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Abstract— In many technical systems, the system state, which
is to be controlled, is not directly accessible, but has to be
estimated from observations. Furthermore, the uncertainties
arising from this procedure are typically neglected in the
controller. To remedy this deficiency, in this paper, we present a
novel approach to stochastic nonlinear model predictive control
(NMPC) for heavily noise-affected systems with not directly
accessible, i.e., hidden states, extending the stochastic NMPC-
framework presented in [1]. An important property of our novel
method is that, in contrast to classical approaches, time-variant
system and measurement equations as well as time-variant step
rewards can be considered. Extending the techniques from
[1] by introducing virtual future observations and combining
this with a novel tree search algorithm, called probabilistic
branch-and-bound search (PBAB), a solution with a feasible
computational demand of the challenging problem is possible.

I. INTRODUCTION

In model predictive control (MPC), which is sometimes
also referred to as receding or rolling horizon control, the
control input is not only determined based on the current
system state, but also on an N step prediction.

As the well understood and widely used MPC for linear
system models [2] together with quadratic reward functions
is not always sufficient to meet the steadily growing require-
ments on the control quality, nonlinear system models and
reward functions need to be considered in the control, which
is then called nonlinear model predictive control (NMPC).
Even if the incorporation of nonlinearities leads to a signifi-
cant increase in the control quality, most approaches do not
consider the influence of noise on the system [3], especially
in the important continuous state space case. Examples of
approaches that do consider the system noise in the control
can be found in [4], [5], [6], [7], [8]. However, uncertainties
that arise from estimating the system state based on noise
corrupted measurements are still not taken into account.

A closely related field, where the influence of system
noise and uncertain measurements is considered, are partially
observable Markov decision processes (POMDP), where in
particular systems with discrete states and discrete observa-
tions are considered over an infinite optimization horizon [9],
[10]. As even in the discrete case an exact solution is com-
putationally infeasible [11], [12], most approaches solving
POMDPs employ iterative numerical methods [13], [14],
[15]. To ensure convergence of these methods, a discount
factor smaller than one is typically introduced in the reward
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function. Existing extensions to the case of continuous
states are also based on an iterative procedure in order to
approximately solve infinite horizon POMDPs. This requires
the system and measurement equation as well as the step
reward being time-invariant. For instance, in [16] a discrete
POMDP solver is extended to linear systems with continuous
states but discrete observations, while [17] employs Monte-
Carlo sampling for an approximate solution to POMDPs with
continuous states and observations. An approach employing
parametric representations of the probability density func-
tions representing the system states to gain an approximate
solution is presented in [18].

Of special importance to this paper, besides the cardinality
of the state space, is the consideration of not directly acces-
sible system states, i.e., only imperfect state information is
available for control. For example, a mobile robot is just able
to estimate its pose using a combination of dead-reckoning
and observations like distance measurements to landmarks.
To gain meaningful estimation results for such systems, the
noise significantly affecting the employed models as well as
the observations has to be taken into account. Furthermore,
as many technical systems are only able to handle a finite
set of control inputs even if they have a continuous-valued
state space, this paper focuses on these systems. If the afore-
mentioned mobile robot has differential drive kinematics, its
state space comprises the continuous-valued pose, but the
robot might still just be able to handle commands like turn
left / right or move straight.

Based on our stochastic NMPC framework introduced
in [1], in this paper an extension to the considerably more
demanding setting of stochastic control with imperfect state
information is proposed. We now present an approach, where
not only the nonlinear system dynamics and the influence of
the system noise, but also the nonlinear measurement system
together with the measurement noise is considered explicitly
in the control by mimicking a recursive estimator within the
prediction horizon. For efficient calculation, the techniques
from [1], namely the combination of a stochastic state
prediction method based on transition density approximation
by hybrid densities as well as a matching representation
for reward function modeling, which allows closed-form
calculation of the necessary reward functions, are extended.
Additionally, for efficiently traversing the resulting search
tree, a novel algorithm named probabilistic branch-and-
bound (PBAB) is introduced.

The remainder of this paper is structured as follows: In
the next section, the considered stochastic NMPC problem
is described. Our approach for considering uncertainties



arising from imperfect state information, which is based on
mimicking the state estimator in the controller, is described
in Section III. An efficient algorithm for traversing the
resulting probabilistic search tree is introduced in Section IV.
In Section V, three different kinds of NMPC controllers
are compared based on simulations employing an example
system from the field of mobile robot control. Conclusions
are given in Section VI.

II. PROBLEM FORMULATION

In this paper, discrete-time systems of the form

xk+1 = ak(xk, uk) +wk (1)

are considered. Here, xk ∈ X denotes the random vector
corresponding to the continuous-valued system state at time
step k and uk the vector-valued control input from the
finite discrete set Uk. ak( · ) is a nonlinear, possibly time-
variant function, which is affected by additive white noise
wk, distributed according to the probability density function
(PDF) fwk , wk ∼ fwk . The system state xk is not directly
accessible, but can only be estimated based on continuous-
valued observations ẑk. The estimation is performed based
on the measurement equation

zk = hk(xk) + vk , (2)

where vk ∼ fvk is the additive white measurement noise.
Based on the system equation (1) and the measurement

equation (2), the stochastic optimal control problem

u∗k(xk) = arg max
uk,0

max
νk,1:N−1

N∑
n=1

gn
(
xk,n

)
︸ ︷︷ ︸

Jk,1(xk,1)

(3)

is solved for a finite N step horizon at any time step k.
Here, the cumulative reward Jk,1(xk,1), which comprises
step rewards gn

(
xk,n

)
, is maximized with respect to the

control policy νk,n(xk,n). This control policy maps a random
variable xk,n ∼ fk,n, representing the available information
on the system state at time n, to a control input u∗k,n. The
optimum control input u∗k(xk) = u∗k,0(xk,0) is then applied
to the system. In the next time step k+1, the whole procedure
is repeated.

In the considered stochastic setting, the step reward
gn
(
xk,n

)
is an operator mapping a random variable xk,n

to a scalar real number. For example, this can be a weighted
expected value

gn
(
xk,n

)
= Exk,n

{ĝn(xk,n)} ,

where the weighting function ĝn(xk,n) is represented by
a polynomial or a Gaussian mixture as described in [6].
Alternatively, it can also be a measure representing the
uncertainty of a system state like the trace of the covariance
matrix.

Generally, the stochastic optimal control problem (3) can-
not be solved in closed form for nonlinear systems. Thus, an
approximate approach for solving this problem is presented
in the following sections.
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Fig. 1. Stochastically controlled system.

III. CONTROL IN CASE OF IMPERFECT STATE
INFORMATION

If the state of a system is not directly accessible, it can
be estimated by employing a recursive Bayesian estimator
(Fig. 1). The state estimate xe

k ∼ f e
k is calculated in two

steps:
1) In the prediction step, the nonlinear system model

ak(xk, uk) is used to calculate a one-step prediction
xp
k+1 ∼ fp

k+1 based on the PDF fk of the current
system state xk employing the Chapman-Kolmogorov
equation [19]

fp
k+1(xk+1) =

∫
X
fT
uk

(xk+1|xk) fk(xk) dxk , (4)

where the transition density fT
uk

(xk+1|xk) =
fwk (xk+1 − ak(xk, uk)) is the probabilistic represen-
tation of the system ak(xk, uk).

2) In the filter step

f e
k(xk) = ck · fM

k (ẑk|xk) · fp
k (xk) ,

an observation ẑk is fused with the predicted system
state xp

k using Bayes’ law. Here, ck is a normal-
izing constant ensuring that f e

k is a valid density.
The conditional measurement density fM

k (zk|xk) =
fvk (zk − hk(xk)) is the probabilistic representation of
the measurement system hk(xk).

The prediction step needs to be executed at every time
step in order to keep the estimate synchronized with the
system. The filter step needs to be executed any time a
measurement is taken. For clarity of presentation, in the
following we consider the case that at every time step exactly
one measurement is taken.

The recursive Bayesian estimator provides a general
framework for nonlinear system and measurement models
affected by noise. However, exact Bayesian estimation in
closed form is impossible to achieve in general. Widely-
used approximate estimators like the extended Kalman fil-
ter [19] and the unscented Kalman filter [20] only provide a
Gaussian representation of the resulting densities, which is
not sufficient for characterizing these complicated densities.
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Fig. 2. Search tree for N = 2 time steps, |U| = 2 different control inputs and L = 2 virtual observations with root node f0.

Particle filters [21] instead require a large number of samples
in order to get satisfactory results, which is computation-
ally demanding. Thus, in this paper the so-called Hybrid
Density Filter (HDF) [22] is utilized. This estimator offers
accurate estimation results thanks to a Gaussian mixture
representation of fp and f e. Furthermore, estimation can
be performed efficiently due to a closed-form approximation
of the probabilistic system representations fM

k (zk|xk) and
fT
uk

(xk+1|xk).
Our approach for solving (3) is to mimic the behavior

of the Bayesian estimator within the prediction horizon n =
1 . . . N for any fixed time step k. Thus, the index k is omitted
in the following.

Based on the initial PDF f0 of the system state x0 at time
step k, PDFs describing the system states xn at time step
n can be calculated for various control inputs u0:n−1 and
observations ẑ1:n using the HDF. In case of a finite number
of discrete control inputs and observations, this leads to a
tree structure, as depicted in Fig. 2. The control dependent
edges from xe

n ∼ f e
n to xp

n+1 ∼ f
p
n+1 represent a prediction

step. The edges from xp
n ∼ fp

n to xe
n ∼ f e

n result from a
filter step with ẑn.

A. Virtual Observations
As we do not consider discrete, but rather continuous-

valued observations, a tree as depicted in Fig. 2 cannot be
constructed directly. For determining an optimal solution, the
consideration of an infinite number of observations would
be required here. To avoid this, an approximate solution
employing a finite set of virtual observations, which should
be as representative as possible, can be used. The term
virtual observation is used here, as the true observations are
obviously not available at time step n = 0. Nevertheless,
using the measurement equation (2), the PDF of observations
for time steps n > 0 can be calculated. This can be achieved
in a way similar to the state prediction (4) by propagating
the PDF of a system state fp

n(xn) through the measurement
equation (2), which leads to a PDF

f z
n(zn) =

∫
X
fM
n (zn|xn) · fp

n(xn) dxn

describing possible future observations. Since an HDF-
prediction step is used to perform this calculation, f z

n is given
as a Gaussian mixture.

In order to generate L representative virtual observations,
a Dirac mixture approximation

f z(z) ≈ f̂ z(z) =
L∑
l=1

ω(l) · δ(z − µ(l))

of the continuous PDF f z needs to be found. Using the po-
sitions µ(l) of the Dirac components as virtual observations,
a search tree as depicted in Fig. 2 can then be built up. The
weights ω(l) of the components approximately represent the
probability of the individual virtual observations.

The number of employed virtual observations strongly
impacts the computational demand of the entire approach.
Thus, it is highly desirable to minimize the number of
required virtual observations, while preserving a meaningful
representation of f z. In case of one-dimensional observa-
tions, the algorithm in [23], which is based on progressively
minimizing the Cramér–von Mises distance [24] of f̂ z(z) and
f z(z), yields a high quality approximation requiring just a
small number of components (Fig. 3). An algorithm, which
is also able to approximate multidimensional PDFs, is given
in [25].

B. Recursive Calculation

The optimal control input u∗ can be easily calculated
employing (3) if the cumulative reward function J1(x1) =
J1 (a0(x0, u0) +w0) is known. Thus, the main task in
determining the control input is calculating the cumulative
reward function J1(x1). Due to the cumulative structure
of the reward function, this calculation can be carried out
recursively backwards in time. As two different types of
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Fig. 3. Virtual observations f̂z(z) (red Dirac mixture) approximated based
on fz(z) (blue) employing the algorithm from [23].
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PDFs, f e
n and fp

n , are considered, two different types of value
functions, Je

n and Jp
n , respectively, are also necessary for

recursive calculation.
1) Calculation of Je

n (xe
n): In the final step of the con-

sidered horizon N , the cumulative reward is initialized with
the terminal step reward

Je
N (xe

N ) = gN (xe
N ) . (5)

For n < N , any estimated PDF f e is followed by a
predicted PDF fp as depicted in Fig. 4. The control input
that maximizes the total reward is chosen according to (3).
Thus, the cumulative reward function Je

n(xe
n) for n < N

consists of the sum of the current step reward gn and the
maximum reward of its successors

Je
n(xe

n) = gn(xe
n) + max

un

{
Jp
n+1(xp|un

n+1 )
}
. (6)

2) Calculation of Jp
n (xp

n): The cumulative rewards
Jp
n (xp

n) can be calculated based on rewards Je
n (xe

n) (Fig. 5),
where the PDFs f e|ẑn

n of the xe|ẑn
n are dependent on the

virtual observations ẑn. As the occurrence of a certain
observation is random, the cumulative reward Jp

n (xp
n) is the

expected value of its successors Je
n

(
x

e|ẑn
n

)
with regard to

the virtual observation ẑn ∼ f̂ z

Jp
n (xp

n) = Eẑn

{
Je
n

(
x

e|ẑn
n

)}
=

L∑
l=1

ω(l) · Je
n

(
xe|ẑl

n

)
. (7)

IV. PROBABILISTIC BRANCH-AND-BOUND

A straightforward calculation of the control value, i.e.,
analyzing the entire search tree, has exponential complexity

LN · |U|N ·N .

Employing more advanced tree search techniques, this
computational demand can be significantly reduced while

retaining optimality. In the following, an efficient algorithm
based on the well-known branch-and-bound (BAB) algo-
rithm [26] is introduced. The idea of the basic BAB, which
is only able to handle deterministic decisions, is to assign
an upper bound of the achievable cumulative reward to any
visited node. Based on these bounds, the tree is further
traversed (branch), while nodes with a higher cumulative
reward are considered more promising to lead to the optimal
solution and thus are analyzed first.

The basic branch-and-bound algorithm needs to be mod-
ified, as, in the considered problem, the tree consists not
only of edges that represent control actions, which are
deterministic decisions (as in the basic BAB), but also of
edges that represent virtual observations for which only a
probabilistic representation is available. To consider this, we
introduce a novel algorithm (Algorithm 1), the so called
probabilistic branch-and-bound (PBAB).

A. Main Routine

In the following, without loss of generality, step reward
functions gn ≤ 0 are considered. This can easily be achieved
by decreasing the reward function by its maximum value.

In the proposed algorithm, a dataset is assigned to every
node that contains an upper bound of its cumulative reward
J̄ , similar to the basic BAB. Additionally, the dataset con-
tains a Boolean flag t indicating whether this upper bound
is the true value, i.e., J̄ = J , and a flag visited indicating
whether the node has been visited. Initially, J̄ are set to 0
(which is always a valid upper bound), and t as well as
visited are initialized to 0 (indicating FALSE).

The PBAB algorithm (Algorithm 1) starts with an empty
search tree except for the root node f0. In every cycle of
the main loop of the algorithm, the tree is traversed from
root to the child node with the best J̄ that has not been
calculated with certainty, i.e., t = 0 (lines 2-4). If this node
is not a leaf (line 5), the children C of this node V are
expanded, and C.J̄ are set to their step-reward g (lines 6-
8). This is certainly an upper bound of the true J , as all
possible subsequent rewards g are non-positive. C.t is set
to 0 (line 9), as there is no knowledge whether C.J̄ = C.J .

Algorithm 1 Probabilistic Branch-and-Bound
1: while f0.t = 0 do
2: V← f0
3: while V.visited = 1 do
4: V← child of V with maximum J̄ and t = 0
5: if V /∈ f e

N then
6: C← EXPANDCHILDREN(V)
7: for all children C of V do
8: C.J̄ ← g(C)
9: C.t← 0

10: UPDATE(V)
11: else
12: V.t← 1
13: UPDATE(V.parent)
14: V.visited← 1



Fig. 6. Search tree where the gray nodes are pruned by PBAB.

Finally, J̄ is recursively updated for the current node and its
predecessors (line 10), as described in the next paragraph. In
case the current node is a leaf node, J̄ = g = J (see (5)) and
thus V.t is set to 1 (lines 11-12). In this case J̄ is updated
recursively starting at the parent of the current node, which
is sufficient, as the current node is a leaf-node and thus has
no children (line 13). Finally, the visited flag of the current
node is set to 1.

B. Update

During each iteration of the main loop of PBAB, one new
node is analyzed. Following this step, the upper bounds of
the cumulative reward J̄ are updated recursively as described
in Algorithm 2. If the current node is the root node or an f e

node, its children result from a control-dependent prediction
step. Thus, the cumulative reward can be updated according
to (6) (lines 3-4). Furthermore, the newly calculated J̄ is
not only an upper bound of J , but the exact value if the
maximum J̄ of the children is also exact (line 5). Employing
this allows the calculation of the exact cumulative reward
without analyzing all subsequent subtrees. If the current node
is an fp node, its children result from virtual observations.
Thus, the cumulative reward can be updated according to (7)
(lines 6-7). Here, the newly calculated J̄ is only the exact
value, if the J̄ of all the children are exact, all these J̄ are
considered in the calculation (line 8). As long as the current
node is not the root, the J̄ are recursively updated (line 9).

The PBAB terminates when the cumulative reward J is
calculated, i.e., f0.J̄ contains an exact value, i.e., f0.t = 1
(Algorithm 1, line 1). This ensures that the optimal solution
always is found.

In the best case, one fp-node’s children have a sig-
nificantly higher step reward than the fp node’s siblings’
children. In this case, always only one subtree needs to be
analyzed, which leads to a tree as depicted in Fig. 6. In this

Algorithm 2 Update
1: function UPDATE(V)
2: C← children of V
3: if V ∈ {f0, f e} then
4: V.J̄ ← max{C.J̄}+ g(V)
5: V.t← (arg max{C.J̄}).t
6: if V ∈ fp then
7: V.J̄ ← E{C.J̄}
8: V.t← min{C.t}
9: if V 6= f0 then

10: UPDATE(V.parent)

case, the computational complexity

LN · |U| ·N

is not exponential in the number of control inputs |U|.
In the special case L = 1, where only one virtual

observation is employed, the number of computed nodes is
even smaller in the best-case, which leads to the complexity
of |U| ·N .

V. SIMULATIONS

The effectiveness of the proposed approach and especially
the benefits that can be gained by considering not only the
stochastic system behavior but also the effects of estimating
the system state from noise corrupted observations is illus-
trated by an example from mobile robot control.

A miniature walking robot is supposed to reach a goal
through an environment, which is modeled based on a step
reward as depicted in Fig. 7. The goal region is modeled
with high rewards (light) using Gaussians with a maximum
value of 1. Obstacles, e.g., walls, are assigned a penalty of
−2 (dark).

The considered mobile robot is a miniature walking robot
as described in [27]. This omni-directional robot is used
in a mode of operation, where left and right turns are
superimposed onto the forward motion. This motion can be
modeled similar to the motion of a two-wheeled differential-
drive robot, according to the nonlinear discrete-time system
equation

xk+1 =

xk+1

yk+1

φk+1

 =

xk + usk · cos(φk + uφk)
yk + usk · sin(φk + uφk)

φk + uφk

+

wx
k

wy
k

wφ
k

 ,

where the state vector xk = [xk,yk,φk]T comprises the
robot’s pose. The control vector uk = [usk, u

φ
k ]T comprises

the desired forward step width usk and rotation angle uφk .
Here, a set of seven control actions

U =
{[

8
±45◦

]
,

[
8

±22.5◦

]
,

[
8
0◦

]
,

[
0
±45◦

]}
is considered. The additive white Gaussian system noise
wk = [wx

k,w
y
k,w

φ
k ]T of the robot has standard deviations

σx = σy = 1.5 and σφ = 3◦, respectively.
Furthermore, the robot is equipped with a sensor to

measure the distance

zk =
√

(xk − x̌k)2 + (yk − y̌k)2 + vk
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Fig. 7. Simulation with primary landmarks for distance measurement at a) x̌ = 20, y̌ = −40 and b) x̌ = 100, y̌ = −10.

to a landmark at [x̌k, y̌k]T, where vk denotes the additive
white Gaussian measurement noise with standard deviation
σv = 0.25.

Two scenarios with identical step reward are considered,
which only differ in the the measurements that are taken. The
robot, which starts at x0 = [−5,−5, 45◦]T, has basically
two choices to reach the goal region at [90, 50]T: (1) the
left path, which is wide but longer, or (2) the right path,
which is shorter but more demanding due to the walls on
both sides. In scenario a), there is a primary landmark
at [20,−40]T, which is used every time step k, and a
secondary landmark at [100,−10]T, which is used in addition
every fourth time step. In scenario b), the primary and
secondary landmarks switch positions. In the first scenario
(Fig. 7 a)), the primary landmark at [20,−40]T leads to
high quality position estimates of the robot in y-direction,
which is especially important moving through the narrow
part of the right path. In the second scenario (Fig. 7 b)),
the primary landmark at [100,−10]T leads to high quality
position estimates in x-direction. The position estimates in
y-direction are substantially more uncertain than in the first
scenario.

For each of these scenarios, 100 simulation runs with
three different kinds of NMPC controllers with an N = 3
step prediction horizon are performed, where equal noise
realizations are used for all controllers. The simulation stops
if the robot hits an obstacle.

Next to the controller employing the presented techniques
(CLF), two benchmark controllers are employed. The first
one is an Open-Loop Feedback (OLF) SNMPC controller
as described in [1], which considers the stochastic system
behavior but not the observations in the control. Within
the optimization horizon, the assumption is made that no
measurements are taken, which leads to conservative approx-
imations.

The second benchmark controller is a deterministic NMPC
controller (DET), neglecting any noise influence in the
control. To ensure that the robot using this controller does

not hit an obstacle instantly, the penalty region is enlarged
by 2 length units for this controller.

In Fig. 7, an example simulation run for each scenario is
shown. Independent of the landmark configuration, the robot
under deterministic control enters the shorter right path and
hits the obstacle, as it neglects any probabilistic information.
Again independent of the landmark configuration, the robot
using the stochastic OLF controller always uses the wider
but longer left path, as it overestimates the uncertainties. The
robot employing the proposed Closed-Loop Feedback con-
troller (CLF), which considers imperfect state information
and measurements in the control, behaves differently in both
scenarios. In scenario a), the distance measurements provide
high quality estimates in y-direction and thus, the shorter
right path can safely be taken, which is done by the robot.
In scenario b), the distance measurements do not provide
a sufficient estimation quality in y-direction and, thus, the
safer path is selected.

In Table I, results of the 100 simulation runs are shown. It
can be seen that both stochastic controllers (CLF and OLF)
safely reach the goal region in the vast majority of cases
(≥ 96%), contrary to the deterministic one (≤ 50%). The
proposed CLF controller chooses in scenario a) the short
way and thus only needs an average of 15.9 steps to reach
the goal region compared to 20.7 steps required by the OLF
controller. The better performance of the CLF controller
can also be seen regarding the average reward within the
first 25 simulation steps, where only those simulations are
considered in this statistics, where the robot does not hit an
obstacle.

In the considered setting with an N = 3 step prediction
horizon and L = 1 virtual observations, a search tree with
722 nodes needs to be evaluated. Employing the proposed
PBAB algorithm, the necessary computational demand is
reduced by a factor of about 8 in the considered scenarios.
For longer prediction horizons or an increased number of
control inputs, this factor typically even increases.



TABLE I
SIMULATION RESULTS FOR 100 SIMULATION RUNS EACH.

a) Primary landmark at [20,−40]T b) Primary landmark at [100,−10]T

CLF OLF DET CLF OLF DET
goal region reached 98% 100% 50% 96% 98% 46%
steps needed to reach goal region 15.9 20.7 15.1 20.6 20.7 15.2
average step reward (first 25 steps) 20.7 18.4 19.9 18.6 18.5 18.7

VI. CONCLUSIONS

In this paper, an approach to stochastic NMPC in the
case of imperfect state information, i.e., hidden states, is
presented. Here, especially systems with a continuous-valued
state and observation space as well as a finite set of discrete
control inputs are considered. Contrary to other approaches
especially from the field of partially observable Markov
decision processes, also time-variant system and measure-
ment equations as well as time-variant reward functions can
easily be employed. The proposed approach is an extension
of our stochastic NMPC framework introduced in [1]. The
influence of the uncertainties arising from noise-corrupted
measurements is introduced in the control by mimicking the
behavior of a Bayesian estimator, which processes so called
virtual observations. To reduce the computational burden,
an efficient tree search algorithm, probabilistic branch-and-
bound (PBAB), is introduced. Combining PBAB with the
extended techniques from [1], namely stochastic state esti-
mation based on hybrid densities as well as reward function
modeling employing matching representations, a feasible
solution of the demanding problem is presented.
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