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Abstract— In this paper, a distance-based method for both
multivariate non-parametric density and conditional density
estimation is proposed. The contributions are the formulation
of both density estimation problems as weight optimization
problems for Gaussian mixtures centered about samples with
identical parameters. Furthermore, the minimization is based
on the modified Cramér-von Mises distance of the Localized
Cumulative Distributions, removing the ambiguity of the defi-
nition of the multivariate cumulative distribution function. The
minimization problem is amended with a regularization term
penalizing the densities’ roughness to avoid overfitting. The
resulting estimation problems for both densities and conditional
densities are shown to be phrasable in the form of readily
implementable quadratic programs. Experimental comparison
against EM, SVR, and GPR based on the log-likelihood and
performance in benchmark recursive filtering applications show
high quality of the densities and good performance at less
computational cost, i.e., the density representations are sparser.

I. INTRODUCTION

Probabilistic information fusion is based on the availability
of efficiently represented high-quality probabilistic models in
form of densities or conditional densities. This is especially
true for, but not limited to, the most important probabilistic
graphical models: Bayesian Networks, Dynamic Bayesian
Networks, and Hidden Markov Models [1], [2]. There are
essentially two different ways of deriving probabilistic mod-
els: a given generative model of the phenomena at hand is
compiled into a probabilistic model or, given i.i.d. random
samples, the probabilistic models are estimated. In this paper,
the latter problem is solved, i.e., given a set of samples, the
corresponding density or conditional density is estimated.
(Conditional) Density estimation may be categorized into
parametric and non-parametric approaches, cf. [3], [4], [5],
[6] for a detailed overview. In parametric density estimation,
a compressed description of the data in form of a parametric
model based on the data [7] is sought. The most prominent
approach is the maximization of the likelihood of the sam-
ples given the parameters by application of the expectation
maximization (EM) algorithm [8]. This approach has several
drawbacks: the number of components in the mixture has to
be chosen, singularities may occur, and the resulting densities
are prone to overfit the data. In contrast, in non-parametric
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density estimation not a parameter estimate shall be deter-
mined, but the closest density estimate to the entire true
density function [3]. The simplest non-parametric approach
is kernel density estimation, i.e., mixture densities with
components centered about data points are employed. The
two main challenges to this approach are the determination
of component parameters, which impact the densities’ shape
and smoothness, and the complex function representations
entailing the entire data set. Especially for nonlinear filters
and Bayesian Networks, densities with many components are
too expensive to evaluate during online Bayesian inference.

In this paper, both challenges will be addressed for density
and conditional density estimation. We propose the use of
weighted kernel densities, i.e., Gaussian mixtures (GM) [9]
with identical axis-aligned components, but variable weights.
For minimizing the squared integral distance between the
cumulative distributions of the empirical density function
and the GM in conjunction with a penalization of the GM’s
smoothness, optimization problems in form of a quadratic
program are derived. Solving the optimization problem re-
sults in sparse densities, which are well applicable for online
inference, and smoothness w.r.t. the chosen regularization,
and therefore less prone to overfitting. The rest of this paper
is structured as follows. Initially, the mathematical problem
formulation is given, which is common to both density and
conditional density estimation. In Sec. III, density estimation
and in Sec. IV, conditional density estimation is consid-
ered respectively. The similarities and specific differences
between density and conditional density estimation will be
considered in the latter section. In Sec. V, the choice of
kernel parameters is discussed and in Sec. VI, the approach
is tested against EM, Support Vector Regression (SVR) [10],
[11], and Gaussian Process Regression (GPR) [12] on density
estimation and conditional density.

II. MATHEMATICAL PROBLEM FORMULATION

Given a set of i.i.d. random samples xi ∈ D, with
xi := [x(1)

i . . . x
(N)
i ]T ∈ RN , represented in the form of

a mixture of Dirac distributions δ(.), also known as the
empirical probability density function [3],

fD(x) =
∑|D|
i=1 wi δ(x− xi) , (1)

the density function f̃ underlying the data shall be estimated.
Disregarding whether f̃ is a density or conditional density,
estimates are sought in form of an axis-aligned GM [9]

fGM(x) =
∑M
i=1αi

∏N
k=1N (x(k) − µ(k)

i , σ
(k)
i ) , (2)



with components N (x − µ, σ) := 1√
2πσ

exp
{
− 1

2
(x−µ)2

σ2

}
.

The above mixture contains M components with one Gaus-
sian for each of the N dimensions with mean µ

(k)
i and

standard deviation σ
(k)
i . In fGM the parameters are set to

µ
(k)
i = x

(k)
i and σ

(k)
i = σ

(k)
j . This means that the mixture

components are centered about the samples. Note that the
variances for each dimension are fixed and determined a
priori. Selecting appropriate hyper-parameters is discussed
in Sec. V. In summary, the only remaining variables are the
weights, i.e., in vector form α = [α1, . . . , αM ]T. In the
rest of this section, the optimization of the weights based
on a distance measure and a roughness penalty is described.
In the following sections, the general formulations will be
instantiated for density and conditional density estimation.

A. Distance Measure

In order to compare fD with fGM, the distance between
their cumulative distributions is used. The cumulative dis-
tribution is widely employed for comparing discrete and
continuous random variables. Yet, the conventional measure
is not well defined for multivariate density functions, as it is
not unique and non-symmetric [13], [14]. For this reason, the
cumulative distribution function, the Localized Cumulative
Distribution (LCD) [13] is used in this paper, as it is unique
and symmetric. The LCD is an alternative representation of
the cumulative distribution function obtained from integra-
tion with symmetric kernels for all positions and widths.

Definition 1 (Localized Cumulative Distribution, [13]):
Given a multivariate random vector x ∈ RN
and the corresponding probability density function
f(x) : RN → R+. The Localized Cumulative Distribution
is defined as

F (m, b) =
ˆ

RN

f(x) · Kb(x,m) dx (3)

with Ω ⊂ RN × RN+ , F : Ω → [0, 1], b ∈ RN+ , Kb(x,m) a
suitable kernel [13] centered at m = [m(1) · · ·m(N) ]T with
width b and K : Ω→ [0, 1].
For the rest of this paper, only separable Gaussian kernels
[13] with mean m and identical width b for all dimensions
are considered

Kb(x,m) =
N∏
k=1

exp
(
−1

2
(x(k) −m(k))2

b2

)
.

The LCD of fD is given by

FD(m, b) =
|D|∑
i=1

wi

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2

 . (4)

Similar to FD, the LCD of fGM, corresponding to the density
or conditional density to be estimated, will be derived in
the respective sections. Given the LCDs of the fD and
the estimation function, the distance between the Localized
Cumulative Distributions (LCD) [13] shall be minimized.

For this purpose, the modified Cramér-von Mises distance
measure (MCvMD) [13] is employed

D =
ˆ

R+
w(b)

ˆ
RN

(FGM(m, b)− FD(m, b))2 dm db . (5)

B. Regularization

Minimizing the distance between the empirical and the
estimate’s distributions is performed by minimizing D w.r.t.
α. In order to penalize the roughness of the estimate fGM a
penalty term is added to the optimization problem

R :=
ˆ

RN

f(x)2 dx

=
L∑
i=1

L∑
j=1

αiαj

N∏
k=1

N (µ(k)
i − µ(k)

j ,
√

2σ(k)) . (6)

The term R may be calculated in closed-form and conve-
niently in vector/matrix formulation R = αT Eα for the
specific type of density (2). Note that for fGM to be a valid
density, the constraint

∑M
i=1 αi = Z, with constant Z and

0 ≤ αi ≤ 1 needs to be asserted. The value of Z depends on
whether a density or a conditional density is estimated and
will be discussed in the respective sections. Minimizing R
can be understood as penalizing the distance to a flat func-
tion, as the term (6) is related to an inner product in function
space. It is noteworthy, that the above term is also related
to the (negative) Renyi entropy of order r = 2 [15], i.e., an
entropy measure for continuous random variables. Besides
penalizing the overall density, an additional constraint αi ≤ ν
is introduced to avoid large weights. In summary, the overall
optimization problem comprises a term corresponding to the
data fit and a term penalizing non-smooth densities over the
state space.

In the following two sections, the instantiations of the
optimization problem D + R for density and conditional
density estimation are presented.

III. DENSITY ESTIMATION

Given samples D in form of the empirical probability
density function fD (1), the density estimation problem
corresponds to determining the weights α of the Gaussian
mixture fGM (2), by minimizing D + R, as given in (5)
and (6), w.r.t. fixed sets of µ(k)

i and σ
(k)
i in the sense of

Sec. II. In the rest of this section, the formulation of the
MCvMD (5) based on the LCD of (2) will be simplified as
only the weights are variable. In conjunction with the penalty,
a readily solvable quadratic program will be derived.

A. Simplifying the Distance Measure

In order to estimate fGM, the distance between the LCD
of fD and fGM shall be minimized. The LCD FD of fD is



(4) and the LCD of (2) is given by [13]

FGM (m, b) =

M∑
i=1

αi

N∏
k=1

b√
(σ(k)
i )2 + b2

exp

−1
2

(
µ

(k)
i −mk

)2

(σ(k)
i )2 + b2

 .

(7)

The distributions FD and FGM are compared using the
MCvMD (5). Solving (5) equals solving the integrals over
the kernel position m and the kernel width b. Solving the
inner integral over m may be performed analytically. Since
only α is variable, the result of solving (5) can be written
compactly in vector/matrix form as

D =
ˆ

R+
w(b)

(
αT A1 α− 2αT A2 + A3

)
db , (8)

Here, A1-A3 denote the solutions for the terms of the
binomial w.r.t. α. Note that the integrals over b in (8) can
be solved numerically. The result for A3 is omitted, as
it is constant w.r.t. α. This omission and using compact
vector/matrix notation allows the calculation of D as

D := αT P1 α− 2αT P2 , (9)

with

P1 := (( pij1 )) =
ˆ

R+
w(b) a(i,j)

1 (b) db ,

P2 := (( pi2 )) =
ˆ

R+
w(b) a(i)

2 (b) db ,

The matrix P1 and the vector P2 consist of elements a(i,j)
1 (b)

and a(i)
2 (b) given in Sec. VIII.

B. Quadratic Program

Considering the reformulation of D in (9) and the reg-
ularization term R in (6), one notes that the expressions
are only quadratic in α, since the σ(k)

i for each dimension
are determined a priori, which is discussed in Sec. V. By
combining the quadratic terms in D (9) and R (6) one obtains

αT P1 α+ c αT E α = αT Qα , (10)

with Q = P1 + cE and c ∈ R, a trade-off parameter re-
flecting one’s belief in the need for regularization. Using (10)
with the necessary constraints yields a readily implementable
quadratic program

α∗ = arg min
α

αTQ α− 2 · αT P2 (11)

s.t. αT 1 = 1 ,
0 ≤ αi ≤ max( min( ν, 1 ), 1/|D| ) ,

with i = 1, . . . , |D|, the weights α, the trade-off parameter c,
and a maximum allowed weight ν. The additional constraint∑M
i=1 αi = 1 enforces that a convex combination of densities

is obtained, which asserts that the integral of the density
is 1. Additionally, positive weights are required so that the
resulting density cannot be negative. The maximum weight
ν was introduced to avoid overly large weights. Note that

the maximum weight ν is in itself constrained to be larger
than 1/|D| to allow for valid parameter assignments. The
first constraint could not be met otherwise. The quadratic
program (11) can be solved with any standard solver. In this
section, the density estimation problem in form of a quadratic
program, based on the minimization of the MCvMD and
the localized cumulative distributions, was derived. In the
next section, the estimation of conditional densities will be
considered.

IV. CONDITIONAL DENSITY ESTIMATION

In this section, conditional densities shall be estimated.
The problem setting differs from Sec. II, in that the data is
represented in the form of tuples

fD(x, y) =
∑|D|
i=1wi δ(x− xi) δ(y − yi) , (12)

which were generated from an underlying conditional density
f̃(y|x). An estimate of f̃(y|x) is sought in the form of

fCGM(y|x)

=
∑M
i=1αiN (y − µ

yi
,Σyi)N (x− µ

xi
,Σxi) . (13)

By assuming axis-aligned Gaussian mixtures for x
and y, the covariance matrices are given by Σ =
diag( [(σ(1))2 · · · (σ(N))2]T ) and the multivariate Gaussians
in (13) may be expressed as

N (y − µ
yi
,Σyi)N (x− µ

xi
,Σxi) =

Ny∏
ky=1

N (x− µ(ky)
yi , σ

(ky)
yi )

Nx∏
kx=1

N (x− µ(kx)
xi , σ

(kx)
xi ) .

For the sake of clarity, the rest of this section is concerned
with the case of Ny = 1 and Nx = 1 only, i.e., the input and
output dimensions are scalar. Note, that this does not solve
the ambiguity in the definition of the cumulative distribution
as (12) still requires a multivariate cumulative distribution.
Given the definition of the empirical probability density
function (12) and the form of the target density function (13),
solving the conditional density estimation problem appears
to be very similar to the (unconditional) density estimation
problem. Yet, there are distinct differences:
• The constraints differ, as it needs to be asserted that´∞

−∞f(y|x̂) dy = 1 , f(y|x̂) ≥ 0 . (14)

• D is represented as a joint density. A conditional LCD
is not defined, i.e., in contrast to classical density
estimation no direct comparison is possible.

The key idea is to reduce this problem to the comparison of
the LCDs of joint densities [10]. For (13), one calculates

fGM(y, x) = fCGM(y|x) fD(x) . (15)

Yet, this problem transformation comes along with a new
challenge: In (15), fCGM and fD have |D| components each.
Using the LCD of (15) with the squared distance measure,
F 2

GM
(.) will have |D|4 components. This is too expensive

to calculate for many problems and can be avoided by



approximating fD(x). In order to extend the conditional
density (13) to a joint density according to (15), a density
f̄ substituting fD with L� |D| components is determined.
Using the approximative f̄

fD(x) ≈
L∑
l=1

αl

N∏
k=1

N (x(k) − µ(k)
l , σ

(k)
l ) =: f̄(x) . (16)

Here, it is assumed that fD(x) is well posed in the sense,
that the data is almost evenly distributed over a fixed interval
x ∈ [xmin, xmax] to allow for a robust estimation of f̄(x).

For the experiments in Sec. VI, f̄(x) = N (x − x̂, a Ĉ),
with sample mean x̂, sample covariance Ĉ, and a large
constant factor a was chosen to model our concentration of
D over x. Regarding computational complexity, the use of
f̄(x) will cost an amount of computation in the order of the
conditional density estimation and therefore is negligible in
the overall asymptotic complexity consideration.

A. Simplifying the Distance Measure

In order to compare the distributions for fGM(x, y) and
fD(x, y), their respective LCDs need to be determined. For
f̄(x) in form of a GM, the LCD [13] of fGM(x, y) using
(16) with m = [mx my]T is given by

FGM(m, b) =
M∑
i=1

αi

L∑
l=1

αl cx b
2√

(σxil)2 + b2
√

(σyi )2 + b2

· exp

(
−1

2
(µyi −my)2

(σyi )2 + b2
− 1

2
(µxil −mx)2

(σxil)2 + b2

)
. (17)

The LCD in (17) resembles the LCD in (7), but has L times
more components and the components about x are weighted
according to their distance to f̄ . The modified Cramér-von
Mises distance (5) may be employed as in the unconditional
case. In analogy, one obtains

D = αT P1 α− 2αT P2 , (18)

but with differing P1 and P2 w.r.t. (12) and (17),

P1 := (( pij1 )) =
ˆ

R+
w(b) d(i,j)

1 (b) db ,

P2 := (( pi2 )) =
ˆ

R+
w(b) d(i)

2 (b) db .

The terms d(i,j)
1 (b) and d(i)

2 (b) are given in the Appendix.

B. Quadratic Program

Similar to the unconditional case, combining the quadratic
terms in D + R, (18) and (6), simplifies as in (10), yielding
the readily implementable quadratic program

α∗ = arg min
α

αTQα− 2 · αT P2 (19)

s.t. αT 1 = Z ,
0 ≤ αi ≤ max( min( ν,Z ),Z/|D| ) ,

with i = 1, . . . , |D|. Here, the weight constraint assumes
x ∈ [xmin, xmax] with Z := xmax−xmin. This constraint is

approximate and states that the conditional density integrated
over x and y - restricted to the above interval - meets
the constraint of integrating to one. Due to the different
normalization, the constraint on the maximum weight ν
changes to being no larger than Z/|D| to allow for valid
parameter assignments.

The quadratic program (19) can be solved with any
standard solver. The derivation of (19) was restricted to the
case of scalar input and output dimensions x and y. The
formulations hold for multivariate x and y, too. This will
be shown in the multivariate helix example in Sec. VI. The
only difference is in the term (17). There, a product about
the dimensions Nx and Ny would need to be inserted.

V. HYPER-PARAMETER DETERMINATION

Both density and conditional density estimation in Sec. III
and in Sec. IV require an a priori choice of the hyper-
parameters, i.e., the components’ variances and the parame-
ters of the optimization problem c and ν. Many approaches
to estimating σ(i) exist in the kernel density estimation litera-
ture [3], [4], [6]. There, the minimization of the least-squares
error between the density function depending on σ(i) and an
unbiased estimate is proposed. Moreover, cross-validation is
employed [4], [6]. For optimizing all parameters at once, the
literature on GPR [12] and SVR [11] proposes the use of
cross-validated maximization of a likelihood score, similar
to the least-squares minimization [6]. In our experience, the
first approach works best. For this reason, a gradient ascent
on the average log-likelihood for a k-fold cross-validation
was used to find the best hyper-parameters using randomly
partitioned data.

VI. EXPERIMENTS

In order to validate the density estimation (Sec. VI-A)
and conditional density estimation (Sec. VI-B) approaches,
experimental comparisons against the benchmark parametric
algorithm EM, the non-parametric algorithms GPR, and SVR
are performed in this section. In order to present robust
statistics, all results presented in this section are averages
over 10 experiments each. The experimental setup resembles
[16], [17] and allows a comparison with these approaches.
From an implementation side, EM for GM by MatlabTM,
the SVR and SVDF implementation from [17], the EKF,
UKF, GP-UKF, as well as GP-ADF implementations from
[16] were used.

A. Density Estimation

In this section, the proposed approach is compared against
EM, the benchmark parametric density estimator for finite
mixture models. In this experiment, samples were generated
from a mixture density of four Gaussians, depicted in Fig.1
(top). The densities were estimated using 100 training sam-
ples generated from this mixture and tested with additional
100 test samples. As a measure of fit, the negative log-
likelihood NLx score of the test samples is employed. In
Tab. I, the NLx results for the LCD approach and four
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Fig. 1. True density composed of four normal densities with random
samples (top) and LCD-based density estimate (bottom).

configurations of EM are given. In all configurations, axis-
aligned GMMs were estimated. EM1 denotes the estimation
of a mixture with identical variances σx and σy , only. In
EM2, this restriction was lifted. For EM1 and EM2 the
number of Gaussians was set to the number of Gaussians
obtained by (11). In EM3 and EM4, the same restrictions
on the variances as in EM1 and EM2 were used, but
the number of components was chosen by optimizing the
Akaike information criterion. The results in Tab. I show that
all EM approaches yield approximately identical likelihood
scores. The results for the LCD-based density estimates,
depicted in Fig.1 (bottom), show that the approach in Sec. III
may achieve significantly better NLx results than EM.
The number of components given in Tab. I shows that the
proposed approach produces densities with more components
than the EM, but much less than the maximum number
of 100 components. In contrast to classical non-parametric
approaches which would use all 100 components - sparser
representations are achieved. The results given are averages
over ten independent runs of the experiment.

B. Conditional Density Estimation

The quality of the conditional densities is validated by
comparing log-likelihood scores and by comparing the es-
timation quality, when using the densities in a Bayesian
filter. Furthermore, to demonstrate multivariate estimation,
a conditional density corresponding to a helix in 3D is
estimated.

TABLE I
AVERAGE NEGATIVE LOG-LIKELIHOOD OF THE TEST DATA WITH σ AND

NUMBER OF COMPONENTS FOR THE DENSITY ESTIMATES RETURNED BY

EM AND THE PROPOSED DISTANCE-BASED APPROACH.

EM1 EM2 EM3 EM4 LCD
NLx − µ 1.54 1.85 1.54 1.90 0.16
±σ ± 0.24 ± 0.41 ± 0.24 ± 0.40 ± 0.04

Comp. 48.8 48.8 5.1 5 48.8

TABLE II
AVERAGE NEGATIVE LOG-LIKELIHOOD OF THE TEST DATA WITH σ FOR

THE CONDITIONAL DENSITY ESTIMATES RETURNED BY EM, GPR, SVR
AND THE PROPOSED DISTANCE-BASED APPROACH.

EM1 EM2 EM3 EM4 GPR SVR LCD
3.87 3.97 3.58 3.62 0.23 0.59 0.15
± 1.44 ± 1.60 ± 1.31 ± 1.89 ± 0.03 ± 0.35 ± 0.11

1) Log-Likelihood Score: In order to assess the quality
of the conditional density estimation approach, results for
estimating the probabilistic model of the cubic system

xk+1 = 2
3 x2

k sin (xk) , wk ∼ N (0, 0.2) , (20)

are reported. The NLx as calculated in the unconditional
case are given for the conditional densities estimated by
EM1-4, GPR, SVR, and the LCD-based approach are given
in Tab. II. Obviously, all EM results are significantly worse
than the results for GPR, SVR, and the LCD-based results.
The results given are average values of ten experiments. The
corresponding conditional densities of one example run are
depicted in Fig. 2 for one EM configuration, GPR, and SVR
as well as for LCD.

2) Nonlinear Filtering: To test the conditional densities
for state estimation, the derived conditional densities are used
with a Gaussian mixture filter, as derived in [9], [19] and
compared to the EKF [20], the UKF [21], the GP-UKF [22],
the GP-ADF [16], and the mixture filter based on the SVR-
derived densities (SVDF). As the state space is almost evenly
sampled in the following examples, results of the LCD-based
filter (LCDF) neglecting the marginal distribution about x
are reported only. The filters are compared by the state
estimation quality on the growth model [18] as presented in
[16]. The corresponding nonlinear system and measurement
equations are

xk+1 = 0.5 xk + 25 xk

1+x2
k

+ wk , wk ∼ N (w, 0.2) ,

yk+1 = 5 sin(2 xk+1) + vk+1 , vk+1 ∼ N (vk+1, 0.01) .

For training, randomly distributed 100 points in [−10, 10]
were generated. For the estimation, the prior normal density
has µ0 ∈ [−10, 10] and σ0 = 0.5. For 200 independent
x

(i)
0 , the successive states and y(i)

1 were estimated. Statistics
are given in Tab. 3 for the Mahalanobis distance M(x)
between the mean of the state estimate and the true value.
Additionally, the upper and lower quantiles of NLx of the
hidden state are reported. Smaller values of M(x) and
NLx show better performance. The results given are average
values of ten experiments. Tab. 3 shows that GP-ADF, SVDF,
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Fig. 2. Conditional density estimates - from left to right: EM with the same number of Gaussian like the LCD but with all identical and variable variances.
The next two results are obtained from GPR and SVR. The last two plots show the LCD-based conditional density estimates for (20) with Gaussian mixture
approximation of fD and neglected prior knowledge. The depicted results are either automatically normalized (GPR) have been numerically normalized.

NL0.25
x NL0.5

x NL0.75
x M(x)

EKF 888.53 ± 68.30 2.9e+ 04 ± 772.31 2.7e+ 05 ± 971.18 2.0e+ 06 ± 1072.24
UKF 61.35 ± 0.59 605.76 ± 18.05 2383.86 ± 36.25 1042.39 ± 4.88
GP-UKF 65.10 ± 4.88 420.78 ± 34.22 1796.14 ± 182.14 3523.81 ± 2973.71
GP-ADF 59.37 ± 2.20 260.44 ± 18.93 1093.01 ± 82.10 27.67 ± 9.16
SVDF 59.67 ± 1.69 178.75 ± 3.98 396.62 ± 17.10 1.44 ± 0.17
LCDF 71.45 ± 9.63 184.42 ± 10.03 371.63 ± 61.25 0.78 ± 0.80

Fig. 3. Average negative Log-Likelihood and Mahalanobis distance results for the growth process [18]. The results are averages over ten experiments.

and the LCDF yield the best performance and compare well
to each other. Yet, the uncertainty distribution indicated by
the upper quantile of NLx as well as the M(x) results
are more favorable for the LCD-based filter than for all
other approaches. Note that EKF, UKF, and GP-UKF are all
drastically outperformed either in M(x) or NLx, or both.

3) Multivariate Helix: The above results for conditional
density estimation were restricted to scalar in- and output
dimensions. To demonstrate the estimation of multivariate
conditional densities, a system, mapping a scalar input to
bivariate output dimension, is used[

z
y

]
=
[

2x2 cos (1.5x)
2x2 sin (1.5x)

]
+ w ,

with w distributed according to ∼ N (0, diag
([

0.22 0.22
]))

.
The training data consists of uniformly sampled x ∈ [0, 3π]
and additively perturbed function values thereof, describing
a 3D helix. The data and the obtained estimate are depicted
in Fig. 4. In order to capture the multidimensionality, plots
of the x − z and y − z planes as well as a rotated 3D
plot are given. The obtained estimate is sparse, containing
only 66 of the 100 samples as components. Most of the
omitted samples are located around the origin, as the data
is relatively dense here. The equations presented in Sec. IV
were extended to the multivariate case by exploiting the axis-
aligned decomposition of (13). The experiment shows how
easy the approach generalizes to the multivariate case.

VII. CONCLUSIONS

In this paper, a method for non-parametric density and
conditional density estimation was presented based on min-
imizing the modified Cramér-von Mises distance of the
Localized Cumulative Distributions. By minimizing this dis-
tance, the proposed approach avoids the problem of the
ambiguous definition of the cumulative distribution function.

Additionally, overfitting was avoided by adding a regulariza-
tion term penalizing the densities’ roughness. The resulting
optimization problems can be phrased in form of readily
implementable quadratic programs. Experimental compari-
son of the arising axis-aligned Gaussian mixture densities
and conditional densities against EM, SVR, and GPR show
the approaches’ good performance w.r.t. the sample log-
likelihood scores and the performance in benchmark recur-
sive filtering applications. Yet, the derived densities contain
less components (e.g. < 50% of components) than the other
non-parametric GPR and SVR densities.

VIII. APPENDIX

• The detailed results for (5) are

a(i,j)
1 (b) = (

√
2π)Nb2N

N∏
k=1

1√
σk,j2 + 2 b2 + σk,i2

· exp

(
−1

2
(µk,i − µk,j)2

σk,j2 + 2 b2 + σk,i2

)
,

a(i)
2 (b) =

|D|∑
j=1

wj (
√

2π)Nb2N

·
N∏
k=1

1√
2 b2 + σk,i2

exp

(
−1

2
(xk,j − µk,i)2
2 b2 + σk,i2

)
.

• The LCD for (15) with (13) and m = [mx my]T,

FGM(m, b) =´
R+

´
R+

∑M
i=1

∑|D|
l=1 αi αlKb(y,my)Kb(x,mx)

· N (y − µyi , σyi )N (x− µxi , σxi )N (x− µxl , σxl ) dx dy



→

Fig. 4. Three perspectives of f(z, y|x), i.e., a multivariate conditional density: red crosses mark the samples’ positions and black axis-aligned ellipsoids
correspond to mixture components in f(z, y|x) with αi > 0. The ellipsoids are centered at µ

i
and the axial length is σ in the respective directions.

is simplified by employing
´

R+ Kb(x,mx)N (x− µxi , σxi )N (x− µxl , σxl ) dx

=
√

2π cx bN (mx − µxil, σxil) (21)

and setting cx := N (µxi − µxl ,
√

(σxi )2 + (σxl )2) with

µxil := µx
i (σx

l )2+µx
l (σx

i )2

(σx
l )2+(σx

i )2 , σxil := (σx
l )2 (σx

i )2

(σx
l )2+(σx

i )2 .

Analog simplification for y and insertion into (21)
yields (17)

d(i,j)
1 (b) =

∑L
l=1

∑L
k=1(2π)2b4 cxl c

x
k

· N (µxil − µxjk,
√

(σxil)2 + (σxjk)2)

· N (µyi − µyj ,
√

(σyi )2 + 2b2 + (σyj )2) ,

d(i)
2 (b) =

∑L
l=1

∑|D|
k=1 wj (2π)2b4 cxk

· N (µxil − xk,
√

(σxil)2 + 2b2)

· N (µyi − yl,
√

(σyi )2 + 2b2) .
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