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Abstract— Typical WLAN based indoor positioning systems
take the received signal strength (RSS) as the major information
source. Due to the complicated indoor environment, the RSS
measurements are hard to model and too noisy to achieve a
satisfactory 3-D accuracy in multi-floor scenarios. To enhance
the performance of WLAN positioning systems, extra infor-
mation sources could be integrated. In this paper, a Bayesian
framework is applied to fuse multi-information sources and
estimate the spatial and time varying parameters simultane-
ously and adaptively. An application of this framework, which
fuses pressure measurements, a topological building map with
RSS measurements, and simultaneously estimates the pressure
sensor bias, is investigated. Our experiments indicate that the
localization performance is more accurate and robust by using
our approach.

I. INTRODUCTION

Indoor positioning systems recently attracted a lot of
research efforts in both academia and industry for their broad
applications such as security, asset tracking, robotics, and
many others [1] [2] [3]. Many promising systems utilize the
received signal strength (RSS) of wireless LAN (WLAN)
to infer the location information. These systems have a
big advantage in the installation and maintenance cost by
using the existing communication infrastructure. Numerous
research results also indicate that the WLAN positioning
system suffers from the noisy characteristics of radio prop-
agation [3]. For example, in large multi-floor buildings,
the location error often has a large variance due to the
complexity of indoor environment and insufficient number
of reachable access points (APs) [4]. Although adding more
APs could improve the performance, this solution implies
higher installation costs. Another solution is to integrate
other location related information besides the WLAN signal.
For instance, in our previous work [4] and [5], MEMS
sensors were used to enhance the localization performance
due to their small sizes and low prices.

To determine the user’s location, the model that maps the
sensed measurements (e.g, RSS, air pressure and etc.) to
the location should be known. Most systems assume that
this model has an accurate analytical form and it does not
change with time. But in reality, the model parameters could
be inaccurate and sometimes vary over time and space. For
instance, the air pressure is determined not only by the
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altitude but also by some unknown environmental change,
which could be modeled as a spatial and time varying bias.
Besides, the radio distribution should also be accurately
known and it could be temporally varying due to the changes
of transmission power or the movement of scatters.

This paper is intended as an investigation of using the
Bayesian filtering framework to fuse location-related infor-
mation sources and simultaneously estimate their unknown
parameters, i.e., to solve a joint state and parameter esti-
mation problem. Since the localization problem is usually
nonlinear, the exact Bayesian filter is in general intractable.
Different approximate estimators like the Extended Kalman
Filter (EKF) [6], Unscented Kalman filter (UKF) [7], Particle
Filter [8] or Hybrid Density Filter [9] could solve this prob-
lem. Additionally, dual estimation [10] or the expectation-
maximization (EM) algorithm [11], which decouples the
state and parameter estimation into two different problems
in a suboptimal way, can also be used.

There already exists a class of self-estimation and cali-
bration algorithms such as simultaneous floor identification
and pressure compensation [4], simultaneous localization
and learning (SLL) [3], and simultaneous localization and
mapping (SLAM) [12]. These algorithms have a strong
requirement with respect to initial conditions to ensure the
convergence. Different from them, this paper aims to use
different information sources to teach each other so that the
system is ensured to be robust.

As an example application of the proposed framework, this
paper simultaneously fuses RSS measurements, a discrete
topological map as well as pressure measurements, and
estimate the spatial and time varying pressure bias. The
resulting posterior joint probabilities are proven to be in
a Gaussian-mixture form. For simplicity, a dual estimation
algorithm is applied, which takes a grid-based filter for
location estimation and a Kalman filter for parameter esti-
mation respectively. Our experiments in a typical multi-floor
office building indicate that the location performance is more
accurate and robust by using this approach even given an
inaccurate initial condition.

The remainder of this paper is organized as follows: in
Section II, the general multi-information fusion and param-
eter estimation problem is formulated. In Section III, the
characteristics of the selected information sources are given.
In Section IV, the specific form of the Bayesian framework
is derived given the information sources in Section III.
Its solution by the dual estimation is described. Section
V presents the experiment setup and discusses the result.
Finally, conclusions and an outlook to future work are given



in Section VI.

II. PROBLEM FORMULATION

The indoor positioning system can be modeled as a
nonlinear and non-Gaussian dynamic system. We use xj =
[mk,yk,zk}T € L to denote the 3-D location at time
k. L C R32 denotes the indoor location domain. o, =
[ok,...,okN } € O represents the sensed measurements
from sensor 1 to N at time k, including RSS measurements,
pressure measurements and so on. O C RN denotes the
oberservation domain. v, = [}, 'y,T]T represents parameters
in system model and measurement model respectively. i
belongs to the parameter domain P C RX, where K is the
parameter dimension. The whole system is described by the
following system equation

i1 = a (T, vy) + Wy, )]

and measurement equation

Okt1 = hi (Tpr1,75") + Vt1, (2)

where ay, (-) is the system function, which updates the current
state to the next state. hy (-) is the measurement function,
which relates the state to the measurements. wj; and vy
represent system and measurement noise. The system can
also be illustrated by a graphical model in Fig. 1.

The Bayesian approach provides a recursive way to es-
timate the hidden state of dynamic systems with the above
form. It has also two steps: prediction step

F2o (@) = /L T (@) £ (@) dze ()

and update step

1
fieg1 (@p1) = af;fﬂ (Ort1l®rt 1, Vi) fly (Trs) s
“
where f7 , (xxy1) is the predicted density at time k.
fit1 (eg1|ze, ;) is the transition density, which is given
by

i (@, we) = f (Tpgr — ap (z5,75)) . (5)

where fl’ (-) is the density of the system noise at time
k. ff (xy) is the posterior density function at time k. ¢

Fig. 1. A sensor fusion graphic model for localization problem.

is the normalization constant. f[ | (Yr+1|@rs1,7]") is the
conditional likelihood density given by

S West|@es1) = fLo et — bt (@41, 98)) S
(6)
where f (-) is the density of the measurement noise at time
k.
If the parameters are not accurately known or vary with
time, they can be also regarded as states. So Eq. (1) and
Eq.(2) become

Tht1 | _ | Gak (ks 73) + Wa i (7
Ve+1 ke (Vi) + W i

and
Opt1 = hi (Tpg1,7Y5") + Vkg1- (8)

The joint state and parameter probabilities can also be
derived by Bayesian framework as the following

Fosr (®ra1, Yer1)

Z//fkT (®rt1, Yer1|r, ve) fi (Tr, Vi) dzrdys,
PJc
9

and
ff+1 (mk+1»7k+1)
1
= afzfﬂ (Ors1lTrrr, Vo) fipy (Terr, Yeer)  (10)

Afterwards, the marginal posterior state and parameter den-
sities are easily obtained by

£ (x) = /p £ (@ o) e (a1

and
fi (ve) = /szf (@, i) Ay (12)
The above equations provide a general framework for
simultaneous state and parameter estimation problem. The-
oretically, many problems in the localization area can be
solved by this framework, such as dynamical radio map
estimation, sensor bias estimation, motion parameter estima-
tion and so on. In the following, we use this framework to
simultaneously fuse the RSS measurements, pressure mea-
surements and a topological map, and estimate the spatial and
time varying bias for pressure measurement. In this example
application, one advantage is that the states are estimated by
two different information sources but the unknown parameter
is only related to one of them. So different from state
and parameter estimation algorithms, the two information
sources can teach each other to ensure the convergence and
robustness of the final result.

III. MODELS OF INFORMATION SOURCES

A. RSS of WLAN signal

In WLAN based localization systems, RSS is most often
used as the input of the positioning algorithm because it is
much easier to obtain than the time or the angle information.
The relation between the location and the RSS is modeled
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by the so-called radio map function R := R (x), where =
[z, v, Z]T is the 3-D location vector. In theory, the radio map
function follows the radio propagation rule. But in reality,
due to the complexity of indoor environment, the radio map
function has a very complicated form. As illustrated in Fig.
2, a real measured radio map in a office building is hard to
be described in an analytic way. So in practice, the radio
map function is usually modeled in a non-parametric w%y
by a number of selected grid points, i.c., € [27,y%,2!]",
where ¢ = 1,2, ..., M is the index of grid points. In addition,
since the wireless channel is influenced by many factors,
e.g., measurement noise, changing environment, and moving
people, the measured signal power fluctuates with time as
shown in Fig. 3, ie., r = R(x) + A (x,t) + w, where
A (x,t) could be regarded as an unknown spatial and time
varying parameter indicating the inaccuracy of radio map
model and its temporal variation; w is the measurement
noise, usually regarded as a Gaussian as Fig. 3. In this
paper, for simplicity, we assume a non-parametric radio map
model that is accurately known and time invariant. Then the
measurement equation for the RSS measurement from AP n
becomes

]T

r"=R"(x)+w", x € [xi,yi,zi ,i=1,2,...,M. (13)

B. Pressure Measurement From MEMS Barometric Sensor

As it is well known, the atmospheric pressure is a phys-
ical property strongly related to the altitude. Assuming a
constant temperature gradient of d7'/dz, the altitude z can
be expressed as a function of pressure p using the following
standard equation,

—dT/dz-R/g
> ;14

2 =Ty/ (—dT/dz) - |1 - (p

Po

where Ty = 288.15 K and py = 101325 Pa are the
reference temperature and pressure, respectively. R is in
standard conditions equal to 287.052 m?/s?/K; g is equal

to 9.82 m/s?. If the change in pressure X and temperature
Po

dT
Ea are small, the above equation can be approximated as

dp-R-T
dzg=———7— (15)
g - Po
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Fig. 2. A radio map example in an office building.
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Fig. 4. Estimated altitudes by a static and a mobile barometric sensors.

which can be further modified to a linear function between
p and z as

- _po'9>_ ;Do g- 72
= T-R)FTY T TR

= =B

where p’ and 2’ are the reference altitude and pressure. Fig.
4 shows the estimated altitude using pressure measurements
by a static barometric sensor and a mobile barometric sensor,
which moves in the same floor. We notice that the pressure is
varying both temporally and spatially. Fortunately, when we
consider the tracking problem, the pressure variation caused
by horizontal moving and temporal environmental change is
relatively small and slow. So we can simply assume that the
pressure is only related to the height and a bias 3 (t), which
is slowly varying, i.e.,

pH)=a-z+B(t).

(16)

a7

C. Building Map

A building map is another very important information
source. The positions of obstacles, such as walls or doors,
determine the possible routes where people can move. Math-
ematically, the map influences the prior joint probability of
f (z,y, 2) and the transition density f7 (zyi1|xy).

In this paper, we represent the building map by a topologi-
cal graph consisting of a number of location points as shown
in Fig. 5. These points are connected by their spatial relation,
i.e., points which can see each other are connected. In this
way, the indoor environmental restriction such as walls, doors
or floors can be easily integrated. In addition, the topological
graph can reflect the restriction to the location, e.g., the
height z is limited to discrete floor heights except in some
special places such as stairs or elevators. With the topological
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Fig. 5. Example of a topological map.

graph, the location transition density can be represented by
a Gaussian distribution

I (@hlod) = N (do (i) = 0+ Aty (0, AD2), (18)

where d; (i, j) is the shortest distance between x' and 7,
which can be calculated offline by Floyd’s algorithm [13]. ¥
is the mean of moving speed and o, is the standard deviation
of moving speed.

IV. BAYESIAN FILTERING FOR SIMULTANEOUS
LOCALIZATION AND BIAS ESTIMATION

In this section, the Bayesian framework are used to fuse all
the information sources in the last section and simultaneously
estimate the parameter [ (¢). This is illustrated by a graph
model in Fig. 6. The system is described by the following
system function

Tyl | _ a(xg,m) + wg (19)
Brt1 Br + wgs. i
and measurement function
Tl?—i—l _ R" (wk+1) + 'U7n-,k+1 (20)
Dk+1 a-2pyr + Beg1 Hvp kg1 |

0000 OGO ™

Fig. 6. A graphic model for simultaneous multi-information fusion and
pressure bias estimation.
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where m represents the information from the building map;
n=1...N is the index of AP; wg, v, and v, are the noise
terms for parameter prediction, RSS and pressure measure-
ments, following Gaussian distribution N (0, 03), N (0, 0,)
and NV (0, o) respectively. The corresponding posterior joint
density function is hybrid, which includes both a discrete
state ¢ and a continuous state 3. This can be derived as

f5+1($2+1’5k+1)
= ZJ:/RfkT (w2+17ﬂk+1\$i,ﬂk7m> I (mi,ﬁk) dB
(2D
and
fi (w2+175k+1)

1 . .
= gkaH (Tra1s begr|@hy 1y Brs1) fogr (®hans Brtr) -
(22)
Combining (18), (19) and (20),
fkT+1 <$Z+17ﬂk+1|wi,ﬂk,m)
= fain ($2+1|$i,m) F5. (BrralBr)
:N(ds (27]) _1770—3) '/\/‘(ﬁk+1 _ﬁ]mo—[%)u (23)

and

fi (Prga prsr [T, Bran)
= ff',kﬂ (Tk+1\932+1) pr,k+1 (pk+1|zi+17ﬁk+1)

N
= I 07"~ R (2h) 02)
n=1

) 2
N (Prs1 — - zhy g — Bryr,00) -

(24)

Given the uniformly or Gaussian distributed initial joint
probability density fri1 (8, 5), the hybrid posterior den-
sity f¢ (z},8c) and f¢ (B)) both have Gaussian mixture
form. For each recursive step, the number of mixture com-
ponents increases so that the optimal analytical solution is
not tractable. The algorithm proposed in [14] can optimally
reduce the number of Gaussian components and get the
suboptimal solution. Besides, particle filters are also used by
some researchers to solve the similar problem. One problem
using particle filters is that when the parameter is part of
state, the augmented state space model is not ergodic, and
the uniform convergence result does not hold anymore [15].

In this paper, we use another suboptimal algorithm, so-
called dual estimation [10] [16]. The idea of dual estimation
is to separate joint state and parameter estimation into two
independent processes. As illustrated in Fig. 7, the grid based
filter is used to estimate the discrete location vector xj
assuming the parameter [ is known. The expectation of
posterior xj is sent back to the parameter estimator, which
is a Kalman filter in our case. Afterwards, the estimated 3y, is
sent again to the state estimator. The dual estimation at time
k stops either after a given number of iterations or if the
new state estimation is close enough to the old one. Note
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Fig. 8. Test environment and its topological graph for three floors.

that the dual estimation can be regarded as a generalized
EM algorithm. Its convergence to the suboptimal solution is
guaranteed by its iterative optimization process [16].

Since only the posterior expectations of height and sensor
bias instead of the whole probability are exchanged between
two filters, the dual estimation might bring a large error if the
posterior density function has a complicated form. But in our
case in most of the time the height z is limited to the discrete
floor height, the posterior of z tends to be unimodal. The
pressure bias has also a Gaussian-like shape. That assures the
suboptimal dual estimation works well for our application.

V. EXPERIMENT RESULTS

A. Experiment Setup

We evaluate our algorithm in a typical multi-floor of-
fice building depicted in Fig. 5. Each floor has a area of
50 mx80 m and has a similar structure like the left figure
in in Fig. 8. There are 14 access points installed on the first
floor. We take three floors for evaluation. Since APs only
exist on the first floor, the 3-D localization error could be
large when users stay in the higher floors. A topological
graph is built automatically based on the chosen reference
points. Here we only take the points along the corridor, stairs,
and elevator like the graph in Fig. 6. These points represent
the basic moving possibilities. The rooms can also be easily
added to the graph if some points in rooms are taken. The
whole topological graph for three floors is shown in Fig 8.
The RSS values at reference points are measured offline and
their noise parameters are also estimated according to the
measurements. In online step, we first walked in the corridor
of the first floor and then went up to the second floor by
stairs, walked around in the second floor and finally went
up to the third floor by elevator. While moving, the RSS

TABLE I
THE VALUES OF PARAMETERS

Parameter Value

or 4dB

v 0m/s

o 2m/s

op 6 Pa

s 3 Pa
TABLE II

3-D LOCALIZATION RESULTS

NN | Fusion Fusion and
Bias Estimation
Mean of 3-D Error (m) 8.2 6.5 6.1
Standard Deviation of 3-D Error (m) | 7.8 6.6 6.3
Mean of Altitude Error (m) 1.2 0.2 0

and pressure measurements by the barometric sensor were
recorded simultaneously.

B. Results

The parameters taken in our test are list in Table L
Table II shows the comparison of the nearest neighbour
(NN) algorithm that only uses RSS measurements, the fusion
algorithm (Fusion) that integrates the RSS, air pressure, and
topological map using grid filter and an assumed sensor
bias, and the algorithm that simultaneously estimates the
location and parameter. The criteria for the comparison are
the mean and standard deviation of 3-D localization errors
as well as the mean altitude error. Fig. 9 plots the altitude
error by different algorithms. Fig. 10 compares the true bias
with estimated bias by simultaneous localization and bias
estimation algorithm.
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Fig. 9. Altitude error by different algorithms.

From Table II it can be seen that both the 2-D and the
3-D localization performances are improved by fusing more
information sources. By simultaneously adapting the bias,
the altitude error can be reduced to zero, i.e., perfect floor
identification.
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Fig. 10. Comparison between true bias and estimated bias by fusion and
bias estimation. The true bias is obtained by filtering the difference between
the measured pressures and calculated pressures.

C. Sensitivity Analysis

The algorithm in our previous paper [4] can also provide
very good performance for floor identification. But since it is
actually a self-calibration algorithm, the initial condition is
very important. Given the wrong initial condition, the result
can be totally wrong. The algorithm in this paper uses the
RSS measurement to teach the bias estimation and hence
make sure that the bias can be tracked without any limitation
for initial value. To validate this, we add an artificial pressure
bias —60 Pa to the real pressure measurement so that the
wrong floor (10 meters higher) is identified if only depending
on the pressure. Besides, we start with moving in the 3rd
floor so that the intial RSS is also very unaccurate. The
altitude errors are given in Fig. 11. We see that compare
the result in Fig. 9, the error by fusion is obviously larger.
That is because adding the artificial bias, the wrong floor is
identified by pressure. If the same wrong floor also happened
to be estimated by RSS measurements, the altitude error
become bigger. But by simultaneously estimating the bias,
the sensor bias can be quickly calibrated and then the altitude
error becomes zero.

Additionally, we notice that the height z is the variable that
influences both RSS and pressure measurements. Through
the inference of RSS and the correlation between (z,y) and
z, the estimated z can be used to train the (3 to ensure the
convergence.

—NN
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Fig. 11. Altitude error by different algorithms with an artificial bias.
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VI. CONCLUSIONS AND FUTURE WORKS

Bayesian framework can be used to solve joint state
and parameter estimation problems in indoor positioning
systems. In this paper, we apply this framework to a specific
problem: simultaneous localization and sensor bias estima-
tion. By fusing pressure measurements, a topological graph
with RSS measurements and simultaneously estimating the
pressure bias, the WLAN indoor positioning system becomes
more robust and more accurate. In the next step, we will
investigate the feasibility of using Bayesian framework for
more complicated parameters, such as the parameter for
the radio map generation and other state and parameter
estimation problems in indoor positioning systems. Other
more complicated filtering techniques like Gaussian mixture
filter or particle filter will also be considered to solve the
joint density estimation problems with proper forms.
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