New Results for Stochastic Prediction and Filtering
with Unknown Correlations

Uwe D. Hanebeck, Kai Briechle
Institute of Automatic Control Engineering
Technische Universitdt Miinchen
80290 Miinchen, Germany
Uwe.Hanebeck@ieee.org, Kai.Briechle@ei.tum.de

Abstract

This paper considers state estimation for dynamic
systems in the case of nonwhite, mutually correlated
noise processes. Here, the problem is complicated
by the fact, that only the individual covariances are
known; cross covariances between random variables
obtained by taking individual noise processes at dif-
ferent time steps and between different noise processes
are completely unknown. New estimator equations
for solving this problem are derived in feedback form
for both the prediction step and for the filtering step
based on existing ideas known as covariance intersec-
tion. Solutions are given for the most general case
of updating an N-dimensional state vector estimate
based on M-dimensional cbservations. Furthermore,
computationally efficient solutions for obtaining mini-
mtin covariance estimates are derived to avoid numer-
ical optimization otherwise required.

1 Introduction

We consider the problem of state estimation for lin-
ear dynamic systems when nonwhite, mutually corre-
lated noise processes are present. Solving this problem
includes 1. sequentially updating the state estimate
based on noisy observations and 2. propagating the
state estimate through a dynamic system.

The main problem in deriving an appropriate fil-
ter is, that the assumed noise model leads to an un-
known amount of correlation between a given state
estimate and the noise processes. Hence, an appropri-
ate estimator must yield results compatible with all
possible levels of correlation. This is the key point of
the proposed filter method, which is based on ideas
known as covariance intersection [3, 1]: The unknown
correlations are not neglected, but considered by pro-
ducing conservative estimates for prediction and fil-
tering step which are consistent with any level of cor-
relation. Applying this kind of filter to complex esti-
mation problems like multiple target tracking, robot
localization, and decentralized fusion, often improves
results significantly compared to a common Kalman
filter based approach, especially if covariances cannot

147

be estimated properly or the measurements are dis-
torted by non-white noise (2, 4). Good results may
even be obtained in cases, where the Kalman fiter
based approach completely fails and the filter diverges,
for example in decentralized control problems [1].

The main contribution of this paper is to derive new
formulae for the prediction step and for the filtering
step in feedback form, where the most general case
of updating an N—dimensional state vector estimate
based on M -dimensional observations is considered.

Furthermore, practically useful and computation-
ally efficient solutions for obtaining minimum covari-
ance estimates have been derived for both the pre-
diction step and for the filtering step. This allows a
simple and efficient overall implementation of the filter
algorithm, because no numerical optimization routines
are required.

‘We hope that the results are helpful for practition-
ers willing to implement this type of filter. Further-
more, since all the required derivations and proofs
are included, it aiso provides the basis for further
development along these lines,

In Sec. 2, a rigorous formulation of the problem of
state estimation with unknown correiations is given.
Section 3 then derives an algorithm for the prediction
step (time update) in the presence of unknown correla-
tions. An efficient solution for the optimal parameter
for the prediction step is derived in Sec. 4. Subse-
quently, the filter step (measurement update) for vec-
tor measurernents is derived in feedback form in Sec. 5,
the solution for the corresponding optimal parame-
ter is then given in Sec. 6. The scalar measurement
case including a more explicit solution for obtaining
minimum covariance estimates is treated separately
in Sec. T.

2 Problem Formulation

We consider a state space model with stochastic
uncertainties according to

u

Ze+1 = AxZy + Bany with u =2 + 23

Qk = HkEk +§i s

1)
2



where the nonwhite additive input noise gj! is charac-
terized by

féﬁ“ forn=m,

Cov{et, et} = .
{en em} unknown otherwise

and the nonwhite additive output noise ef by

( Cw forn=m
Cov{el,en}= 7 !
unknown otherwise ,

which is equivalent to unknown power spectra. Only
upper bounds C}, C for the true covariance matrices
are given by

Ci2C,

cizCy,
where for two positive definite matrices A and B, the
expression A > B is interpreted as A — B positive

definite. In addition, e}, _q,"‘c’ are possibly mutually
correlaled, ie.,

Cov {er, €.} = unknown for all n, m ,

with an unknown amount of cross—correlation.

3 Time Update

At time step k, a state estimate zf of the form
zi = i + ek

is given with mean % and additive uncertainty .
The joint covariance matrix of e and e} is given by

cov 1211 _ TG ]
[ Cys Cp+

where only upper bounds C§, C} for the true covari-
ances Cp*, C}* with

ciz=Cy . crz2Cy

are known. The cross-covariances C3* = (C*)T are
completely unknown.

When performing a time update at time step & by
means of the system model (1), the mean 2% of the
predicted state £7 is simply given by the weighted sum
of the mean of the last estimate & _, and the estimate
i1,y of the system input according to

. " .
&= Ae1@io) + Beafy -

The problem is now to calculate the covariance of the
predicted state zf, when the correlation between the
previous estimate zf_, and the system input 2, _, is
unknown. Before solving this problem, we need the
following two Theorems:
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THEOREM 3.1 Given o positive definite symmetric
matriz C with

Cab]

~ |-Caa
C= Coa Cuw

a larger matriz C > Cis given by

|-+Cna 0 _]
C="105-x

0 0.51+ncbb ’
with k € (—0.5,0.5).

Proor. For C — €, we obtain

cenfizde e ]

—Cha {o-ﬁ - 1} Cup
- [?ﬁcaa _Cab ]
_Cba gg;: Cbb

The quadratic form

— [T T _C al T:T ACaa _Cab o
e=lri{e-c}ff-wer['Gr 1G] ]
with

_05+k
05—k

A € [0,00)

and arbitrary vectors @ € IRV, b € IR™ can be rewritten
as

_ T _ 1 ,7] [Caa Cas] [ VAa
Q= [\/Xg b ] [Cbn Cbb] [—y‘;@]
L.
o
Since C is positive definite, we have @ > 0, which implies
that C — C is positive semi—definite. O

REMARK 3.1 C > € in Theorem 3.1 implies that

trace(C) > trace(C) ,
Icl=|Cl .
Ciz2Cufori=1..N+M .
LEMMA 3.1 If matriz C is larger (or equal) than ma-

trix (-l‘, ie, C > é, then TCTT > TCTT Jor an
arbitrary matriz T.

THEOREM 3.2 Given two correlated random wectors
a, b, with means @, b and true covariance matriz

rl-ﬁ-l] _ [éaa ea-l
Cvly T G G



where, however, only upper bounds Cga, Cu for the
true individual covariances Cg,, Cpp with

Caa 2 Cbh 3

Ccm 2 cbb +
are known. The cross—covariances Cop = ég; are
unknown. Then, an upper bound C.. for the true
covariance C.. of the random vector

= Aa+Bb (3)

is given by

Cee= AC AT +

L BCM,BT .
M

"05» 0.5

Proor. Writing (3) as
a
a=1a B[]
the true covariance C.. of ¢ is cbviously given by
Caa ab AT
Ce=[a 8] [ Cba] [BT] '

Replacing the covariance matrix by a larger one according

to Theorem 3.1 gives
0 AT
. 5+»;C"’J B”

With Lemma 3.1, we have Ce. > Cee, which concludes the
proof. O

A Coa
C..=[A B] [0-5 R

Based on this Theorem, the solution to calculating
the covariance of the predicted state £}, when the cor-
relation between the previous estimate zi_; and the
system input y,_, is unknown, is given by

1
[o =
k705 - ke

1 u T
- B, B
+ 5 R Bi1C{ 1Bi,

A1Ci AL,

for kx-1 € (—0.5,0.5).
with the initial state estimate
ance Cg.

4 Minimum Covariance Time Update
THEOREM 4.1 The parameter " for the minimum
covariance malriz of the prediction result is given as
the unique zero of

The time update is started
&5 with initial covari-

N fixd 4 wx +0.250 1

i1 sk + 0.5,
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in the interval y € (~0.5,0.5), where fi} is given by

14 b
1 l_‘u;'c

r

and pi, i=1,... N, are the genemlized cigenvalues
of the matriz pazr AkCSA and B, C¢BT.

PROOF. 'Tiansformmg the matrix pair A,CfAT and
BiC!BY as TTACiATT =1 and TT"B,C:!B]T =
diag [,u,k, e ] results in
det{CP} = det —1—-1 + —1—diag [,ul y,N]

k 05— 05 F ke AR
which is equivalent to

det(ery =4 1 ¥ et {14 05=x dmg[u
k 0.5 ke 0.5+ rx ke

-,uﬁ’]},

where N is the dimension of the state space. Bilinear

transformation of ki according to

0.5 — kg

M= BT e

and differentiating with respect to Ax gives the necessary
condition

PP VA LR ;
—N{ ’\k"} Xfil;I,{H#k'\k}Jr

»

T4+ Ak N . i
{T} Soqm [J+uMm) =0

i=1 =1
FFEL

which can be simplified to

_N+Ak(1+Ak)Zm=o .

With N = 307 1 we obtain

Sl
1+ p.k/\k
Resubstituting kr gives

N (0.5 — k)% + (0.5 + £ )°
0.5 + s, + (0.5 - Pﬁk).u;.c

=1

Applying a bilinear transformation of the eigenvalues ac-
cording to

_i 1+ﬂk
Hi = 1-#;;

concludes the proof. O



5 Measurement Update:
Vector Observations
We consider the measurement equation (2} with
(uncertain) vector observations §,_ at time k. g, de-

notes the state vector, e7 denotes the additive uncer-
tainty. Furthermore, there exists a prior estimate z,
of the state vector, which also suffers from additive
uncertainty e} according to

P_ P
zh =3 +ef
gﬂ, gi are assumed to be correlated according to

o (1N _fep e
-k cw o

(4)

Only upper bounds C%, C¥ for the true covariances
CP?, C¥ are known according to

Cct>CiP

cl>Cw .

The cross-covariances C}¥ = (C}*)7 are completely

unknOWR.

THEOREM 5.1 A conservative stale estimale based on
& given vector observation Qk 1s given by

.7:

=z + A CLHT

{cY + \H.CPHTY !
Ci = (1+X)Cf — (1+ ) M CRHT
{CY + A H CPHT VT HCE

(g, ~Hel) |

with scaling parameter A € [0, 00).

Proor. Consider the random vector
Fod
2= [3]

E{z}= [H%LZ]

The covariance matrix of z, is given by

Cov {z,} = Cov { E“F]}
- E{ zx }{ilk] Bk }1%:5_4]?}

= E{[ (ek)T p{(ei)TH + (ek) } r
{erk +efler  {Higf +el}{ef)"HL + ()"}
- [H,‘

The mean of z, is

I

Ko ) CIP(H,)" + G
Crr +C¥ HL.CPHY + HoCP + CPHY

rerl
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Bounding the true covariance matrix in (4) from above

by
P 1 Cp 0
ool %5 e
G 0 737 Ch
gives
T
a5 Ok 5oy ChHE
Cov{z,} <
0. 5—»:,‘ H.CD 7 5+,<,‘ Ci+x 5 = H,C}H{

Hence, according to the appendix we have

1 1
s8 _ ap FET Y 14
S =Lt g5y Ok k{0.5+nk .
-1
+gET IOl (@~ ) |
1 1 T 1
a P :’H v
Gk =575 (0.5 — Ky)? G Hi {0.5+nk k
. -
+ mmcgn{} H:CE ,

ot equivalerttly

it =+ ot pui o
0.5+ v .,
05— nkH’“CPHk} (B, — Hel) ,
el 1 054Kk e [y
Ok = 05— Ok~ 05— 05— Ax CiHe { Ck
05+
+ o ”"chpak} H; C? .

With the bilinear transformation

0.9 + kg
A = —=
05— e (6)
we have
1
0.5—Nk—1+Ak ) (7)
which achieves the proof. d0

6 Minimum Covariance Measurement
Update

THEOREM 6.1 The scaling parameter AP™ for a min-

imum couvariance malriz of the filtering resull is given

by

0.5 + £
05—

ml'ﬂ.
A mlﬂ *



where K™ is the unique zere of the expression

M
05 L
K+ 0.50%

i=1

with n € (=0.5.0.5). Note that M is the dimen-
sion of the measurement vector and N 1s the dimen-
sion of the stote vector. 7} are given by the bilinear
transformation

; 1+ gk
ﬁ'k - + i k
1
where ;LL. F=1..... .M. are the generalized cigenval-

ues of the real, symmetric, positive definite matriz pair

CY and HkC{:H,_T_.

Proor. We have

(14 A)™ d(lt{C }det{C}}
det{C{ + MHCLH]}

det{Cyr} =

Transforming the maurix pair CY. HyCLH] according

to TVCYT = L TTHRCYHIT = diaglieh.... ] we
obtain
. 1+ )™
det{Cp} =% ‘—}ié-)-—
[T+ miro)
=1
with ¢ = det{C}} det{C¥} and hence
Af 1
det{Ci} =cx || ————(1 4+ 2™
{Ci} Ail;[llJr#fc'\k( k)

As a necessary condition for AP'™ we obtain

AL -1
dG’L{CL} = Cp {H(l +/1k’\k) } {N(l + )\k)N_l

Af Af 23
H(l k) = (14 )Y Z [,ui H(I +,u{.z\k)]} Lp

i=1 i=1 i=1
I

Because of yi > 0 fori = 1,..., M and A € [0,00) the

relations
L+a)" 21,
M _
[Ta+mag>1,

1=1
A .
TIQ+ua)* 21

i=1

hold and the above condition is simplified to

Z 1"#& L M_N .
1+n”k’\k
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Applying bilinear transformations according to

pmin _ 0B RET L bt
05— apn ' TF T T 0
gives the desired result. a

7 Measurement Update:
Scalar Observations
The case of estimating a vector state from scalar ob-
servations is treated separately from the general case,
since more explicit results can be obtained. We cot-
sider an {uncertain) scalar obscrvation §, at time k,
with the associated measurement equation

g = Hizy +el . (8)

x;, denotes the state vector. ¢f denvtes the additive
uncertainty. Furthernmore, there exists a prior esti-
mate 2] of the state vector. I also suffers from
additive uncertainty g’;_ according to

N P
Ly =&y, + 8 -

efl. ef are assumed to be correlated according to

CGrr%n Moy o

Vo up A

(er L 4

Again, only upper bounds C¥, C¥ for the true covari-
B upE Kt Sk

ances CFF, C¥¥ are known according to

el zCy

) =Py =yp
and the cross-covariances ), = ¢ are completely
unknown.

THEOREM 7.1 A conservative estimate for the state
in the linear measurement equation according to (8)
with a given scalar observation G 1s given by

ChH
o= (- H ,
T ey N HICEH, (i — Hidf)
(9)
PH, HiCP
Ci=0+a)C - (1 +,\k))\k—«——-——c’°—"*"° k

C¥ + M H{CLH,
(10}

with scaling parameter Ay € [0, 00).

PROOF. Similar to vector case. 0



THEOREM 7.2 With N > 2 the dimension of the state
space end Gy = HkC H,., the minimum size of Cf
in (10} is attained for /\"”“ given by

G —NC'}:
(N -1)Gi

/\\miu _

ProOF. Minimizing the volume of

CEH, HIC]

14 Ay — 22— ——~
(Lt XM e TGP,

Ci=(1+A:)CE -
is equivalent to minimizing
det{Cj) =det(Cl)det- ((1 4+ Al

H, HﬂCp
= (1 + Ax) A

Cy + M HICYH,
From basic linear algebra. we have

okl (c-i—ng_i)

with L the dimension of the vectors g. b and secalar ¢
Hence. we obtain

det(cl + @b’} =

det{CL) =det(CEH(1 + AV ! (1 + Ak

T e
4 age o HECHL, )

"CYy o HICHH,

which can be simplified to

Cy
det(CL) ~ {1 + )Y ——Z— .
€ ( k) { k) Cf"i")\kck

Differentiation with respect to Ay yields

9 -
E\—k det(Ck)

~ (14 AN ICVN(cu+,\ka) 1+ M)Ge

(CF + MGe)?

Setting the result to zero gives the necessary condition

AP(N — )G + NCY —Gr =0 .
With
32
g min
3 det{Ci(A"")} >0,
this is the desired result. O

The special case of scalar states in the case of scalar
measurements must be treated separately and yields
simpler results.

THEOREM 7.3 For the case N = 1, the scaling param-
eler A" for minimum variance of the fillering result
is given by

Amm _ {0 Cf 2 HECE

o= .
20 otherwise.

ProoF. The variance of the filtering result can be written

as

P14+ Ay)
cr= -t 7
+ A CF

42 $

H

x

The result follows by inspection. a

8 Conclusions

This article provides a self-contained derivation for
both the prediction and filtering step for state estitna-
tion in thie casc of unknown correlations. The filtering
step is based on existing ideas {1]. but has been fur-
ther extended. Moreover. an efficient algorithm for
the time update step has been developed. For both
the time update and the filtering step closed-form
solutions for the calculation of minimum covariance
estimates have been derived.
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Appendix

If g, b are jointly Gaussian with mean and covariance
C_:" Caa Cab
[Q} and [Cba Cui

a given observation b yields the conditional (Gaussian)

density of the random variable a conditioned on b accord-
ing to

Efalb=8} =g+ ,.bc;;(g_g)

B {ad" |b=b} = Cus - CasCyi/ Cu -
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