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Abstract

This paper derives a fundamental result for pro-
cessing two correlated random vectors with unknown
cross–correlation, where constraints on the maximum
absolute correlation coefficient are given. A tight up-
per bound for the joint covariance matrix is derived
on the basis of the individual covariances and the cor-
relation constraint. For symmetric constraints, the
bounding covariance matrix naturally possesses zero
cross covariances, which further increases their use-
fulness in applications. Performance is demonstrated
by recursively propagating a state through a linear
dynamical system suffering from stochastic noise cor-
related with the system state.

1 Introduction

In many applications correlated random vectors
have to be processed, which requires their joint statis-
tics to be available [1]. However, the cross covariances
may either be too expensive to maintain or are simply
not available. Unfortunately, simply neglecting the
cross covariances by setting them to zero gives wrong
results [2, 5]. Hence, an upper bound for the joint co-
variance matrix is desired, which is compatible with
all possible cross covariances.

For the case that the correlation between the con-
sidered random vectors is unconstrained, i.e., the max-
imum absolute correlation coefficient is less than or
equal to one (|r| ≤ 1), a covariance bound exists [3, 4].

However, the existing covariance bound is too con-
servative, i.e., is not tight enough, when a constraint
of the form |r| ≤ rmax < 1 is available. Hence, the
purpose of this paper is to derive a tight bound for
the case of constrained correlation.

The problem of bounding two correlated random
vectors with a given cross–correlation constraint is
formulated in Sec. 2. An appropriate bound is de-
rived in Sec. 3 and then discussed in detail in Sec. 4.

The advantage of using the new bound in applica-
tions is demonstrated in Sec. 5, where a state is re-
cursively propagated through a linear dynamic system
corrupted by correlated noise.

2 Problem Formulation
We are given two random vectors x ∈ IRN , y ∈ IRM

with expected values

E{x} = x̂ , E{y} = ŷ

and individual covariances

Cov{x} = Exx , Cov{y} = Eyy ,

where x and y are assumed to be correlated. Their
cross covariances Cov{x, y} = Exy and Cov{y, x} =
Eyx, however, are not explicitly known. It is only
known that the correlation coefficient r is limited ac-
cording to

|r| ≤ rmax . (1)

Hence, a constraint for the cross covariances is given
by

EyxE−1
xx Exy ≤ r2

maxEyy , (2)

where, in general, for two positive definite matrices A
and B, an expression of the form A > B (A ≥ B) is
interpreted as A−B positive definite (positive semi–
definite). By defining the matrix

C = r2
maxEyy − EyxE−1

xxExy ,

verification of (2) can be performed by Sylvester’s
criterion according to

det (C(1 : i, 1 : i)) ≥ 0

for i = 1, . . . , M .
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Figure 1: Some members of the family of possible covariances (1–sigma–bounds) for different constraints on the
maximum absolute correlation coefficient. The unconstrained case corresponds to |r| ≤ 1.

Example 2.1 For two scalar random variables x and
y with individual variances Exx = 9 and Eyy = 4,
some members of the family of possible joint covari-
ance matrices for different constraints on the maxi-
mum absolute correlation coefficient are visualized in
Fig. 1 by plotting the respective 1–sigma–bounds 1.
The unconstrained case would correspond to |r| ≤ 1.

The goal is now to find a family of bounding covari-
ances B with

B ≥ E(r) (3)

for all possible joint covariances E(r) defined by

E(r) =
[
Exx Exy

Eyx Eyy

]

with r according to (1) and Exy, Eyx such that (2)
holds.

3 Derivation of Covariance Bound
For deriving the desired covariance bound we use

the fact that the union of the 1-sigma–bounds of all
possible joint covariances forms a convex set aligned
with the coordinate axes. Hence, the cross covariances
of the bounding covariance matrix have to be zero
matrices. For the simplest case of two scalar random
variables x and y this is visualized in Fig. 1.

11–sigma–bounds will be used throughout the paper without
loss of generality.

In addition, for achieving an upper bound, the co-
variance matrices Exx and Eyy have to be individually
scaled. Combining both conditions yields

B =
[
kxExx 0

0 kyEyy

]
. (4)

kx, ky have to be selected in such a way that (3) holds.

Theorem 3.1 The scale factors kx, ky in (4) are
given by

kx =
1

η − κ
, ky =

1
η + κ

(5)

with

κ2 ≤ 1 − 2η

1 − r2
max

+ η2 (6)

and

0.5 ≤ η ≤ 1
1 + rmax

. (7)
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is considered. According to Sylvester’s criterion, the ma-
trix D is positive semi–definite, if the determinants of all
submatrices D(1 : N + i, 1 : N + i) for i = 1, . . . , M are

larger than or equal to zero.
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definite and does not need to be tested. The determinants
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− r2

max ≥ 0

and yields (6). The constraint on η in (7) then follows by

claiming a non–negative right–hand–side in (6). �

The parameter set for η and κ from the Theorem
is redundant in the sense that it specifies scaled vari-
ants of a bounding covariance with the same form and
orientation. Hence, it is sufficient to restrict attention
to the smallest of these scaled variants. The appro-
priate parameter values are specified in the following
Lemma.

Lemma 3.1 A family of bounding covariances E(κ)
depending on a parameter κ is given by (4) with kx,
ky in (5). The parameter κ may vary according to

|κ| ≤ 0.5 . (8)

η is a function of κ given by

η(κ) =
1 −

√
r2
max + κ2 (1 − r2

max)2

1 − r2
max

. (9)

The admissible values for η and κ resulting from
Lemma 3.1 are visualized for different values of rmax

in Fig. 2.
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Figure 2: The admissible values for η(κ) and κ result-
ing from Lemma 3.1.

4 Discussion of Result
The resulting family of bounding covariance ma-

trices B(κ) given in Lemma 3.1 is now discussed re-
garding optimality, selection of one member, and more
complicated correlation constraints.

Optimality: An important feature of the new ap-
proach is that every member of the family of bound-
ing covariance matrices B(κ) bounds every possible
covariance E(r) for r according to (1). Even more,
consider the union U(rmax) of the 1–sigma–bounds
of all possible covariance matrices fulfilling the given
correlation constraint and the intersection I(κ) of the
1–sigma–bounds of the proposed family of bounding
covariances.

The previously known bound from [3] ensures that
the set U(rmax) is always a subset of the set I(κ)
according to

U(rmax) =
⋃

|r|≤rmax

E(r) ⊂
⋂
κ

B(κ) = I(κ)

However, it is apparent from the example given
in Fig. 3 that the approximation is not tight for
rmax < 1. In contrast, for the new bound the set
U(rmax) is equivalent for every rmax to the set I(κ),
i.e.,

U(rmax) ≡ I(κ) ,

which is visualized in Fig. 4.

Selection of κ: Up to now, the complete family
of bounding covariance matrices B(κ) has been con-
sidered. Of course, when applying the new bound, a
specific value κ∗ has to be selected, which results in a
single joint covariance matrix B(κ∗).



More complex constraints: The case of more
general constraints on the correlation coefficient of the
form

−1 ≤ rmin ≤ r ≤ rmax ≤ 1

is not considered here, since it is regarded to be of
minor practical importance. Furthermore, it leads
to a more complicated family of bounding covariance
matrices B(κ) with nonzero cross covariances.

5 Application Example
For demonstrating the performance of the new

bound, a typical application problem is solved: Prop-
agation of a given state recursively through a linear
system. The system equation is given by

xk+1 = xk + wk+1 ,

where the noise vector wk is correlated with the state
xk. The level of correlation between wk and xk is
unknown but constrained by (1) with a given rmax.
The individual covariances of the initial state and of
the (time–invariant) noise are selected as

Exx
0 =

[
3 2
2 3

]
and Eww

k =
[

1 −0.9
−0.9 1

]
,

respectively. The goal is to calculate a bounding co-
variance matrix for all the possible covariance ma-
trices Exx

k (rk) of the state xk for several time steps
recursively.

For reference purposes, the covariance matrices
Exx

k (rk) are calculated according to

Exx
k+1(rk+1) = T

[
Exx

k (rk) Exw
k+1(rk+1)

Ewx
k+1(rk+1) Eww

k+1

]
TT

for k = 0, 1, 2, . . . and all possible cross covariances
Exw

k+1(rk+1), Ewx
k+1(rk+1) compatible with the given

bound (1), where T is given by

T =
[
1 0 1 0
0 1 0 1

]
.

Applying the new bound gives

Exx
k+1(κk+1) =

Exx
k (κk)

ηk+1 − κk+1
+

Eww
k+1

ηk+1 + κk+1

for k = 0, 1, 2, . . . and ηk, κk from Lemma 3.1. For
comparison purposes, the existing bound [3] has been
applied to the propagation problem.

Results are shown in Fig. 5 for rmax = 0.2 and
in Fig. 6 for rmax = 0.6. The shaded regions corre-
spond to the convex hull of the 1–sigma–bounds of all

possible joint covariance matrices. In addition, the re-
sulting 1–sigma–bounds of applying the new and the
existing bound are plotted. It is obvious that the new
bound gives much less conservative results, since the
existing bound does not exploit the given correlation
constraints.

6 Conclusions
The problem of calculating an upper bound for the

joint covariance matrix of two correlated random vec-
tors has been considered for the case that the level
of correlation is limited, i.e., the maximum absolute
correlation coefficient is less than a prespecified value.
This problem has been solved by scaling the individual
covariance matrices in such a way that the joint co-
variance matrix provides a tight upper bound for the
set of all possible true joint covariances fulfilling the
correlation constraint.

The new bound generalizes and enhances a known
result for unconstrained correlation between two ran-
dom vectors, which gives rather conservative result
when a correlation constraint is available. Simula-
tions impressively demonstrate the advantage of the
new bound.

As a byproduct, the new covariance bound yields
an uncorrelated representation of the joint statistics
of the two random vectors under consideration. This
provides the basis for the derivation of a state esti-
mation algorithm in the presence of correlated noise
with a prespecified maximum correlation level, which
generalizes the results in [3].
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Figure 3: Results of applying the existing bound to the joint covariance of two scalar random variables x and
y with individual covariances in accordance with Example 2.1. The result is not tight when the correlation is
constrained (the approximation error is shown by the shaded area).
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Figure 5: Results of the recursive propagation of a given state through a linear system model suffering from
additive noise correlated with the system state (rmax = 0.2). Shaded: The convex hull of all possible true
covariances.
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Figure 6: Results of the recursive propagation of a given state through a linear system model suffering from
additive noise correlated with the system state (rmax = 0.6). Shaded: The convex hull of all possible true
covariances.




