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Abstract— In seismic, radar, and sonar imaging the exact de-
termination of the reflectivity distribution is usually intractable
so that approximations have to be applied. A method called
synthetic aperture focusing technique (SAFT) is typically used
for such applications as it provides a fast and simple method to
reconstruct (3D) images. Nevertheless, this approach has several
drawbacks such as causing image artifacts as well as offering
no possibility to model system-specific uncertainties.

In this paper, a statistical approach is derived, which models
the region of interest as a probability density function (PDF)
representing spatial reflectivity occurrences. To process the
nonlinear measurements, the exact PDF is approximated by
well-placed Extended Kalman Filters allowing for efficient and
robust data processing.

The performance of the proposed method is demonstrated
for a 3D ultrasound computer tomograph and comparisons are
carried out with the SAFT image reconstruction.

I. INTRODUCTION

The determination of the reflectivity distribution of a
region of interest (ROI) addresses a wide area of applications.
Application fields may be found in radar imaging of the earth
[1], sonar imaging of the ocean bed [2], seismic imaging of
the earth’s crust [3] as well as in medical application based
on ultrasound imaging systems [4].

The measurement setup for analyzing reflectivity distri-
butions regarded in this paper consists of an arbitrarily
distributed sensor network that acquires reflectivity infor-
mation about a ROI. Additionally, unfocussed transmission
of pulses is regarded as this leads to faster data acquisition
especially for 3D applications. For each emitter and receiver
one data set is acquired, which are then fused to achieve
high resolution and high contrast images. By shifting the
transducers to different positions, e.g., the movement of an
airplane in synthetic aperture radar, the sensing aperture is
increased.

The reconstruction of the unknown reflectivity from the
measured data is called an inverse problem [5]. The inverse
problem refers to the situation of knowing the incidence
field of the emitter and the measured data of the receivers
and trying to reconstruct the object causing the variation of
the incidence field. This requires a precise knowledge of
the characteristics of the transducers as well as the physics
behind the propagation of the incidence wave and its inter-
action with the object under investigation. The mathematical

Gregor F. Schwarzenberg, Uwe Mayer and Nicole V. Ruiter
are  with the Institute for Data Processing and Elec-
tronics (IPE), Forschungszentrum Karlsruhe, Germany,

{schwarzenberqg, mayer, ruiter}Qipe.fzk.de

Uwe D. Hanebeck is with the Intelligent Sensor-Actuator-Systems Lab-
oratory (ISAS), Institute of Computer Science and Engineering, Universitit
Karlsruhe (TH), Germany, uwe . hanebeck@ieee.org

solution of this inverse scattering problem is intractable, thus
approximation schemes are applied to yield an analytic [6]
or a numerical [7] solution. The solution with the smallest
number of approximations is known as diffraction tomogra-
phy [8], which is, however, computationally expensive as the
solution has to be determined iteratively.

To overcome these difficulties, the 3D reflectivity distribu-
tion is described by a statistical approach. For this purpose
the reflectivity in the ROI is modeled as a probability density
function (PDF), which may be of arbitrary shape representing
sharp peaks (point scatterers) and structural information
about the object under study. The PDF is approximated by
spatially well-placed Extended Kalman Filters, each of them
estimating a local reflectivity. After the complete data set
is processed, the estimates of all Kalman Filters are fused
to construct a global reflectivity estimate in an efficient and
robust way.

The paper is organized as follows: Section II gives a gen-
eral overview on the problem of determining the reflectivity
distribution measured by an arbitrarily placed sensor network
and presents the general key idea. In Section III, the proposed
solution is introduced and explained. Section IV presents
an application of the proposed image reconstruction method
on a 3D ultrasound computer tomograph and compares the
results with the usually applied synthetic aperture focusing
technique approach.

II. PROBLEM FORMULATION

The problem addressed in this paper is an image recon-
struction problem. As uncertainties in the overall system and
measurement process cause this problem to be ill-posed [9],
the solution for the inverse problem is intractable for the
considered system setup. In order to render this nonlinear
inversion problem tractable, the first-order Born approxima-
tion is employed, i.e., the incidence field at each scatterer
is assumed to be the only source, neglecting the scattered
fields from other scatterers. Furthermore, the refraction of
the emitted pulse is ignored.

Each reflection acquired by a receiver is the integral of
reflectivity (acoustic impedance, electrical permittivity) over
a hypersurface, see Fig. 1.

By intersecting data sets of different receivers, the source
can be located if just one reflector is present. The naive
solution would be to calculate the intersection of all ellip-
soids. Both analytic and numerical approaches are very time-
intensive. Additionally, in the presence of spatial noise or
noise in the data preprocessing the intersections are not exact
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Measurement and data interpretation: On the left an arbitrarily placed emitter e emits a pulse that is reflected by a scatterer and recorded by an

arbitrarily placed receiver r. The measurement of the receiver is plotted in the middle as an amplitude-over-time plot (A-scan). The value of interest is
the time-of-arrival as shown by the flag. From only one measurement the exact position of the scatterer can not be derived, only a region containing the
scatterer. Assuming a constant speed of propagation of the emitted pulse, this region becomes elliptical with emitter e and receiver r as focal points, as
each position on this ellipse has the same summed distance to emitter and receiver (e.g., the solid and the dashed line). In 3D this elliptical region becomes

a rotation symmetric ellipsoid, more precisely a prolate spheroid.

and statistical or heuristic measures have to be applied to
compensate for deviations from the ideal intersection areas.

Since under the Born approximation each measurement
restricts the position of the source on a hypersurface in
3D, only a few points on the surface are true scatterer
positions. All others may be considered as false-positives and
represent themselves as ghosts in the resulting reconstructed
reflectivity image. The fusion of several measurements may
therefore be interpreted as a data association problem. The
complexity class of the corresponding optimal Bayesian
solution is NP-hard and while further research in this area is
still in progress, the data association problem is not explicitly
addressed in this paper.

In addition, real objects do not consist of ideal point
scatterers. Regarding non-isotropic scattering, damping, and
the characteristics of the finite-sized transducers, reflections
from the object are not present in all acquired measurements.
This forbids solutions that fuse the measurements in a multi-
plicative manner, which would cause blindness for directive
scatterers.

In order to avoid intersection calculations and regard
realistic scattering behavior, the underlying space is sampled
to create localized reflectivity estimates. The key idea is to
keep track of all true- and false-positive reflections in the
sampled volume and to estimate a probability density that
denotes for each point the probability of being the source of
a reflection. These local estimates enable the consideration
of system-specific properties of the measurement process,
e.g., regarding sensor characteristics with respect to the
location of the estimator. After processing all measurements,
these distributed samples are fused to an approximation of
the global PDF, which is then used to create an image of
reflectivity.

Here the question arises, how those local samples are
represented and how the nonlinear measurements (hypersur-
faces) are applied to update the PDF. Since the complete
data set of the 3D sensor system is usually too large to be

processed altogether, it is of interest to obtain a recursive
update formulation. Additionally, due to the numerous error
parameters interfering with each other, the overall measure-
ment error is modeled as normal probability density, as
stated by the central limit theorem. The Kalman Filter as
an optimal recursive filter under the condition of normal
distributions for the system model and noise is a good choice
for representing the local samples. In order to handle the
nonlinearity of the measurement data, the Extended Kalman
Filter (EKF) is applied, which linearizes the model equations
using a first order Taylor series approximation [10].

III. REFLECTIVITY PROBABILITY DENSITY

This section outlines the basic model setup derived to
approximate the PDF of a 3D reflectivity distribution from
the measurements of a distributed sensor network. At first,
the approximation of the exact PDF is introduced, followed
by the model equations of the EKF. Then an efficient
measurement to filter assignment is presented and the update
of the PDF is explained, concluded with the creation of an
image based on the PDF.

A. PDF approximation

The exact PDF is approximated by distributed Extended
Kalman Filters that cover the ROI (Fig. 2). Each of them
is a local estimator of reflectivity. The state vector of the
filter is composed of the 3D position of the reflector and can
be extended by any other parameter that may be extracted
robustly from the raw input data, e.g., a frequency analysis by
means of a short-time Fourier transform of the current echo.
These parameters are an additional aid for the improvement
of the reflectivity estimate of the object under study.

B. Extended Kalman Filter

In the following scenario, we assume a discrete-time
dynamic system with linear system model, but nonlinear
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Fig. 2. Example for Kalman Filter placement and affected filters for
one measurement. The large dashed circle represents the sensing aperture
with one selected emitter e and receiver r. One measurement (time-of-
arrival) covers an elliptical region and the measurement noise determines
the thickness of this region. The ROI is covered with Kalman Filters whose
initial covariances are plotted as spheres with the standard deviation as
radius. As shown, the current measurement does only affect a subset of all
filters, which is exploited for an efficient measurement update.

measurement model for the local estimates,

T = Ax 1Tp_1+wg_1,
2z = hp(xr, vk),
wr ~ N(0,Qu), (D
Ve N(O,Rk),
E{vkij} =0 (V k #7).

Here, xj is a nx1 state vector at time step k, containing
at least the [, y, 2|7 position of a local reflection. Ay _; is
the time-variant linear nxn system matrix, which relates the
state vector at time step k — 1 to time step k, disturbed by
the system noise wj, drawn from a zero mean multivariate
normal distribution with covariance Qy of size nxn. zg is
a d,x1 measurement vector, which is a scalar if only the
time-of-arrival (TOA) is taken into consideration. hy (2, vx)
is the time-variant, nonlinear measurement function, which
returns a d, x 1 estimate of the next measurement, given x
and the zero mean Gaussian white measurement noise vg
with covariance Ry of size d, xd,.

The time update equations of the Kalman Filter are given
as [11]

z, = Axazy 2
P, A 1P AT+ Qu.

Based on the system model Ay_y, the state . as well as
the estimate covariance P,_ is predicted for the current time
step k.

The measurement update equations as defined by the
Extended Kalman Filter are [10],

Sk = HyP_H." + Ry,

K. = P H S, 3)
w; = x, + Kx(zk — hi(xy ,0)),

Plt = (I- Kka)Plz.

The measurement prediction covariance Sy is the expected
value of the innovation, calculated by means of the predicted
covariance P and the linearization Hy of the measurement
function hy. The d,xn Jacobian matrix Hy is dependent on
the predicted state x,, ,

_ Ohy

Hy = a—%(wi, 0). 4

Ky is the nxd, Kalman gain, which is used to update the

state estimate to :B;: and its covariance Py .

C. Measurement to filter assignment

Each measurement of an emitter-receiver-combination
is an amplitude-over-time signal (A-scan). For reflectivity
imaging, parameters such as TOA, amplitude, frequency or
phase information of each echo need to be extracted in a
preprocessing step.

As demonstrated in Fig. 1, each preprocessed echo does
only affect a specific volume (ellipsoidal shell) from where
the possible scatterer(s) caused the reflection. The size of this
volume increases with higher uncertainty of the preprocess-
ing step. Therefore, a filter is only affected if it is close to this
volume. This is exploited to achieve an efficient processing
of the Kalman Filter updates as only a subset of all filters
need to be updated for each measurement.

This is achieved by using one part of the Kalman Filter
equations. The quadratic form of the innovation covariance
Sk (equation (3)) may be regarded as a squared norm,
weighted according to the filter covariance matrix P, (Ma-
halanobis distance). This statistical distance is used to define
a set S of Kalman Filters at the positions xj that are
updated by the current measurement 2z,

gk = 2k — hk(mlzv O)a
Sk(v) = {xr: G S <} )

Sk(7y) is x? distributed with d, degrees of freedom. v is
selected beforehand and kept constant during the application.

An example for this gating procedure is shown in Fig. 2,
where the possible origin of one measured reflection for
the marked emitter and receiver is shown as elliptic region.
The central ellipse represents the current measurement, the
bounding ellipses represent the error interval defined by, e.g.,
measurement noise or the imprecise knowledge of the speed
of propagation of the emitted pulse.

D. Independent Kalman Filters

Before processing the acquired data for reconstruction,
Kalman Filters are placed throughout the ROI at a desired



resolution. This initializes the state vector of each Kalman
Filter.

As each TOA measurement is the integral of reflectivity
along an ellipsoidal shell, multiple positions and thereby
multiple Kalman Filters are affected by the same data.
Nevertheless, in this paper the Kalman Filters are assumed
to be independent of each other to avoid the large increase
in complexity.

1) Update of the Kalman Filters: The nonlinear measure-
ment function hy (equation (1)) returns the summed travel
time of the emitted pulse at the propagation speed v between
x,, to the emitter ¢ and x, to the receiver r,

_ x, —e|+|z, —1
(e 0) = 12 —ell + llei el

(6)
v

The Jacobian matrix Hy of this function as defined in
equation (4) equals the normal vector of an ellipsoid through
the position x,, with the focal points ¢ and r.

The update of the distributed Kalman Filters with a new
measurement zj is performed as follows: First, the gating
procedure is applied to determine those Kalman Filters that
have to be updated (Fig 3(a)). The value of v (equation (5))
is set accordingly so that it represents a reasonable amount
of space, from where the measurement z could have orig-
inated. Then Hy and h; are determined for each Kalman
Filter state x, . The update with zj causes the filter state
to be shifted along the local normal (defined by Hy) on the
ellipsoid that is defined by z; and the emitter and receiver
position (Fig. 3(b)). The update of the covariance matrices
results in smaller eigenvalues along the local normal vector.
During the processing of different spatial emitter-receiver-
combinations, the eigenvalues of the covariance matrices
are reduced along different normal vectors (Fig. 3(d)). For
example all eigenvalues will become smaller at true scatterer
positions if the object under study is surrounded by sensors.

E. Image formation

After processing all measurements with the distributed
Kalman Filters, an image has to be created, that shows high
values at positions with a high probability of reflectivity. If
a Kalman Filter has been placed at or is close to a true
scatterer position, multiple measurements will have been
used to update the covariance matrix, resulting in a denser
probability mass around the filter position. Integrating this
density over a predefined voxel grid with a desired resolution
results in high image values at those positions where Kalman
Filters with small eigenvalues in their covariance matrices are
located.

One voxel of the final image is the sum of the integrals of
all Kalman Filters over the volume of the regarded voxel. For
speed-up purposes, only those Kalman Filters are regarded
for a specific voxel that lie closer than four times the standard
deviation corresponding to the covariance matrices.

IV. APPLICATION: ULTRASOUND COMPUTER
TOMOGRAPH

The derived method is applied to reconstruct reflectivity
images of a 3D ultrasound computer tomograph (USCT) [4],

Fig. 4.  Experimental ultrasound computer tomograph with cylindrical
aperture and approx. 2000 transducers that are grouped into 48 transducer
array systems (white blocks). The application is shown at the bottom, the
woman lies in prone position on a bed while the breast is hanging in the
measurement tank filled with water.

that has been built at the Institute for Data Processing and
Electronics at Forschungszentrum Karlsruhe. This system has
been developed for early breast cancer diagnosis and enables
3D imaging of a non-deformed breast with non-ionizing
radiation. Fig. 4 shows the measurement setup.

The sensing aperture is cylindrical with a height of 15 cm
and a diameter of 18 cm. It is equipped with 384 emitters
and 1536 receivers grouped in 48 transducer array systems.
The transducers have a size of (1.4 mm)?2, a center frequency
of 2.4 MHz and an opening angle of +15 degree at -6 dB.
A complete measurement results in a data set of approx.
600.000 A-scans (3 GB), which can be additionally increased
by rotating the cylindrical aperture, thereby acquiring more
information from different angles.

In this paper, a constant speed of sound is assumed. In
future work, varying speed of sound can be introduced by
including the speed of sound map of the ROI, which can be
determined with the same data set [12].

A. Data preprocessing

The TOA of each recorded echo is detected by means of
a pulse detection method based on the wavelet transform
[13]. Each TOA is used as a measurement for updating the
distributed Kalman Filters. The ability of the pulse detection
to separate two interfering echoes has been evaluated as
900 ns (center frequency of 2.4 MHz), which is used as
basic magnitude of the measurement noise.

B. Kalman Filter setup

For the following evaluation, the Kalman Filter equation
are adapted as follows:
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Fig. 3. Example of processing two TOA measurements for 100 distributed Kalman Filters. Their covariances are plotted as ellipsoids (initially spheres)
centered at the positions of each filter. The point scatterer is shown as blue dot at the position (x,y) = (0.0, 0.0). (a) shows the subset of filters (red) for
the first measurement as determined by the gating procedure. The selected filters are updated, which shifts their positions towards the measurement and
adapts their covariance matrices accordingly ((b)). The update procedure is shown for a second measurement ((c) and (d)), which causes the covariance of
the filter closest to the scatterer to shrink the most.



Fig. 5. Left: Ten vertically spanned nylon threads with a diameter of
0.2 mm, each spaced 2 mm apart for evaluating the horizontal resolution
of the USCT. Right: Tissue mimicking triple biopsy breast phantom for
evaluating the breast imaging capability of the USCT.

The system model Ay is set to identity as no prediction
on the position of the state vector may be performed. The
application of system noise is also neglected. The system
noise would increase the eigenvalues of the covariance
matrices and thereby unsharpen the image. The analysis of
a useful application of system noise is part of future work.

The measurement noise is constant during the training
process and has to be set depending on the amount of
data and the initial values of the covariance matrices of the
Kalman Filters.

The placement of the filters and their initialization is
application-dependent. The choice of the number of Kalman
Filters and their distribution is an empirical process so far
and is based on the desired resolution in the final image or
its desired quality with respect to structural information.

C. Evaluation

The proposed method is evaluated by means of two ex-
periments. Image reconstructions with the PDF are compared
to the currently applied image reconstruction, which is based
on synthetic aperture focusing technique (SAFT) [14].

The first experiment consists of ten vertically spanned
nylon threads (Fig. 5 left). This experiment was used for
experimental resolution assessment in the horizontal plane.
The reconstructed images of the nylon threads are compared
by evaluating the contrast of each image. A second and more
complex experiment with a clinical breast phantom (Fig. 5
right) is done to demonstrate the proposed method for breast
imaging.

To reconstruct an image with SAFT, each recorded A-scan
A(;,5) from an emitter and a receiver at the positions ¢; and
r, is backprojected to the image position x of the image [

J .
using

N le; =zl + lr; — |
)= 13 (B0
i=1 j=1

where v is the speed of propagation of the emitted pulse,
here assumed to be constant. The A-scans used for the image
reconstruction with SAFT are created by convolving the TOA
data from the preprocessing step with a Gaussian window of
a temporal length of 1 pus. This compensates for the error
induced by the preprocessing step and further errors caused

by the imprecise knowledge of the speed of sound and the
positioning of the transducers, respectively.

As measure for the contrast, the signal difference to noise
ratio (SDNR) is evaluated, which is calculated by comparing
the mean amplitude of the reconstructed object Loy jec: to the
background artifacts. These are evaluated as the mean pupg
and standard deviation opg,

SDNR — Hobject — MBG ' (8)
0BG

For evaluating the contrast of the nylon thread reconstruc-
tions, the background has to be segmented from the object.
This is performed separately for each nylon thread by taking
those pixel into account that have higher values than half of
the local maximum.

1) Thread experiment: The ten nylon threads have a
diameter of 0.2 mm, each spaced 2 mm apart and are
vertically spanned through the center of the USCT. Only
the physically neighboring transducers closest to the slice
image were used resulting in 16 sending and 64 receiving
elements. This is sufficient for reconstructing the threads
but also causes image artifacts due to the sparseness of the
sensing aperture. This gives a good basis for comparing
the two image reconstruction approaches via the contrast
function. The ideal image reconstruction of these threads
would result in ten distinct dots as shown at the top of Fig. 6.

The reconstruction of the nylon threads with the SAFT
approach (407 x 407 pixel) is shown on the left of Fig. 6.
The ten threads are clearly visible, nevertheless, there are
many artifacts in the proximity of the threads. The computed
SDNR resulted in a value of 5.1.

The image reconstruction with 87 x 87 distributed Kalman
Filters is shown on the right of Fig. 6. The threads are also
imaged as distinctive points, but the reconstruction artifacts
are significantly reduced. The evaluated contrast value of
10.5 is twice times higher than the value of the SDNR of
the SAFT image reconstruction.

2) Breast phantom experiment: The clinical breast phan-
tom is a triple modality test object for biopsy and can be
imaged with X-ray, MRI, and ultrasound [15]. This breast
phantom has several inclusions mimicking cysts and cancer
structures. The average attenuation is 0.5 dB/MHz/cm. For
comparison, a slice region was chosen that shows two cysts
that have a strong directive scattering behavior and one
cancerous structure that scatters more isotropic.

For this experiment the ground truth for ultrasonic re-
flectivity is unknown. In order to get an idea of the inner
structure of the breast phantom, an MRI image of the
same breast phantom has been acquired. The according slice
region is shown at the top of Fig. 7. A high resolution
reconstruction with SAFT (805 x 605 pixel) is shown on the
left of Fig. 7. The boundaries of the cysts are not completely
visible and the cancerous structure dominates the image, as
most of the backprojections fell in this region. The image
reconstruction with 73 x 55 Kalman Filters of the same
region is shown on the right of Fig. 7. The boundaries of
the cysts are more distinct and the cancerous structure does
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The slice image reconstruction (407 x 407 pixel) of the ten vertically spanned nylon threads with SAFT shows ten clearly distinguishable

points, see the ideal image at the top. Nevertheless, along the normal of the line connecting the ten threads, lots of artifacts are visible, which is due to
the sparseness of our sensor aperture. The image reconstruction with 87 x 87 distributed Kalman Filters also clearly shows ten points. There are also
reconstruction artifacts but less visible and more homogeneous. The SDNR value of this reconstruction is twice times higher compared to the SAFT image

reconstruction.

not dominate the image. The high amount of reflections from
this region causes the covariance matrices to shrink resulting
in a slightly visible grid. Compared to the boundaries of the
cysts, which are formed by covariance matrices deformed
along the tangent of the boundary, the value calculated from
a single covariance matrix is not as high as the sum of largely
overlapping Kalman Filters along the boundaries.

V. CONCLUSION AND FUTURE WORK

A new approach was presented for the reconstruction
of the 3D reflectivity distribution of a region of interest
measured by an arbitrarily distributed sensor network. The
imaging system regarded here is based on the synthetic aper-
ture approach, which is widely applied in seismic, sonar, and
radar imaging. The presented approach models the region of
interest as a PDF representing spatial reflectivity occurrences.
The data is processed in a recursive manner to update the
distributed Extended Kalman Filters used to approximate the
PDEF. This allows to process the nonlinear measurements as
well as fusing information of objects under study that are
only partly available in the acquired measurements.

Experiments with a 3D ultrasound computer tomograph
showed that the proposed method results in a higher image
quality with less image artifacts and higher structural in-
formation. The run-time for reconstructing images with the
distributed Kalman Filters is in the same order of magnitude

as the SAFT approach. The results also showed that the
amount of Kalman Filters does not have to be as high as
the number of voxel used with the SAFT approach.

The image quality may be additionally improved by re-
garding system-specific parameters such as sensor charac-
teristics, uncertainties in transducer positioning, and speed
of propagation determination as well as object properties.
With the proposed method, a basic framework is available
for future work. More precisely, the following issues will
be analyzed:

o The estimation of measurement noise during Kalman
Filter training with a second estimation of the reflectiv-
ity may help reduce the artifacts further and also sharpen
the image.

o The application of system noise to those Kalman Filters
that were not affected by processing the TOA data of
one A-scan could also decrease false-positives.

o The utilization of the information of non-occurring
echoes at specific times could eventually be used to
diminish directly artifacts in the image.

This work demonstrated a statistical approach for 3D im-
age reconstruction, which is easily extendable with system-
specific parameters and is able to consider uncertainties in
system parameters and input data.
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The slice image reconstruction (805 x 605 pixel) of the breast phantom with SAFT shows two cyst mimicking structure that have a directive

scattering behavior as well as another circular structure (“cancer”) that has scatters more isotropic. For comparison, see the MRI image of the whole slice at
the top with the marked region chosen for evaluation. The boundaries of the cysts are not completely visible and the strong scattering region dominates the
image as a bright region. The image reconstruction with 73 x 55 distributed Kalman Filters shows the boundaries of the cysts more clearly. The cancerous
region is displayed completely different compared to the SAFT image. The high amount of reflections from this area caused the covariance matrices to
shrink, which is slightly visible as dot grid. Due to the reduced data set taken for this reconstruction, the skin of the breast is not visible in the ultrasound
images, as the skin reflects the ultrasonic pulses to regions that are far below the regarded slice image.
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