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Abstract— This paper introduces a new concept for tracking
closely spaced targets in Cartesian space based on position
measurements corrupted with additive Gaussian noise. The
basic idea is to select a special state representation that
eliminates the target identity and avoids the explicit eval-
uation of association probabilities. One major advantage of
this approach is that the resulting likelihood function for this
special problem is unimodal. Hence, it is especially suitable for
closely spaced targets. The resulting estimation problem can be
tackled with a standard nonlinear estimator. In this work, we
focus on two targets in two-dimensional Cartesian space. The
Cartesian coordinates of the targets are represented by means
of extreme values, i.e., minima and maxima. Simulation results
demonstrate the feasibility of the new approach.

I. INTRODUCTION

Multi-target tracking [1] is a fundamental problem that
arises in many application areas. For instance, in air surveil-
lance, groups of airplanes are tracked by means of radars.
One of the major challenges in multi-target tracking is that
it is unknown from which target a particular measurement
stems. In order to tackle this problem, elaborate data asso-
ciation techniques have been developed in the past [1].

This paper deals with the problem of tracking two co-
ordinated point targets. This problem occurs for instance,
when two airplanes are flying in a formation. In case that
the measurement noise is high in comparison to the relative
distance of the targets, it becomes difficult to distinguish
between the two targets. A similar problem occurs when
point features on an extended object are to be tracked [2],
(31, [4].

In this paper, we introduce a novel approach to group
target tracking [4], [5], [6] called Unique State filter. The
basic idea is to select a state representation in such a way
that the association problem disappears and the target identity
is elimated. For this purpose, we represent the Cartesian
coordinates of the two targets by means of extreme values,
i.e., minima and maxima. This representation ensures that
there is a unique state that specfies the target positions (when
the target identity is ignored).

The remainder of this paper is structured as follows: After
a detailed problem formulation in Section II, we briefly
state related methods for data association (Section III). In
Section IV, the new approach called Unique State filter
is introduced. Simulation results in Section VI then show
the feasibility of the new data association method. Finally,
the conclusions and an outlook to future work are given in
Section VIIL.

M. Baum and U. D. Hanebeck are with the Intelligent Sensor-Actuator-
Systems Laboratory (ISAS), Institute for Anthropomatics, Karlsruhe In-
stitute of Technology (KIT), Germany. marcus.baum@kit.edu,
uwe.hanebeck@ieee.org

II. PROBLEM FORMULATION

In this paper, we consider the problem of tracking the
Cartesian coordinates of two point targets in two-dimensional
space. We assume that at each time step exactly two
measurements, namely one from each target, is available.
These measurements are noise-corrupted observations of the
target positions. The measurement-to-target association is
unknown.

More formally, at each time step, the positions of the two
targets z; 5, = [T1,k,y1.k]" € R? and Zog = (T2, Y2k) €
R? shall be tracked. At each time step k, two position
measurements § e € R? and Qz,k e R? with Gaussian
noise are received, i.e.,

yw(l),k‘ élvk—'_yl’k ’ and
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where 7 : {1,2} — {1,2} is the target-to-measurement
assignment. The random variables v, ;, and v, denote
Gaussian measurement noise, both with identical diagonal
covariance matrices diag([c% ,,c¥ ,]).

In this paper, we assume that the targets are moving
collectively in the sense that the target positions evolve
according to the linear motion models
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with common system input dk and individual system noises
w, , and w, ;, which are identically distributed accord-
ing to a zero-mean Gaussian distribution with covariance
diag([c{, 1., ¢y, ). This motion model captures the group
behavior while allowing changes in the relative position of
the two targets. However, the proposed method in this paper
is not limited to this motion model. In practical applications,
the system input dk is typically unknown and has to be
estimated based on the kinematics of the group [5], [7] . The
introduced method can easily be extended for this purpose.

In this work, we focus on scenarios in which the targets
are closely spaced compared to the measurement noise, i.e.,
the validation gates of the predicted measurements overlap
highly. Note that in this paper, we are only interested in the
positions of the two targets. The target identity, i.e., the track
labels are not desired.

III. RELATED WORK

The considered problem can in general be tackled with
a probabilistic data association method. In this section,
we give a brief overview of data association techniques



suitable for the problem. In the following, we roughly
distinguish implicit and explicit data association techniques.
A data association method is called explicit, if it explicitly
computes the probability of feasible measurement-to-target
assignments. On the other hand, an implicit method does
not evaluate measurement-to-target assignments directly. In
contrast to the method proposed in this paper, the mentioned
data association techniques are in general not restricted to the
above problem formulation. They are also capable of dealing
with clutter and larger number of targets, for instance.

A. Explicit Data Association

The solution of the exact Bayesian formulation of the
data association problem is in general intractable due to
the increasing complexity of the probability densities and
the exponentially growing number of association hypotheses.
A variety of different approaches has been developed in
order to obtain approximate solutions. A simple method for
data association is the so-called Nearest Neighbor Filter [8]
that assigns each observation to the most probable target.
Since this hard decision may be wrong, this filter provides
poor results in case of closely spaced targets. A popular
data association technique is the Joint Probabilistic Data
Association Filter (JPDAF) [9]. The JPDAF can be seen as
an approximation of the exact Bayesian solution of the data
association problem. JPDAF performs a weighted update
of all target states in the validation gate according to the
association probabilities. In order to deal with increasing
complexity, the JPDAF ignores correlations between the
target states and removes resulting multimodalities in the
target state by means of analytic moment matching. An
adjusted JPDAF algorithm for estimating an unordered set
of targets was proposed in [10].

During recent years, Monte Carlo methods [11], [12] for
approximating the exact Bayesian formulation have been de-
veloped. The so-called Multiple Hypothesis Tracker (MHT)
[13] maintains all feasible association hypotheses over sev-
eral time steps. Since the number of feasible association hy-
potheses grows exponentially over time, reduction methods
like pruning and Gaussian mixture reduction are required.

The so-called Probabilistic Multiple Hypothesis Tracker
(PMHT) [14] assumes that each single association is inde-
pendently generated according to a discrete stochastic pro-
cess. This formulation yields an incomplete data problem that
can be solved by means of Expectation Maximization (EM).

B. Implicit Data Association

In the context of finite random sets, the so-called Finite
Set Statistics (FISST) [15] allows for formulating an optimal
multi-target Bayes filter. However, since the FISST filter re-
cursion is in general intractable, the PHD-Filter [16] provides
a tractable alternative by propagating the first order statistical
moment of a finite random set.

The basic idea of the Symmetric Measurement Equation
(SME) filter [17], [18], [19] is to define a symmetric mea-
surement equation which maps the state of the targets to
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Fig. 1: Representation of the Cartesian coordinates of two
targets by means of extreme values.

a pseudo-measurement constructed from the real measure-
ments. Due to the symmetry of the measurement equation,
it is not necessary to explicitly calculate the measurement-
to-target association. A symmetric measurement equation is
typically constructed by means of symmetric polynomials
[18], [19]. The SME filter transforms the data association
problem into a nonlinear state estimation problem with non-
additive Gaussian noise. The first works on the SME filter
employed the Extended Kalman filter (EKF) [20] for dealing
with the nonlinear measurement equation. Recently, it was
proposed to employ the Unscented Kalman filter (UKF) [18],
[19] for the SME filter.

In [21], the memorylessness of the exponential distribution
is exploited for avoiding explicit data association in the
context of topic intensity tracking.

IV. THE UNIQUE STATE FILTER

The basic idea behind the Unique State filter is to select
a representation of the two target positions that is invariant
to permutation of the target positions, and yields a measure-
ment equation that does not directly require for evaluating
assignment hypotheses.

In the following, we introduce such a representation of
the two target positions z; ; and z, j that fulfills the above
conditions. For this purpose, we first restrict ourselves to
a one-dimensional version of the problem, where two one-
dimensional target positions z; ; and x3 j on the x-axis are
to be estimated based on the measurements £ j and Zg 4.
If we directly estimate the Cartesian coordinates xj and
T2, we always have to make a case distinction whether
21,k Or Lo ) stems from x1  or z2 ;. As a consequence, the
resulting likelihood function is bimodal. Hence, it is often not
suitable to represent the state with a Gaussian distribution,
especially for closely spaced targets. This is even the case
with the SME filter, which does not explicitly compute the
two possible associations.

The basic idea of the Unique State filter is to select a
representation of the two targets that is unique with respect
to permuations of the components of the transformed state
vector. For instance, such a representation can be given by

Iy =

up =

min {x1 x, T2} and

max {xl’k’xQ’k} .



The measurement update and prediction also has to be
performed in the transformed space, i.e., I and uf are
to be estimated by means of the pseudo measurements
min {Z1 x, T2} and max {&1 x, T2 5 }. Since ¥ and uj are
uniquely defined by means of the pseudo measurements, the
resulting likelihood function for the transformed problem is
unimodal.

Remark 1: One property of the Unique State filter is that
the target identity gets lost. We do not know which of the two
targets 1) or xaj coincides with [¥. This is also the case
for the PHD-filter, where the target identity is not directly
available.

An extension of the above approach to two-dimensional
state space is not straightforward. This is due to the fact
that two Cartesian points are not uniquely specified by their
extreme values on the axes (see Fig. 1). Hence, further
information has to be incorporated in the state vector. One
possible solution is to estimate additionally

min {1k + Y1k, T2k + Y2,k }

All together we employ the following state vector for two
targets in two-dimensional space (see Fig. 1)

z min {l'l,k,xg,k}
uf max {1k, T,k }
1y min {y1 &, Y2}
S _ k> Y2, 3
=k u max {y1 &, Y2,k } )
H min {21, + Y1k, T2k + Y2,
uj max {x1k + Y1,k T2,k + Y2, )
= T(§17k7§2,k}) ’

where

o ¥, uf,ly, and uj are the extreme values on the x- and
y-axis,

e [7 and uj serve for uniquely defining the two target
positions. For positive target coordinates, [; and u; are
the minimal and maximal Manhattan distance from the
origin.

For the two target positions z, ; and z, ;, the state vector x,
is uniquely defined. For given z,, the two target positions
turn out to be

[lz,lz]T and [uﬁ,ui]T

if min {1} + 1}, uf + u}} = [} and otherwise

[, )" and [uf,1f]"

Note that it is not possible to reconstruct the target identity,
Le., it is left open which of these points is z; j or z, ;.
Remark 2: The vector z,;, is not a state according to the
definition used in classical control theory, because it is not
the smallest possible subset of system variables that represent
the systems state at any given time. Similar, a quaternion is
a non-minimal description of a three-dimensional rotation.
The goal is to estimate x;, = T(z;,25;) based on
measurements of T@Lk"glk‘) =T(21,5+t201 k> 22k T V21)-

For this purpose, we derive an estimator that recursively com-
putes the probability density of x; given the accumulated
measurements

pleli,,) -
where y ={y Ypse-- ,y } and pseudo measurement yl
(g, k,yQ k) We assume that this probability density is

Gaussian, i.e., p(zyly,,) = N(&}, Cf). The prediction for
the state at time step k is denoted with

p(£k|glzk,1) :N(@£7CZ) .

In the following, we first describe the measurement update
step, which takes the prediction and the next position mea-
surements of the two targets in order to compute the updated
estimate. Subsequently, we treat the state prediction.

A. Measurement Update Step

In order to perform a measurement update, we have to
derive a measurement equation, which relates the state x; to
the pseudo measurement 5 constructed from the individual
position measurements ¥ Yy and g Yy g

A linear measurement equation, can be derived with the
help of the following approximation

e = T(zyp+ 0ok 295 + Vo)
= T(§1,k7§2,k) -
T(2y 4 206) T T(21 1 + Vo gy 2ok + Vo i)
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Hence, the linear measurement equation

Y, =z + 9y, “)

with noise term 9§, = —i} + T(zy ) + Vo, 2o g + Vo,
is obtained. The noise term can be approximated without
reconstructing z; ;, and z,; by means of the following
approximation

M AJJ xr N T xr
min § lp + vy ., 4 +172,€}

max lI +v7 ., Uy, +v2k}

max lk + ”i,ka“k + "’z,k}

7y

min 3 [} + vy, @) + v,
Yy

max{l +vlk,uk+v2

min lk—&—vlk,uk—k%k

where
o [¥ and 4} with * € {x,y, s} are the current estimates,
i.e., the predicted values, for I} and uj, and
e v{ and v{ models uncorrelated Gaussian noise with
variance ¢, and ¢} ,, and
e v} is Gausswn noise with variance ¢ , + ¢}, that is
uncorrelated to vy and vg. '
The statistics of the noise term can in general be ap-
proximated with a Gaussian distribution by deriving analytic
expressions [22] or by employing a nonlinear state estimator
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[20] like the Unscented Kalman Filter (UKF) [23] or the
Gaussian Filter [24]. Since the maximum of two Gaussian
distributed random variables with similar variance is almost
again Gaussian distributed, a Gaussian assumed density filter
provides good results.

Given the predicted probability density for the parameters
at time step k

Pyldy ) =N, Cp)

the updated estimate p(z,|f, ) according to the measure-
ment model (4) is also Gau551an with mean zj and covari-
ance Cj, and results from the Kalman filter equations [20]

§;§+Kk((gk_5k)_@§) and

se
X =

e _
C; =

with Kalman gain Ky, = C}(C} + C2)~

B. Prediction Step

Since x, is the result of a nonlinear transformation of the
original target positions, the system equation for the temporal
evolution of z; is nonlinear as well. The system equation
of the transformed problem can be written in the form (see
Fig. 1)

a(&ka wkvdk) -

Ty = o)
min lz—&—wlk,uk—l—ka
- e
max ¢ I + wf ;, uf +ws K
k
min ¢} +w{ ., ui +wj } dv
+ Y )
max ly—l—wlk,uk+w2k} dy
o s di +dj
min lk+w1k,uk—|—w2k} ‘ii+dz
max {ls +wi y, up + w3 k}

: L x Yy - — x Yy
where either wy , 7y'w17,C +wy ;, and w; = wy Wy
S — x S — P E
or wy p = ws , +w, . and w3, = wy , +w; ;. In order to
avoid a case distinction for the noise terms wy ; and w3 .
in (5), the noise terms can be assumed to be uncorrelated
x Yy x Yy S s
to w3, +wy ;. or wi, + ws ;. Hence, wy ; and w3, are
modeled as Gaussian noise with variance ¢% , + ¢/ , that
is uncorrelated to w§ and w}. The prediction step can be
performed with a standard nonlinear state estimator like the
UKF.

C. Point Estimates

Typically one is interested in a point estimate of the target
positions. In order to obtain such a point estimate from
the current estimate p(z;|g,,) = N (&, Cf). one could
perform a stochastic forward mapping in order to compute
probabilities densities for the target positions 2, ; and zj .
Then, a point estimate is given by the mean of these densities.

A more simple but less accurate solution is to directly take
the mean 2} and set the point estimate to

[i£,02]" and [uf,u?]” |

if [min {1} + 1}, uf + u}}
[7| and otherwise
[t

In the same manner, one could also compute the uncertainty
of the target positions.

— 7] < |min {{{ + u}, uf

-

u%]T and [uf, ZZ]T

V. RELATIONSHIP TO OTHER APPROACHES

The concept of transforming the original state of a system
into a higher dimensional state has also been used in the
context of nonlinear state estimation [25], [26], for instance.
Actually, the Unique State filter can be seen as a non-minimal
state filter [25] for the SME filter [17], [18], [19]. In general,
each symmetric transformation for the SME filter can also
be used to construct a Unique State filter. However, it must
be ensured that the prediction and measurement update can
be performed in the transformed state space. Furthermore,
it should be possible to efficiently reconstruct the Cartesian
coordinates of the targets based on the transformed state.

VI. EVALUATION

In the following, we demonstrate the performance of
the Unique State filter. For this purpose, we consider two
example scenarios, whereas the Unique State filter is com-
pared with the SME filter. The used symmetric measurement
equation is given by the sum-of-powers equation [18], [19]

T1k + T2k

Y1,k T Y2,k
(z1,6)* + (@2,0)? — (y1,6)* —
221 kY1,k + 222, 1Y2.k

T(zy) = o - (6)

(y2,r)

The solution of the SME filter is not unique, i.e., two
possible solutions are [glyk,gzk]T and [gQVk,gL,JT due to
the symmetric measurement equation. As a consequence,
the likelihood function is multimodal. Hence, a Gaussian
distribution is not suitable for capturing the uncertainty about
the state (in the case of closely spaced targets). The following

two examples provide detailed simulation results.

A. Two Static Targets

In the first scenario, two targets are located at fixed
positions z;, , = [3,2]" and z,, = [3.5,3]", ie., they
do not move. The measurement noise is diag([1,1]), which
is quite high in comparison to the distance of the two
targets. A priori it is known that one target is located at
the position [3,1]7 and one at the position [3.5,1.5]7, both
with covariance matrix diag([1,1]). We tested the SME filter
with the symmetric measurement equation (6) and the new
Unique State filter both with an UKF implementation.

The resulting error for the first 200 time steps averaged
over 100 runs is depicted in Fig. 3. The error [10] between
true target set Z = {z,2,} and the estimated target set
Y ={y,,y,} is computed by means of the formula

1
d(X’ Y) = (%minﬂerb Z ||gl _gﬂ(i)‘|2)2 )

i=1,2



where II; is the set of all permutations on {1, 2}. In Fig. 3, it
can be seen that the Unique State filter outperforms the SME
filter. Especially, at the first 100 time steps, the estimates of
the SME filter jump around the two true positions, which
is caused by the multimodal likelihood resulting from the
symmetric measurement equation. The Unique State filter
does not suffer from this problem due to its unique state
representation.

B. Two Crossing Targets

The next scenario considers two collectively moving tar-
gets, whose tracks are crossing. This is an important scenario
for real-world applications and one of the most challenging
tasks in target tracking. Therein, the difficulty is that the two
tracks cannot be distinguished due to the kinematics of the
targets, since the motion models are the same.

The starting positions of the two targets are z;;, =
[1.5,1]7 and z,, = [2,4]. The two targets approach up
to a distance of approximately 1, then their paths cross. The
true (unknown) path taken by the two targets is depicted
in Fig. 3a. The temporal evolution of the target position
is modeled with the linear system model (2) with system
noise with covariance diag([0.002,0.002]) and system input
[2,0]7. A priori it is known that one target is located at the
position [1.2,2.5]7 and one at the position [2.2,0.8]7, both
with covariance matrix diag([0.5,0.5]). Again, the measure-
ment noise is diag([1, 1]). The average error for 50 runs is
shown in Fig. 3b. There, it can be seen that the new method
provides more accurate estimation results than the SME filter,
especially when the two targets are crossing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the so-called Unique State fil-
ter, which allows for association-free tracking of two targets.
The basic idea is that the association problem disappears,
when a representation of the two targets that eliminates
the target identity is chosen. To this end, we represent the
Cartesian coordinates of the two targets by means of its
extreme values on the axes, and the Manhattan distance
from the origin. For this state representation, it is possible
to derive a measurement equation, which does not require
any kind of data association. Furthermore, the resulting
likelihood function is unimodal, which renders the proposed
method suitable for closely spaced targets. The performance
of the Unique State filter has been demonstrated by means
of simulations.

Future work will be concerned with extending the Unique
State filter to higher dimensions and larger target numbers. In
this context, proper state representations for the Unique State
filter have to be investigated and evaluated. For instance,
techniques from order statistics [27] could be applied for
this purpose. Future work also consists of extending the
Unique State filter for dealing with false measurements and
detection probabilities. Furthermore, it would be interesting
to construct a symmetric measurement equation [17], [18],
[19] by means of extreme values or order statistics.
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Fig. 2: Simulation results for the scenario with static targets. A screenshot of an example run (a) and the average error (b)
for the first 200 time steps averaged over 100 runs are depicted.
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Fig. 3: Simulation results for two collectively moving targets with crossing tracks. The path of the two targets (a) and the
average error (b) for the first 400 time steps averaged over 50 runs are shown.
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