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Abstract— This work investigates a novel method for dealing
with unknown data associations in Kalman filter-based Simul-
taneous Localization and Mapping (SLAM) problems. The key
idea is to employ the concept of Symmetric Measurement
Equations (SMEs) in order to remove the data association
uncertainty from the original measurement equation. Based
on the resulting modified measurement equation, standard
nonlinear Kalman filters can estimate the full joint state vector
of the robot and landmarks without explicitly calculating data
association hypotheses.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
fundamental problem in robotics [6], [10], [30], [31]. The
objective of SLAM is to successively localize a robot while
simultaneously creating a map of its environment by means
of landmark observations. For this purpose, many different
approaches have been proposed in literature, e.g., graph-
based SLAM such as [3], [4], [7]-[9], [13], [16], [28], [29]
and particle filter-based SLAM such as FastSLAM [22], [23].
In this work, we focus on Kalman filter-based approaches,
which use, e.g., the Extended Kalman Filter (EKF) [6],
[12] or Unscented Kalman Filter (UKF) [21] for recursively
calculating the posterior mean and covariance of the full joint
state vector of the robot and landmark states.

The standard formulation of Kalman filter-based SLAM
assumes that the associations between measurements and
landmarks are known, which is rarely the case in real
world applications. In this context, several techniques and
extensions have been proposed to deal with unknown data
associations in SLAM [22]. For example, the Nearest Neigh-
bor (NN) approach [1], [25] assigns the nearest measurement
to each landmark with respect to the Mahalanobis distance.
More precise methods find joint compatible associations such
as in the Joint Compatible Branch and Bound (JCBB) [25]
method. These methods have in common that a single data
association hypothesis is used to update the joint state vector.
If this association is wrong, e.g., due to high noise, the
Kalman filter may diverge.

Recently more sophisticated data association techniques
from the multi-target tracking community [1] have been used
for the purpose of SLAM. For example, the Probability
Hypotheses Density (PHD) filter SLAM method [24] is
capable of estimating both the number and states of the
landmarks. In [5], a SLAM method based on the labeled
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multi-Bernoulli filter is presented. These approaches have in
common that Rao-Blackwellization is performed in order to
decouple the robot state from the landmark states and that
the correlation between landmarks is not maintained.

In this work, we propose a novel approach for dealing with
unknown data associations in Kalman filter-based SLAM.
Our method performs an implicit data association, i.e., no
data association hypotheses are calculated at all. In contrast
to existing implicit association methods for SLAM, it is
capable of maintaining the full joint state vector of the robot
and the landmarks. For this purpose, we employ the so-
called Symmetric Measurement Equation (SME) approach
[14], [15], [19], [20], which has been developed for multi-
target tracking. The key idea is to rewrite the original
measurement equation with a symmetric transformation in
order to remove the unknown data association. The modified
measurement equation can be fed into any standard nonlinear
Kalman filter such as the Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF) [11], or S2KF [27]. With
a sample-based filter such as the UKF or S2KF, there is no
additional computational complexity in comparison to the
known data association case (although more samples might
lead to improved results due to the introduced nonlinearity).

Note, in this work, we restrict ourselves to a simplified
setting: We assume that each landmarks is detected in each
scan and that there are no clutter measurements. Extensions
of the SME approach to a more general setting are possible
[18], but left for future investigations.

The structure of this paper is as follows: First, we intro-
duce the general Kalman filter-based framework for SLAM
in Section II and point out the data association problem.
Subsequently, in Section III, we show how unknown data
associations can be removed from the original SLAM formu-
lation with the help of symmetric transformations constructed
from polynomials or kernel functions. By means of a simple
SLAM setting in Section IV, we show that SME approach
can outperform standard SLAM data association techniques.

II. KALMAN FILTER-BASED SLAM

Kalman filter-based SLAM approaches [6], [12], [21]
consider the joint state vector

where



e k is the discrete time index,

o 2 € RI% is the dp-dimensional robot state,

e m is the number of landmarks, and

. g,l;” € R, i € {1,...,m}, are the d-dimensional
landmark states.

A. System Model

The temporal evolution of the robot state is specified by
a system equation of the form

R R/,.R . R
Ty = a(2y,vy) 2

where vf is zero-mean Gaussian system noise. In the same
manner, the system models for the landmarks L;, i =1...m,
are

zfyy = a"(zf,v)

with zero-mean Gaussian noise y{; Hence, the overall

system model can be written as
Tpy1 = a(zy,v;) = : 3

. T
with vy, == [(vf)7, (yél)T, cee (yﬁm)T] .

B. Measurement Model

For the sake of simplicity, we assume that the robot
receives measurements from all m landmarks at each time k,
i.e., there are no missing measurements and no background
clutter is received.

Hence, given are m d,-dimensional measurements
gllc, . ,g? with

gzk(i) = hl(ikvmz) ’ (4)

where
o mp:{l,...,m} — {1,...,m} is the measurement-to-
landmark association,
o hi(z),wt) relates the robot state to the landmark L;,
and
. ML is the measurement noise (for ¢ = 1,...,m).

In this work, we consider the problem that the measurement-
to-landmark association is unknown 7.

C. Nonlinear Kalman Filter

Kalman filter-based SLAM aims at recursively calculating
the posterior mean &, and covariance Cy;, for the full joint
state vector (1) given all measurements up to time k. For
this purpose, alternating prediction and measurement update
steps are performed.

In the prediction step, the mean and covariance for the
time step k — 1 are propagated to the next time step k,
where %1 and Cy;_; denotes the predicted mean and
covariance. In the measurement update step, the prediction

for time k is updated based on the received measurements
m

Yoo YR

If the data association is known, the prediction and update
can be calculated exactly for linear system and measurement
functions (3) and (4). In case of nonlinear models, standard
nonlinear estimators such as the EKF or the UKF can be
employed.

III. SYMMETRIC MEASUREMENT EQUATION APPROACH
FOR UNKNOWN DATA ASSOCATION

In this section, we present a novel approach for Kalman
filter-based SLAM in case the data association 7 in (4) is
unknown, i.e., it is not known which measurement comes
from which landmark. The objective is to formulate an
equivalent measurement equation that does not contain the
measurement-to-landmark association. This approach resem-
bles the so-called Symmetric Measurement Equation (SME)
filter [14], [15], which has been originally developed in
the context of multi-target tracking. For this purpose, the
key ingredient is a transformation S(gi,...,y}f) of the
measurements that is symmetric, i.e.,

Sy =S(up ™) ®

for all feasible measurement-to-landmark associations 7. A
symmetric transformation allows to formulate the following
new measurement equation

S(yllc,...,y;”) = S(hl(gk,w}cL...,hm(gmgz”)) , (6)

=z =:9(z4,,wy,)

which does not depend on the unknown data association
T, 1.e., the ordering of the measurements in the pseudo-
measurement S(g}C7 -..,y,") is irrelevant due to the sym-
metry of S. Hence, there 1s no data association uncertainty
anymore, but additional nonlinearity is introduced.

The above measurement equation (6) can be written in the
compact form

2, = g(zp, wy) (7
in which a reformulated measurement equation
g(x,,w,) maps the state and the noise term

T
wy 1= [(@él)T,...,(wﬁm)T] to a pseudo-measurement
Zf-

It is important to note that the dimension of a pseudo-
measurement should be at least m - d,, in order to ensure that
all information from the original measurements are captured.

Based on (7), nonlinear Kalman filters such as the Ex-
tended Kalman Filter (EKF) or Unscented Kalman Filter
(UKF) [19], [20] can be used for performing the measure-
ment update.

It is clear that the specific form of the symmetric trans-
formation is important. When using a nonlinear Kalman
filter, the symmetric transformation should be as “linear”
as possible. In the following, we discuss two specific types
of symmetric transformations that have been used in the
literature.
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Fig. 1: Map with landmarks (grey dots) and robot trajectory
(blue circles) for 80 time steps.

A. Symmetric Polynomial Transformations

The original SME approach employs polynomial symmet-
ric functions. For example, the Sum-Of-Powers [14], [15],
[19], [20] transformation for two landmarks and two one-
dimensional measurements yi and y; becomes

1 2
+y 2
S(I,Q)( Y T Y )e]R.
P T + (2
Unfortunately, polynomial symmetric functions become quite

complex for higher dimensions and the degree of the poly-
nomials increases with the number of landmarks.

B. Symmetric Kernel Transformation

As an alternative to polynomial symmetric transforma-
tions, we proffer the recently introduced concept of Kernel-
SME:s [2], [17]. The key idea is to interpret the measurements
as a Gaussian mixture function

m

) =Y N(z—yl,T) (8)

i=1

Fg(gllc7...

depending on the parameter z, where N (z — QZ’F) is a
Gaussian kernel with a suitable width 3. This function
is symmetric, one-dimensional, and depends on the free
parameter z.

We propose to evaluate (8) at specific instantiations of z
in order to generate a pseudo-measurement with a sufficient
high dimension. For this purpose, we choose n, test vectors
a',...,a™ € R% in order construct the final measurement
equation

Fa (ylt, . ,yzl)
S(ypoyy) = : NC)

Fyna (yi, e ,y;”)
The locations of the test vectors should represent the
original Gaussian mixture function (8) as good as possible. In

order to achieve this, for each measurement, we choose 2-d,,
testpoints according to the sampling rule of the Unscented
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(a) Scenario 1. (b) Scenario 2.

Fig. 2: Example measurements received from all time steps.

Kalman filter [11]. Hence, the test vectors aj, ..., a.* with
ng =2-d,-m are
gt = Y+ (VD) (10)
1+(i—1)+d,
Qk+( )t+dy gig 7( dyF)i (11)

fori =1,...,dy and (,/d,T) denotes the i-th column of
VdyT.

In [2], [17], analytic expressions are derived for the Linear
Minimum Mean Square Estimator (LMMSE) based on the
kernel transformation (9) for general linear measurement
and system equations. For nonlinear measurement or sys-
tem equations, one can employ an approximate nonlinear
Kalman filter such as the the Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF) [11], or S2KF [27]. Also,
approximate nonlinear Kalman filter approaches might be
computationally more efficient than the analytic expressions
derived in [2], [17].

The kernel transformation comes with the advantage that
it can easily be constructed for a large number of high-
dimensional landmarks. The Gaussian kernel shape ensures
that only the important regions of the measurement space
are incorporated. On the downside, the kernel transformation
requires to choose several parameters, i.e., the kernel width
and the test points.

IV. EXPERIMENTS

In this section, we investigate the benefits of the SME
approach to Kalman-filter based SLAM. For this purpose, we
consider a simple SLAM scenario in which the map consists
of 9 two-dimensional landmarks.

In order to model the two-dimensional motion of the robot,
we use a nearly constant velocity model, i.e., the robot state
is four-dimensional and consists of the position [z7!, yﬂT

. .r -r1T .
and a velocity vector [ka, y,ﬂ according to

. 1T
off = [« i ol o] € RY (12)
The temporal motion is specified by the linear equation

o = A zp 4+ (13)

with system matrix

1 T
Ak_12®<0 1) )
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(a) Scenario 1. (b) Scenario 2.

Fig. 3: Example run: Estimated landmark positions and robot
location after 80 (Scenario 1) and 30 (Scenario 2) time steps.
Results are shown for the Kernel-SME (blue) and NN (red).

and §}§§§emlr%%ise covariance C¥" = I, ® Q with Q =

qo ETQ §T , where ® denotes the Kronecker symbol,
2

I, is the two-dimensional identity matrix, 7' = 1 is the

sampling period, and ¢y = 0.000001.

We assume that the robot observes the distance and
angle to a landmark encoded in a two-dimensional Cartesian
vector, i.e., the measurement equation (4) is

_ 1 000 R _ L L;
yk<o 0 1 o)wk‘”k T

wi;h additive zero-mean Gaussian noise Qé ¢ with covariance
D"

%Ve employ the kernel transformation (9) with kernel width
I' = 2 and use the nonlinear Kalman filter S2KF [27] (with
50 samples per dimension) for inference. The SME-SLAM
approach is compared with the Nearest Neighbor (NN) asso-
ciation, which finds the associates the measurement with the
lowest cost (w.r.t. the Mahalanobis distance) to a landmark
[25]. Fig. 1 depicts the landmarks and the robot trajectory.

The prior uncertainty of the robot state is given by
ClF = diag([0.5,0.5,0.1,0.1]) and the prior uncertainty of
the landmarks is denoted as CLi, where we consider two
different settings:

(14)

o Setting 1 (80 time steps)
Prior landmark covariance COLi = 0.17I,; large mea-
surement noise Dﬁ = 0.51,.

o Setting 2 (30 time steps)
Prior landmark covariance Cg' =
measurement noise Di* = 0.115.

0.02I5; medium

An impression of the magnitude of the measurement noise
is given in Fig. 2a and Fig. 2b, where measurements from
example runs are depicted. The quality of an estimated map
is assessed with the Optimal Sub-Pattern Assignment (OSPA)
distance [26] averaged over 50 runs, see Fig. 4. For each run,
the mean of the initial estimate is randomly drawn from a
normal distribution with covariance C§ and CL?. Examples
of the final estimated maps are shown in Fig. 3. It can be
seen that the Kernel-SME SLAM approach outperforms the
NN approach in these settings. The reason is that the prior
uncertainties of the landmarks are rather high so that the

K-SME K-SME
\,_\,f__.\NL 20 &
- 0.1

0 20 10 60 80 0 10 20 30
time step k time step k

(b) Scenario 2.

Mean OSPA Error
Mean OSPA Error

(a) Scenario 1.

Fig. 4: Average error of the estimated landmark locations.

NN might choose the wrong associations in the beginning,
which leads to inconsistent maps, see Fig. 3a. Nevertheless,
we note that the NN will always outperform the SME-SLAM
approach in case of low noise. The reason is that the NN
approach then finds the correct solution, while the SME
approach still works with a nonlinear measurement equation.

V. CONCLUSIONS AND FUTURE WORK

Data association is a challenging problem in SLAM. For
example, the number of possible association hypotheses
grows exponentially with the number of landmarks, and
in case of high measurement noise, there might be many
feasible measurement-to-landmark associations.

In this work, we investigated a novel approach to deal with
unknown data associations in Kalman filter-based SLAM.
The key idea is to employ the Symmetric Measurement
Equation (SME) approach, which was proposed in the con-
text of multi-object tracking, in order to remove the data
association uncertainty from the measurement equation. In
combination with a sample-based nonlinear Kalman filter,
this approach is extremely simple to implement and no
(direct) additional computational complexity is introduced
as one can immediately use the modified measurement
equation. In general, the modified measurement equation is
highly nonlinear; hence, sophisticated nonlinear estimators
are required. Simulations show that the SME-SLAM method
can outperform hard data association methods such as the
simple Nearest Neighbor (NN) method. Future work will
incorporate clutter measurements, i.e., false alarms, in the
SME-SLAM approach.
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