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Abstract— Recursive prediction of the state of a nonlinear
stochastic dynamic system cannot be efficiently performed
in general, since the complexity of the probability density
function characterizing the system state increases with every
prediction step. Thus, representing the density in an exact
closed-form manner is too complex or even impossible. So, an
appropriate approximation of the density is required. Instead
of directly approximating the predicted density, we propose the
approximation of the transition density by means of Gaussian
mixtures. We treat the approximation task as an optimization
problem that is solved offline via progressive processing to
bypass initialization problems and to achieve high quality
approximations. Once having calculated the transition density
approximation offline, prediction can be performed efficiently
resulting in a closed-form density representation with constant
complexity.

I. INTRODUCTION

Estimation of uncertain quantities is a typical challenge in
many engineering applications like information processing in
sensor-actuator-networks, localization of vehicles or robotics
and machine learning. One aspect that arises is the inference
of a given uncertain quantity through time. Particularly the
recursive processing of this so-called prediction requires an
efficient implementation for practical applications.

Typically, random variables are used to describe the quan-
tities and their uncertainties. For such a representation the
prediction problem is solved by the Bayesian estimator. In
general, the probability density of the predicted quantity
cannot be calculated in closed form and the complexity of
the density representation increases with each time step. The
consequence of this is an impractical computational effort.
Only for some special cases full analytical solutions are
available. For linear systems with Gaussian random variables
the Kalman filter provides exact solutions in an efficient
manner [7]. Versatile approximative techniques exist for the
case of nonlinear systems: To overcome the problem of
representing the whole predicted density, particle filters use
samples instead [2]. They are easy to implement and to
parallelise, but it is still a hard task to obtain adequate
samples at every prediction step. Another possibility arises
from the usage of generic parameterized density functions.
The well known extended Kalman filter uses linearization to
apply the Kalman filter equations on nonlinear systems [10],
while the unscented Kalman filter offers in addition higher
order accuracy by using a deterministic sampling approach
[6]. The resulting single Gaussian density of both estimation
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methods is typically not a sufficient representation for the
true complex density. Due to their universal approximation
property, Gaussian mixtures [8] are a much better approach
for parameterized density functions. The bandwidth of esti-
mators using Gaussian mixtures is wide. It ranges from the
efficient Gaussian sum filter [1] that allows only an individual
updating of the mixture components up to computationally
more expensive but precise methods [5].

In this paper, we introduce a new closed-form prediction
approach for nonlinear systems by means of a Gaussian mix-
ture approximation of the transition density. The transition
density is used to propagate the probability density of the
current system state to the next time step. By approximating
it, the prediction step can be solved analytically and results in
a Gaussian mixture representation of the predicted density.
To avoid getting trapped in local optima, and thus ensure
a high accuracy, we approximate the transition density in a
progressive way. For that purpose, a parameterized transition
density is introduced, which starts from a simple density
and continuously approaches the true transition density. The
necessary demanding computations can be calculated offline,
whereas the prediction still remains an online task, that
is reduced to simple multiplications of Gaussian densities.
Hence, an efficient prediction is available.

In the following section, we will review the Bayesian
estimator for discrete-time systems and point out the relation
between transition density and system model. Furthermore,
the requirements for offline approximation are formulated.
The rest of the paper is structured as follows: Section III
derives the closed-form prediction of nonlinear systems using
a special case of Gaussian mixtures for transition density
approximation. The actual approximation and its progres-
sive processing is explained in Section IV together with
an example application comprising a cubic system model.
Section V further investigates the cubic system model in
order to compare and discuss the results of the new prediction
approach with those of the extended Kalman filter and the
Bayesian estimator. The paper closes with a conclusion and
an outlook to future work.

II. PROBLEM FORMULATION

For the sake of brevity and clarity, we only consider
scalar random variables, denoted by boldface letters, e.g. x.
Furthermore, we regard nonlinear, time-invariant, discrete-
time systems with a system equation

xk+1 = a(xk) + wk , (1)



where xk is the scalar system state at time step k and
wk is additive noise representing the unknown disturbance
acting upon the system. It is assumed as a white, stationary
Gaussian random process with density fw(wk) = N (wk −
µw, σw), where µw is the mean and σw is the standard
deviation.

To simplify matters, we just consider the state evolution
in abscence of a system input as in (1). All results of this
paper also hold in the presence of a non-zero system input.

While dealing with the measurement or filter step depend-
ing on the measurement equation is subject of future work,
we focus in this paper on the system equation (1). Given an
estimate fx

0 (x0) for x0 at k = 0, this equation is used in a
Bayesian setting for a recursive system state propagation in
time. According to [11] this so-called prediction step of the
Bayesian estimator results in a density

fx
k+1(xk+1) =

∫
R

fT (xk+1)fx
k (xk)dxk (2)

for xk+1, where fT (xk+1) is the transition density

fT (xk+1) = f(xk+1|xk) = fw(xk+1 − a(xk)) ,

which depends upon the noise density of wk and the struc-
ture of the system equation. Since (1) is time-invariant and
wk is stationary, this bivariate density is also time-invariant,
i.e., its shape is constant for all time steps k.

In general, the recursive Bayesian estimator is computa-
tionally impractical. The complex shape of the transition
density fT (xk+1) prevents a closed-form and above all
an efficient solution of (2). In general, no exact analytical
density can be generated in the prediction step. Hence,
for the general case of nonlinear systems with arbitrary
distributed random variables an approximation of the true
predicted density is inevitable. From now on true densities
will be denoted by a tilde, e.g. f̃(·), while the corresponding
approximation will be denoted by f(·).

Since directly approximating the true predicted density
f̃x

k+1(xk+1) is difficult, we use a Gaussian mixture represen-
tation fT(xk+1, η) of f̃T(xk+1) for approximation purposes1,
that depends upon the parameter vector η. For high quality
approximations, an appropriate parameter vector η has to
be calculated, that minimizes a given distance measure
G(η) between the true transition density f̃T(xk+1) and its
approximation fT(xk+1, η). This resulting optimization task
can be solved offline and independent of the prediction as
shown in Figure 1. For this we take advantage of the fact
that in real systems the system state is usually restricted to
a finite interval, i.e.,

∀k : xk ∈ [a, b] =: Ω . (3)

So, we are only interested in approximating the transition
density for xk ∈ Ω. Together with the property of time-
invariance of f̃T(xk+1), offline approximation is possible.
Section IV explains the approximation in detail.

1The reader is reminded that f̃T(xk+1) and fT(xk+1, η) should always
be regarded as functions of (xk, xk+1).
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Fig. 1. Recursive, closed-form prediction. The necessary transition density
approximation is performed offline, before the prediction. That one remains
an online task.

III. THE PREDICTION STEP

The transition density approximation allows to perform
an efficient, closed-form prediction step online, depicted
in Figure 1. For this purpose we assume that all involved
densities are represented as Gaussian mixtures.

First we assume fx
k (xk) is given by

fx
k (xk) =

Lk∑
j=1

wx
k,jN (xk − µx

k,j , σ
x
k,j) , (4)

where Lk is the number of Gaussian components, N (xk −
µx

k,j , σ
x
k,j) is a Gaussian density with mean µx

k,j and standard
deviation σx

k,j and wx
k,j are weighting coefficients with

wx
k,j > 0 and

∑Lk

j=1 wx
k,j = 1.

For the given Gaussian mixture approximation
fT(xk+1, η) we use the special case of a Gaussian
mixture with axis-aligned Gaussian components (short:
axis-aligned Gaussian mixture). Here, every component is
separable in each dimension according to

fT(xk+1, η) =
LT∑
i=1

wiN (xk − µ1
i , σ

1
i )N (xk+1 − µ2

i , σ
2
i ) ,

(5)

with the parameter vector

η = [ηT
1
, ηT

2
, . . . , ηT

LT
]
T

where

η
i
= [wi, µ

1
i , σ

1
i , µ2

i , σ
2
i ]

T
.

Such a representation of fT(xk+1, η) is very convenient for
efficiently performing the prediction step.

Theorem 1 (Approximate Predicted Density)
Given the Gaussian mixture representations (4) and (5)
for fx

k (xk) and fT(xk+1, η) respectively, the approximate
predicted density fx

k+1(xk+1) is also a Gaussian mixture
with LT components that can be calculated analytically.



PROOF. Using the Bayesian prediction equation (2) we obtain

fx
k+1(xk+1) =

Z
R

fT(xk+1, η)fx
k (xk)dxk

=

LTX
i=1

wiN (xk+1 − µ2
i , σ

2
i )

 
LkX
j=1

wx
k,j

Z
R

N (xk − µ1
i , σ

1
i )N (xk − µx

k,j , σ
x
k,j)dxk| {z }

=:zi,j (constant)

!

=

LTX
i=1

wk+1,iN (xk+1 − µ2
i , σ

2
i ) (6)

with wk+1,i = wi

PLk
j=1 wx

k,jzi,j .
The number of components in fx

k+1(xk+1) depends only on the
number of components in fT(xk+1, η). Thus, the complexity of
fx

k+1(xk+1) remains constant over time.
For getting the result in (6), only the integral over a

multiplication of two Gaussian densities, denoted as zi,j , has to
be solved. This corresponds exactly to the prediction step of a
Kalman filter. Hence, (6) provides the closed-form and efficient
solution for the prediction step by means of the Gaussian mixture
approximation of a transition density. �

Generally, the more components fT(xk+1, η) contains, the
more accurate the approximation of f̃x

k+1(xk+1) is. Using a
non axis-aligned Gaussian mixture for fT(xk+1, η) instead
an exponential growth of components for fx

k+1(xk+1) would
be the consequence.

The two following remarks give attention to some conse-
quences of Theorem 1.

Remark 1 (Gaussian Mixture Reduction) Several estima-
tors using Gaussian mixture density representations suffer
from the exponential growth of components. Theorem 1 offers
a simple method for Gaussian mixture component reduction
by applying additional prediction steps with the transition
density approximation of the linear system

xk+1 = xk + wk .

To keep the introduced error small, wk is Gaussian with
zero-mean and standard deviation 0 < σw � 1.

Remark 2 (Normalization) Typically fx
k+1(xk+1) is not a

valid probability density function, because
∑LT

i=1 wk+1,i 6= 1.
This originates from the fact, that fT(xk+1, η) is just an ap-
proximation of the true transition density. To achieve a valid
probability density for fx

k+1(xk+1) we have to normalize it
by multiplication with 1PLT

i=1 wk+1,i

.

IV. APPROXIMATION OF THE TRANSITION DENSITY

The quality of the approximation fx
k+1(xk+1) strongly

depends on the similarity between f̃T(xk+1) and its Gaussian
mixture approximation fT(xk+1, η) for xk ∈ Ω. So, this
section is concerned with solving the optimization problem

η
min

= arg min
η

G(η) , (7)

Init. Progression: γ = 0

Result: fT (xk+1, η) γ ≤ 1

Increment: γ = γ + ∆γ

Optimize current Progression Step
by minimizing G(η, γ)

Fig. 2. Flow chart of the progressive processing of η
min

.

that yields the parameter vector for fT(xk+1, η) minimizing
the distance to f̃T(xk+1). As distance measure we take the
squared integral measure

G(η) =
1
2

∫
R

∫
R

(
f̃T(xk+1)− fT(xk+1, η)

)2

dxkdxk+1 . (8)

Although this measure has been selected for its simplicity
and convenience, it has been found to give excellent perfor-
mance. Of course, the methods of this paper are not restricted
to this measure.

Independent of the selected distance measure, Gaussian
mixture approximations are considered a tough problem. In
general, no closed-form solution of (7) can be derived. In
addition, the high dimension of η complicates the selection of
an initial solution, so that the direct application of numerical
minimization routines causes insufficient local optima for η.

A. Approximation by Means of Progressive Processing

Instead of attempting to directly approximate the transition
density, we pursue a progressive approach for finding η

min
as

shown in Figure 2. This type of processing has been proposed
in [5], [9]. In doing so, a parameterized transition density
f̃T(xk+1, γ) with the progression parameter γ ∈ [0, 1] is
introduced. This progression parameter ensures a continuous
transformation of the solution of an initial, tractable opti-
mization problem towards the desired true transition density
f̃T(xk+1) by tracking a gradually changing distance measure
G(η, γ).

For γ = 0 the initial optimization consists of approximat-
ing the transition density of the linear system

xk+1 = A · xk + wk , (9)

where A ∈ R. As discussed in Section IV-E, this prob-
lem easily allows calculating an optimum by numerical
opimization without an initial parameter selection by the
user. Starting from this optimum the progression parameter
γ is gradually incremented by ∆γ. In every single so-called
progression step the distance measure G(η, γ) between the
parameterized transition density f̃T(xk+1, γ) and its approxi-
mation fT(xk+1, η) is minimized by employing of the BFGS
formula [3], a well known optimization method.

The approximation fT(xk+1, η), or more precisely the
parameter vector η, follows gradually f̃T(xk+1, γ) until the



desired true transition density f̃T(xk+1) is finally reached
for γ = 1. Hence, for f̃T(xk+1, γ) we obtain

f̃T (xk+1, γ = 0) = fw(xk+1 −A · xk) ,

f̃T (xk+1, γ = 1) = f̃T(xk+1) ,
(10)

if xk ∈ Ω, otherwise

f̃T(xk+1, γ) = 0 .

This progressive processing of (7) bypasses the choice of
insufficient starting parameters. Hence, the typical problem
of obtaining suboptimal solutions is attenuated or even
prevented with a proper choice of ∆γ.

B. Parameterized System Function
To introduce the parameterized transition density, we use

the parameterized system function a(xk, γ)

a(xk, γ) = (1− γ)A · xk + γa(xk) ,

where in particular

a(xk, γ = 0) = A · xk ,

a(xk, γ = 1) = a(xk) .

This yields the modified system equation

xk+1 = a(xk, γ) + wk . (11)

The dependence of f̃T(xk+1, γ) = fw(xk+1 − a(xk, γ)) on
system equation (11) automatically causes its parameteriza-
tion according to (10).

Example 1 (Cubic System Function) Considering the sys-
tem equation xk+1 = a(xk)+wk with a(xk) = 2xk−0.5x3

k, the
correspondig parameterized system function is a(xk, γ) = (1−
γ)A ·xk + γ(2xk − 0.5x3

k). Figure 3(a) shows the progression
for ∆γ = 0.2, A = 0 and Ω = [−3, 3]. The parameterized tran-
sition density f̃T(xk+1, γ) performs the same transformation.

C. Axis-Aligned Gaussian Mixture Approximation
Using axis-aligned Gaussian mixtures for approximating

f̃T(xk+1) is also advantageous for optimization purposes.
An axis-aligned Gaussian mixture has minor approximation
capabilities compared to a non axis-aligned one. Hence,
more components are needed to achieve a comparable ap-
proximation quality. In exchange, the covariance matrix
of axis-aligned Gaussian mixtures is diagonal. Thus, less
parameters for a single component have to be adjusted and
the necessary determination of the gradient ∂G

∂η prove to be
easier. Altogether, representing fT(xk+1, η) as in (5) lowers
the algorithmic complexity.

During the progression it is possible that the weights wi

of fT(xk+1, η) become negative. To ensure a valid density
function, we use quadratic weights instead. Henceforth, we
write in difference to (5)

fT(xk+1, η) =
LT∑
i=1

w2
iN (xk − µ1

i , σ
1
i )N (xk+1 − µ2

i , σ
2
i ) ,

without affecting the result of the prediction in principle. It
must be pointed out that the probability mass of f̃T(xk+1)
is not equal to 1, as it is a conditional density.

D. Squared Integral Distance Measure
The goal of the progression is to calculate the parameters

η minimizing G(η). Thus, we use also the squared integral
distance measure for G(η, γ) by plugging the progressive
version f̃T(xk+1, γ) of f̃T(xk+1) in (8). Converting (8) and
considering (10) results in

G(η, γ) =
1
2

∫
R

∫
Ω

(
f̃T(xk+1, γ)

)2

dxkdxk+1

−
∫
R

∫
Ω

f̃T(xk+1, γ)fT(xk+1, η)dxkdxk+1

︸ ︷︷ ︸
=:I

+
1
2

∫
R

∫
R

(
fT(xk+1, η)

)2
dxkdxk+1 , (12)

where merely the integral I cannot be solved analytically.
Numerical integration methods like the adaptive Simpson
quadrature [4] have to be applied.

The necessary condition for the existence of a minimum
of G(η, γ) for a given γ is

∂G(η, γ)
∂η

= 0 . (13)

Since (13) allows no closed-form solution we use the BFGS
formula for minimization, which depends on calculating the
gradient

∂G(η,γ)

∂η . To obtain the gradient it is sufficient to ex-
amine only the i-th component fT

i (xk+1, ηi
) of fT(xk+1, η)

∂G(η, γ)
∂η

i

=−
∫
R

∫
Ω

f̃T(xk+1, γ)
∂fT

i (xk+1, ηi
)

∂η
i

dxkdxk+1

+
∫
R

∫
R

fT(xk+1, η)
∂fT

i (xk+1, ηi
)

∂η
i

dxkdxk+1 ,

with

fT
i (xk+1,ηi

) = w2
iN (xk − µ1

i , σ
1
i )N (xk+1 − µ2

i , σ
2
i ) .

Stacking all i = 1, . . . , LT partial derivatives leads to
∂G(η,γ)

∂η . Evaluating the gradient requires also numerical
integration.

E. Initialization
A complete analytical solution of (12) is given for γ = 0.

Here, the parameterized transition density

f̃T (xk+1, γ = 0) = fw(xk+1 −A · xk)
= N (xk+1 −A · xk − µw, σw)

depends on the linear system equation (9). We can take
advantage of the linearity as we initialize the progression by
avoiding the selection of initial parameters η for fT(xk+1, η)
by the user. For this, fixed and equidistant means for the
components of fT(xk+1, η) are given by

µ1
i = a + i · b− a

LT + 1
,

µ2
i = A · µ1

i + µw .
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Fig. 3. (a) Progression of the parameterized system function a(xk, γ) = (1− γ)A ·xk + γ(2xk − 0.5x3
k). (b) Approximation of the transition density

f̃T(xk+1) = N
`
xk+1 − (2xk − 0.5x3

k), 1
´

with quality G(η) = 0.0067. (c) Covariance ellipses of the components for γ = 0 (gray) and γ = 1 (black).

Thus, only the weighting coefficients wi and the standard de-
viations σ1

i , σ2
i are adjustable. A further parameter reduction

occurs by taking the same weights and standard deviations
for all components. As a result, there are just the three
parameters

wi = w, σ1
i = σ1, σ2

i = σ2

that have to be optimized. This optimization problem has one
single global optimum. So, no user initialization is required
and as a consequence the risk of starting the progression with
an insufficient local optimum is obviously avoided.

Example 2 (Cubic System Function (cont’d.)) We consider
again the cubic system equation of Example 1, now with
system noise wk = N (wk − 0, 1) and Ω = [−3, 3]. Using
the parameterized system function of Example 1 with A = 0
and a Gaussian mixture with LT = 20 components leads to
the transition density approximation shown in Figure 3(b). Fig-
ure 3(c) depicts the covariance ellipses of the single Gaussian
components at the beginning and the end of the progression.

F. Generalization

Until now we assumed, that the system noise wk is
Gaussian. All the derivations of this paper can be directly
generalized to noise that is represented by a Gaussian mix-
ture. For general densities of wk it is possible to first find
a Gaussian mixture approximation of fw(wk) and then to
approximate the transition density afterwards.

V. EXAMPLE: PREDICTION

In this section we investigate the prediction results for the
system equation

xk+1 = 2xk − 0.5x3
k + wk ,

introduced in Examples 1 and 2. The system noise wk is
white Gaussian with density fw = N (wk − µw, σw), where

µw = 0 and σw = 0.175. We approximate the transition
density of this system according to Example 2 for xk ∈ Ω =
[−3, 3], but now with LT = 50 Gaussian components for
fT(xk+1, η) since the standard deviation σw is now much
smaller. This results in a quality G(η) = 0.0207.

Starting with the density

fx
0 (x0) = N (x0 − 0.4, 0.8)

of the system state xk at time step k = 0 we compare
the predictions of our approach (denoted as Appr.) with
those of the extended Kalman filter (EKF) and the exact
Bayesian estimator. Recursive prediction with the exact
Bayesian estimator requires recursively applied numerical
integration of (2) and is used as reference. Figure 4 shows
the resulting densities of the predicted system state xk+1 for
four consecutive prediction steps at time k = 0, . . . , 3. It
is obvious that there is almost no shape difference between
the predictions of the Bayesian estimator and our approach.
Especially both modes of the optimal predicted density
f̃x

k+1(xk+1) are approximated almost exactly. Same is true
for the means, see Table I. Since the number of components
in fx

k+1(xk+1) stays constant at 50, our approach requires a
constant and marginal amount of time2 for prediction. For
comparison see again Table I.

In contrast, the EKF is just able to provide a single
Gaussian approximation of the true predicted density. Thus,
the difference in shape and mean is significant. The time
consumption of the EKF prediction is indeed constant and
smaller. However, a Gaussian mixture approximation of
the transition density allows explicit consideration of the
influence of probability masses or components in the input

2The times base on measurements of a Matlab 7.1 implementation running
on a PC with Microsoft Windows XP operating system and an Intel Pentium
IV 3 GHz processor.
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Fig. 4. The upper plots show the predicted densities using the approach of this paper (red, solid) and the Bayesian estimator (blue, dashed). The predictions
of the Bayesian estimator in comparison with those of the extended Kalman filter (red, solid) are depicted on the lower plots.

TABLE I
MEANS OF THE PREDICTED DENSITIES AND THE PREDICTION TIME.

mean: µx
k+1 time: t/s

k Bayes Appr. EKF Bayes Appr. EKF
0 0.404 0.408 0.768 6.016 0.166 0.003
1 0.447 0.454 1.31 223.8 0.172 0.005
2 0.453 0.462 1.496 14040 0.125 0.006
3 0.454 0.465 1.318 6·105 0.125 0.002

density to the predicted density, by affecting the update of the
weights wk+1,i of fx

k+1(xk+1) according to (6). So, higher
approximation accuracy is available and enhanced with an
increasing number of components LT .

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach for closed-form
prediction of dynamic time-invariant nonlinear systems based
on approximate transition densities. Approximating transition
densities by means of Gaussian mixtures with axis-aligned
components leads to an optimization problem. As most of
the optimization methods suffer from getting trapped in local
optima, a progressive processing is proposed that transforms
the solution of an initial, tractable optimization problem
continuously towards the desired transition density. As a
result, high quality approximations are obtained. Since the
optimization problem is solved offline, great effort can be
spent without restricting the efficiency of the prediction step.

Due to the Gaussian mixture representation of the transi-
tion density, the prediction result is calculated analytically.
Using axis-aligned Gaussian mixtures leads to a constant
number of components describing the approximation of the
predicted density. Thus, we obtain an efficient recursive pre-
diction, whose accuracy depends on the adjustable transition
density approximation. These properties were demonstrated
by recursively predicting the system state of a cubic system.

The described approach has been introduced for scalar
random variables for the sake of brevity and clarity. It

can be generalized to random vectors in a straightforward
manner. Considering the filter step is also part of future
work. Generally, the progressive processing offers room for
improvement. For example, an adaptive progression param-
eter increment and adjustment of the number of Gaussian
mixture components during the progression for additional
approximation quality enhancement are possible.
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