the unknown locations of the sensor nodes n* are treated as additional state
variables. By this means, conventional estimation techniques can be used to simul-
taneously estimate the location and the state of the distributed phenomenon. Hence,
an augmented state vector z, containing the system state x, and the additional
unknown node locations Q;{” is defined by z, := [x] QkT]T.

The augmentation of the state vector with additional unknown parameters leads
to the so-called augmented system model. In the case of localizing sensor nodes, the
augmentation leads to the following augmented system model

[&m} _ [Akik + Bk@ki| n [Bk w?f] )

M M ]
LN a (") W,
and measurement model

9, = WD, 4y (®)
N e’
[REWTD!

where the nonlinear function g, (-) describes the dynamic behavior of the node loca-
tions contained in the vector n™ to be estimated.

The structure of the augmeﬁted system model (7) and (8) for the node localization
is depicted in Fig. 5 (a). In this case, it is obvious that the augmented measure-

(a) Dynamic system (b) Bayesian estimator

Sliced Gaussian
Mixture Filter

Fig. 5 Visualization of dynamic system and estimator for the node localization based on local
observations. (a) The system description contains a high-dimensional linear substructure. The
individual node locations r§’ collected in the parameter vector 7, characterizes the measurement
matrix Hy(-), and thus, the individual measurements &( (b) The Bayesian estimator is based on
sliced Gaussian mixture densities consisting of a Gaussian mixture and Dirac mixture
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ment model is nonlinear in the augmented state vector z, due to the multiplication
of Hk(nM ) and the system state x,. Since the parameter vector 77 characterizes
the measurement matrix Hy, it also has a direct influence on the actual measured
values. It is important to emphasize that the measurement model (8) contains a
high-dimensional linear substructure, which can be exploited by the application of
a more efficient estimator. In the following section, we briefly describe a Bayesian
estimator allowing the decomposition of the localization problem.

5.4 Estimation Based on Sliced Gaussian Mixture Densities

There are several methods to exploit the linear substructure in the combined lin-
ear/nonlinear system equation (7) and measurement equation (8). The marginalized
particle filter [22] integrates over the linear subspace in order to reduce the dimen-
sionality of the state-space. Based on this marginalization, the standard particle
filter is extended by applying the Kalman filter to find the optimal estimate for
the linear subspace (which is associated with the respective individual particles).
The marginalized filter certainly improves the performance in comparison to the
standard particle filter. However, some drawbacks still remain. For instance, special
measures have to be taken in order to avoid effects like sample degeneration and
impoverishment. More importantly, it does not provide a measure on how well the
true joint density is represented by the estimated one.

For that reason, a more systematic Bayesian estimator is employed for the simul-
taneous reconstruction of distributed system and node localization. For the exploita-
tion of linear substructures in general nonlinear systems, we introduced in our previ-
ous research work [2] a systematic estimator, the so-called Sliced Gaussian Mixture
Filter (SGMF). There are two key features leading to a significantly improved esti-
mation result compared to other state of the art estimation approaches.

e Novel density representation  The utilization of a special kind of density
allows the decomposition of the general estimation problem into a linear and
nonlinear problem. To be more specific, as a density representation the so-called
sliced Gaussian mixture density is employed for the simultaneous reconstruction
and localization of sensor nodes.

e Systematic approximation The systematic approximation of the density
resulting from the estimation update leads to (close to) optimal approximation
results. Thus, less parameters for the density representation are necessary and a
measure for the approximation performance is provided.

Despite the high-dimensional nonlinear character, the systematic approach for
the simultaneous reconstruction and localization for large-area distributed phenom-
ena is feasible thanks to the decomposition based on the Sliced Gaussian Mixture
Filter. Furthermore, the uncertainties occuring in the mathematical system descrip-
tion and arising from noisy measurements are considered by an integrated treatment.
The systematic estimator exploiting linear substructures basically consists of three
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steps: the decomposition of the estimation problem, the utilizaton of an efficient
update, and the reapproximation of the density representation [2, 3].

6 Simulation Results

In this section, the performance of the proposed localization methods is demon-
strated by means of simulation results.

Assumption of Simulated Case Study In this simulation, we consider the
localization based on the one-dimensional partial differential equation (1),
with assumed initial condition and Dirichlet boundary conditions as consid-
ered in [1]. The nominal parameters for the system model (5) are given by
s(r,t)=0, a=1 Ar=02, r,,. =16,

where r;\, . denotes the true node location. The aim is the localization of a sen-
sor node with initially unknown location based on local observations only. The
system noise term is C}” = diag {20, .. ., 20}, the noise term for the node loca-
tion is given by C;Y = 0.02, and for the local measurement of the node to be
localized is assumed to be C,, = 0.01. Here, we compare different approaches
for the passive localization based on local measurements: (a) PSL-method,
(b) deterministic approach introduced in [11] (CSN-method), (¢) SRL-method
based on sliced Gaussian mixture filter (50 slices), (d) SRL-method based on
marginalized particle filter (500 particles). These approaches are compared
based on 100 independent simulation runs.

The simulation results for the PSL-method are depicted in Fig. 6. It is important
to mention that this deterministic approach was simulated with perfect information,
i.e., there is noise neither in the system nor in the measurements. Furthermore, we
assume that the sensor node to be localized receives information about distributed
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Fig. 6 Results of the polynomial systems localization method (PSL-method) for various neighbor-

ing nodes with known locations. The true location to be identified is r;\,,, = 16
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phenomenon and locations from neighboring nodes. Since the diffusion equation
has derivatives involving At and Ax, the PSL-method is sensitive to the distance
between the two adjacent known locations. Evidence of this effect is shown in Fig. 6
which plots the values found by the PSL-method for known points of varying dis-
tance from the unknown. It is obvious that the denser the nodes are deployed the
more accurate the location can be identified.

The simulation results for the SRL-method with considering all the aforemen-
tioned uncertainties is shown in Fig. 7. Here, we assume the sensor network consists
only of a single sensor node locally measuring the phenomenon. Furthermore, the
sensor node has only very uncertain knowledge about the initial distributed phe-
nomenon, see Fig. 7 (a).

Fig. 7 (c) depicts one specific simulation run for the estimation of the unknown
node location n{. It can be seen that after a certain transition time the SRL-method
based on sliced Gaussian mixture filter (with 50 slices) offers a nearly exact location
estimation, while the determinstic approach CSN-method strongly deviates (due to
neglecting system and measurement noises). The root mean square error (rms) of all
100 simulation runs over time is depicted in Fig. 7 (d). It is obvious that in this exam-
ple the SRL-method based on the Sliced Gaussian Mixture Filter (with 50 slices)
outperforms both the deterministic approach (CSN-method) and the approach based
on marginalized particle filter (with 500 particles); mainly due to the consideration
of uncertainties and the systematic and deterministic approximation of the density.
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Fig. 7 Comparison of SRL-method based on SGMF, SRL-method based on MPF, and determin-
istic approach CSN-method. (a)-(b) Improvement of estimation of distributed phenomenon thanks
to simultaneous approach. (¢) Specific simulation run for the estimation of the node location r}
collected in the parameter vector QkM . The true location is assumed to be ;. = 16. (d) Root mean
square error (rmse) over time of 100 simulation runs
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Comparing Fig. 7 (a) and (b), it is obvious that thanks to the simultaneous prop-
erty of the SRL-method, not only can the sensor node be accurately localized, but
also the estimation about the distributed phenomenon can be further improved. This
can be exploited by other sensor nodes to localize themselves.

7 Conlusions and Future Work

In this paper, we introduce the methodology of two novel localization approaches
for sensor nodes measuring locally only their surrounding. The PSL-method is
a deterministic approach and is mainly based on restating the mathematical
model in terms of the location. In the case of no noise in the model description
and the measurement, this method leads to sufficient results for a dense sensor
network. The stochastic SRL-method basically reformulates the localization prob-
lem as a simultaneous state and parameter estimation problem. This leads to a
high-dimensional nonlinear estimation problem, which makes the employment
of special types of estimators necessary. Here, the Sliced Gaussian Mixture
Filter (SGMF) and the marginalized particle filter (MPF) are applied for the
decomposition of this estimation problem. Thanks to the stochastic approach,
the SRL-method leads to better estimation results for the location, even with noisy
information. Furthermore, the simultaneous approach allows to improve the knowl-
edge about the phenomenon, which then can be exploited by other nodes for the
localization.

The application of the proposed localization methods (PSL-method and SRL-
method) to sensor networks provides novel prospects. The network is able to
localize the individual nodes without relying on a satellite positioning system
(which is not always available) as long as a strong model of the surrounding is
available.

For the PSL-method it is necessary to incorporate uncertainties into the mathe-
matical model as well as the sensors, and to study the robustness of the method in
the presence of noise. Another issue for future work is that if the locations of sev-
eral nodes are unknown, they may be solved separately using the method described
in this paper; however, we should compare it to the simultaneous solution of the
system of degree three equations. So far, the model parameters and structure were
assumed to be precisely known for the SRL-method. In many real world appli-
cations, the parameters contain uncertainties. The combination of the parameter
identification of distributed phenomena and the node localization is left for future
work. Finally, we intend to test the proposed localization methods on real sensor
data.
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