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Abstract— Fusing two random vectors is simple,
when they are characterized by continuous probability
density functions. According to Bayes’ law, fusion
then consists of multiplying the two densities. When
only empirical distributions are given and a resulting
empirical distribution is desired, Bayes’ law is no
longer applicable. Obviously, fusion could now be per-
formed by reconstructing the underlying continuous
densities, subsequent multiplication, and sampling of
the result. As this is overly complicated, our goal
is to perform a direct Bayesian fusion of the two
given empirical distributions. We devise a generalized
multiplication procedure that mutually reweights ap-
propriate points of one density by local density values
of the other density. The density values are efficiently
estimated locally by nearest neighbor operations. The
method is symmetric in the sense that it uses points
from both densities.

I. Introduction
For a continuous random vector x ∈ RN , the uncer-

tainty is described by a continuous probability density
function f̃(x). Summary statistics such as mean or
covariance matrix can be derived from this density. In
many cases, the true density f̃(x) is not known and
only data points, say xi, i = 1, . . . , L, are given. These
data points can be used to find a simple discrete density
estimate f(x) of the unknown continuous density f̃(x) by

f(x) = 1
L

L∑
i=1

δ(x− xi) ,

where δ(.) is the Dirac delta function and equal weights
on the data points are assumed.

Empirical distributions are a useful representation of
complicated multi-modal probability density functions
and are used, e.g., as the density representation in particle
filters [1].

When given two random vectors xp1 ∈ RN and
xp2 ∈ RN constituting uncertain estimates of an under-
lying state x, we might want to fuse the two random
variables in order to get a better estimate of x, see
Fig. 1. Here, we consider xp1 and xp2 to be characterized
by empirical distributions only. The underlying true
distributions are unknown.

This problem occurs, e.g., in hierarchical fusion when
two particle filters independently estimate the state of
a system and their outputs in the form of empirical
distributions need to be fused.
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Fig. 1. Direct Bayesian fusion of empirical densities corresponding
to two Gaussian densities. The graphs show the true continuous
densities and the empirical densities.

Let us now take a look at the state of the art. Linear
fusion can simply be performed by first calculating
sample means and sample covariance matrices of the two
empirical densities and then combing the samples linearly
based on corresponding Kalman gains. Various methods
are discussed in [2, p. 5]. This only gives satisfactory
results when the given empirical distributions stem from
underlying Gaussian distributions.

The ensemble Kalman filter [3] directly updates a
given empirical distribution. There is only a given single
measurement, which is typically assumed to be corrupted
by Gaussian noise. The noise density centered around
the measurement is intentionally sampled and used for
updating the prior samples. However, for updating, a
Gaussian assumption between measurements and states
is made in some way or another, leading to a linear
Kalman-like update rule.

The reconstruction of intermediate densities for fusing
two particle sets is considered in [4]. Two methods are used
for reconstructing continuous densities. The first method
estimates a general Gaussian mixture. The second method



uses a simple Parzen kernel density estimator resulting in
a Gaussian mixture with components of equal covariance.
Both methods use a component reduction method for
post-processing.

In [5], [6] efficient approaches for sampling the output
of the product of input measures, e.g., typically two
Gaussian mixture inputs, are studied, which do not
require an explicit computation of the product itself. In
[7], [8], a method for direct (non-Bayesian) information
fusion of two empirical (discrete) measures is studied.
This protocol operates solely on the sample points and
is based on finding a discrete measure that is closest in
the sense of the Wasserstein metric to the two empirical
input measures. This method is shown to be consistent
[7] given two Gaussian input with unknown correlation.

In [9], the problem is treated in the joint state space
of the two random vectors to be fused. For continuous
densities, Bayes’ formula is recovered from the joint state
space representation by only considering the density
on the equality constraint xp1 = xp2. For empirical
distributions, fusion can be performed by considering
a tube around the equality constraint. Hence, it is not
necessary to consider the combination of all prior samples,
but only those combinations that fall into the tube.

In this paper, we perform a direct Bayesian fusion
of empirical distributions. The key idea is a generalized
multiplication of the densities based on the reconstruction
of local density values only, which can be done efficiently.
The resulting non-equally weighted empirical distribution
is then re-approximated by an equally weighted one, which
allows recursive processing.

The paper is organized as follows. In the next section,
the problem of direct Bayesian fusion is explained in more
detail. The estimation of density values of an empirical
density at a given evaluation point is discussed in Sec. III.
Based on the local density reconstruction, a basic method
for direct Bayesian fusion is derived in Sec. IV that only
uses points from one of the prior densities. An enhanced
method is then derived that is symmetric and uses points
from both prior densities. The proposed fusion method
is evaluated in Sec. V. Sec. VI concludes the paper.

II. Problem Formulation
Our goal is to find a posterior estimate xe of an un-

known state vector x ∈ RN by fusing two prior estimates
xp1 and xp2. The prior estimates are characterized by
density functions fp1(x) and fp2(x) and we want to
calculate fe(x) characterizing the posterior estimate.

For the case of continuous prior densities f̃p1(x) and
f̃p2(x), calculating the posterior density is simply per-
formed by Bayes’ law

f̃e(x) = c · f̃p1(x) · f̃p2(x) , (1)
where c is a normalization constant.

However, here we consider empirical densities, i.e.,
discrete densities on a continuous domain, also called
Dirac mixture densities. The prior densities are defined
by

fpk(x) =
Lpk∑
i=1

wpk
i δ(x− xpk

i )
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Fig. 2. Performing the fusion of two prior empirical densities
fp1, fp2. Red path: Reconstruction of underlying continuous true
densities f̃p1, f̃p2, multiplication according to Bayes’ law to obtain
true continuous posterior f̃e, and sampling of f̃e to obtain posterior
empirical density fe. Green path: Direct Bayesian fusion of the
two prior empirical densities fp1, fp2 to obtain posterior empirical
density fe.

for k = 1, 2, where δ(.) is the Dirac delta function, xpk
i are

the component locations, wpk
i are the component weights

with wpk
i > 0 and

∑Lpk

i=1 w
pk
i = 1, and Lpk the number of

components.
For empirical densities, Bayes’ law according to (1)

obviously cannot be applied. This is due to the fact that
Bayes’ law requires density values to be multiplied and
there are simply no density values available for fp1(x)
and fp2(x) as the “density” is coded by the number
of components per unit area. So, the problem is not
only the typical lack of a joint support. Even for two
identical empirical densities, which obviously have the
same support, a multiplication according to (1) is not
well defined.

When we understand the given discrete densities as
some approximation of underlying continuous densities,
e.g., samples from those densities, an immediate idea
would be to reconstruct these continuous densities f̃p1(x),
f̃p1(x) from the discrete densities fp1(x), fp1(x) and
multiply those in (1), see the red path in Fig. 2. The
desired discrete posterior density fe(x) would be obtained
by sampling f̃e(x). There are several problems associated
with this procedure. First, the complexity is high as
we need to perform two density estimations for the
prior densities, where density estimation by itself is
known to be a tedious and complex process. The density
resulting from the multiplication then has to be re-
approximated by a Dirac mixture density, which is also
computationally intensive when we are not talking about
Gaussian densities. Second, the procedure is not only
complex in absolute terms, it is simply too complex for the
result we want to achieve. Reconstructing the full densities
is overly complex as we just require the densities at a
finite number of points. Third, the selection of the type
of continuous density, e.g., Gaussian mixture, introduces
unwanted artifacts in the final posterior density.

Here in this paper, we are interested in the direct
Bayesian fusion, see the green path in Fig. 2.



III. Pointwise Estimation of Density
We now review methods that aim at estimating the

true underlying density of an empirical density at certain
points. Again, we focus on efficient local methods that
do not require the reconstruction of the full underlying
continuous density.

In the 1D-case, a so called sample-spacings estimator
can be used, see [10] or the first part of [11]. Considering
sorted samples, a density estimate at a certain point
is proportional to the inverse of the distance between
adjacent points. In order to increase robustness to noise,
the spacing can be increased to cover k+1 samples instead
of two. As these density estimates are not continuously
differentiable, a kernel-based method is devised in [12].

The general multi-dimensional case is based on k-
nearest neighbor considerations [13], which results in
non-smooth estimates. Weighting functions for ensuring
smooth estimates are characterized in [14]. These concepts
can, of course, also be used for one-dimensional problems
as an alternative to sample-spacings estimators. The
choice of an optimal k depending on sample size and
dimensionality is discussed in [15], [16].

Both the k-nearest neighbor density estimators and
their smoothed cousins were found not to work satisfacto-
rily in our problem context (both for the one-dimensional
and the multi-dimensional case). The reason is that
for both types of estimators, the tails of the estimated
densities die away very slowly. The 1D sample-spacings
estimators exhibit a similar problem.

Here, we pursue a different approach. First, for a
given empirical distribution, we estimate the density
at the component location only. A k-nearest neighbor
method is used for that purpose, where we use k = 1 in
the evaluations. Then, we basically invert the method
from [17] to smooth this pointwise estimate in order
to calculate the density at points different from the
component locations.

We now consider a single Dirac mixture density, say
the second prior density fp2(x) with

fp2(x) =
Lp2∑
i=1

wp2
i δ(x− xp2

i )

and a given evaluation point, say some component xp1
i

from the first prior density fp1(x). Our goal is to estimate
the value of the underlying density f̂p2(x) at xp1

i , i.e.,
f̂p2(xp1

i ).
For estimating the density f̃p2(x) at one of its own

component locations, say xp2
i , i.e., f̃p2(xp2

j ), we calculate
the k-nearest neighbors of xp2

i in the set xp2
j , j =

1, . . . , Lp2, j 6= i. The density at the component location
xp2

i is then given by the probability mass within an N -
dimensional hypersphere containing the k components
divided by the volume of the hypersphere. The probability
mass is the sum of the weights of the k-nearest neighbors
that we denote by wk. The volume of the hypersphere
with a radius equal to the distance between the component
location xp2

i and the k-th (farthest) neighbor is denoted
by Vk. Then the density estimate is given by f̃p2(xp2

j ) =
wk/Vk.

The values of the true density function f̃p2(x) are so
far only reconstructed at the component locations. For
evaluating the density at arbitrary locations, we place
Gaussian kernels at some components that are close to the
evaluation point. The height is set equal to the estimated
density. At component xp2

i , we obtain

Ki(x) = f̃p2(xp2
i ) exp

(
−1

2
1
τ2

i

(x− xp2
i )T (x− xp2

i )
)
(2)

for i = 1, . . . , Lp2, where the τi are individual spread
parameters yet to be determined, see [17, p. 2].

The spread parameters τi in (2) are determined by main-
taining the mass wp2

i associated with Dirac component
xp2

i , so we obtain∫
RN

Ki(x) dx = wp2
i ,

which gives (
√

2π τi)N f̃p2(xp2
i ) = wp2

i or

τi = 1√
2π

(
wp2

i

f̃p2(xp2
i )

) 1
N

.

The resulting kernels have a larger width in low-density
regions of the underlying continuous density. In high-
density areas, the kernels have smaller widths.

Given the evaluation point xp1
i , we calculate the m

nearest neighbors of fp2(x) and call the index set I,
where we use m = 4 in the evaluations. By inserting τi

into the respective kernels in (2), we obtain a smoothed
estimate of the true density function f̃p2(x) as

f̂p2(x) ≈
Lp2∑
i=1
i∈I

Ki(x) .

IV. Direct Fusion
For performing a direct Bayesian fusion of the two

prior densities fp1(x) and fp2(x), we now use the density
estimate for given evaluation points from the previous
section.

A. Basic Method
The basic method cycles through the components of

one of the given prior densities and uses each component
as an evaluation point to estimate the density value of
the other prior density at that point. W.l.o.g., we cycle
through the components xp1

i of the first prior density
fp1(x) and estimate the value of the second prior density
at the component locations of the first density f̂p2(xp1

i ).
We obtain the posterior density fe(x) by reweighting the
components of the first prior density fp1(x) according to

fe(x) = c

L1∑
i=1

wp1
i f̂p2(xp1

i ) δ(x− xp1
i ) , (3)

where c is again a normalization constant.
As a result of the reweighting process, we end up with

a set of unequally weighted components for the posterior
fe(x). For recursive estimation, we would like to perform
a closed operation in the sense that the result of the fusion
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Fig. 3. Direct Bayesian fusion of empirical densities corresponding
to two Gaussian densities. The graphs show the true cumulative
distributions and the empirical cumulative distributions.

process is of the same type as the input densities. Hence,
we have to approximate the unequally weighted posterior
by an equally weighted posterior. For performing this
approximation, the method described in [18] is used.

B. Enhanced Method
This basic method already gives nice results. However,

the method so far is not elegant as it is not symmetric.
Asymmetry is caused by selecting one of the prior density
for reweighting purposes. We would expect a symmetric
method as Bayes’ law in (1) for continuous densities is
symmetric. Besides not being elegant, we do not really
make use of the points of the second prior density as these
are only used for reweighting the points of the first one.

For deriving a modified fusion method that considers
both prior densities in a symmetric way, we take a look
at this trivial rewriting of Bayes’ law in (1)

f̃e(x) = c · 1
2
(
f̃p1(x) · f̃p2(x) + f̃p2(x) · f̃p1(x)

)
.

We now translate the multiplication of two densities
to discrete densities by adding (3) and its dual version

fe(x) = c

L2∑
i=1

wp2
i f̂p1(x̂p2

i ) δ(x− xp2
i ) .

To avoid covering the same part of the state space
with points from both prior densities, we use selected
components from both densities. Again, w.l.o.g., we cycle
through the components xp1

i , i = 1, . . . , L1 of the first
prior density fp1(x). At each component xp1

i , we estimate

the value of the true first prior density f̃p1(xp1
i ) and also

the value of the true second prior density f̃p2(xp1
i ).

When the value of the true first prior density f̃p1(xp1
i )

at component location xp1
i is larger than the value of the

true second prior density f̃p2(xp1
i ) at that same location,

we place the index i into the index set I1. The reason is
that this part of the state space is better covered by the
first density. Otherwise, the index i will not be placed
into the index set I1.

The same procedure is performed for the second prior
density fp2(x) resulting in an index set I2.

Using the two index sets I1 and I2 results in a
symmetric direct Bayesian fusion method as

fe(x) = c · 1
2

( L1∑
i=1
i∈I1

wp1
i f̂p2(xp1

i ) δ(x− x̂p1
i )

+
L2∑
i=1
i∈I2

wp2
i f̂p1(xp2

i ) δ(x− x̂p2
i )
)
.

Again, for obtaining an equally weighted empirical density,
the method described in [18] is subsequently used.

V. Numerical Examples
The proposed fusion method for empirical density

is evaluated by taking samples from given continuous
densities, so that the true fusion result is known as ground
truth.

We start with two Gaussian prior densities, where
f̃p1(x) has mean −1 and standard deviation 1, while
f̃p2(x) has mean 1 and also standard deviation 1. Both
densities are sampled deterministically with equal weights
based on the closed-form solution from [19]. Lp1 = Lp2 =
20 are used. The prior densities and their corresponding
samples are shown in the two top graphs of Fig. 1. The
bottom graph shows the true posterior with mean 0
and standard deviation 1/

√
2 and the posterior empirical

density resulting from the direct Bayesian fusion of the
two priors. In Fig. 3, the prior cumulative distributions
are shown in the two top graphs. The bottom graph shows
a comparison of the true posterior cumulative distribu-
tion and the posterior empirical cumulative distribution
resulting for the proposed fusion method, which shows a
good agreement.

We now focus on two prior Gaussian mixtures with
two components each of the form

f̃pk(x) = 1
2

2∑
i=1
N (x−mpk

i , σ) ,

for k = 1, 2, with component means mpk
i , equal weights,

and equal standard deviations σ for all components.
For component 1, we have mp1

1 = −3, mp1
2 = 1, for

component 2, we have mp2
1 = −1, mp2

2 = 3.
The prior densities are now sampled to obtain empirical

densities. A deterministic sampling procedure according
to [20] is used. Here, equal weights are enforced and the
number of sample points is set to Lp1 = Lp2 = 200.
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Fig. 4. Direct Bayesian fusion of empirical densities corresponding
to two Gaussian mixtures with two components each. Standard
deviation of each component is σ = 0.8.

The true posterior resulting from applying Bayes’ law
to the two prior Gaussian mixtures f̃p1(x) and f̃p2(x)
is another Gaussian mixture with four components. The
most complicated setup appears when σ is selected in
the range σ ∈ ()0, 1] as the posterior then exhibits three
distinct peaks. Of course, smaller σ make direct Bayesian
fusion more difficult as the overlap of the prior densities
becomes smaller.

We now take a look at the result of direct Bayesian
fusion for different values of σ. For σ = 0.8, the prior
Gaussian mixtures and histograms of their corresponding
empirical densities are shown in the top two graphs of
Fig. 4. The third graph shows the true posterior and a
histogram of the empirical posterior resulting from direct
Bayesian fusion. It is obvious that the empirical posterior
is a good approximation of the true posterior. The bottom
graph shows a comparison of the true posterior cumulative
distribution and the empirical cumulative distribution
resulting from direct Bayesian fusion. This also underlines
the good quality of the approximation. Fig. 5 shows
the results for σ = 0.6, which also leads to a good
agreement of the posteriors. When σ is selected much
smaller, see Fig. 6 for the case of σ = 0.4, the overlap
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Fig. 5. Direct Bayesian fusion of empirical densities corresponding
to two Gaussian mixtures with two components each. Standard
deviation of each component is σ = 0.6.

between the true prior densities is already very small
and the empirical prior densities have almost no overlap
anymore. The proposed fusion method still manages to
produce an acceptable result although the deviations are
clearly visible in both the density domain as well as in
the cumulative distribution domain.

VI. Conclusions
A simple and efficient method for direct Bayesian

fusion of two random vectors characterized by empirical
distributions was derived. The paper contains three main
contributions: The first contribution is to reweight one of
the given prior empirical distributions based on locally
reconstructed density values of the other prior empirical
distribution in order to directly obtain a result of the same
density type. The second contribution is to perform a
mutual update that uses the most appropriate points from
both prior empirical distributions. The third contribution
is an efficient new method for the reconstruction of
the underlying continuous densities based on nearest
neighbors.

The method is simple to implement and works in
arbitrary dimensions. So far, one-dimensional determin-
istic samples have been considered in the evaluations.
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Fig. 6. Direct Bayesian fusion of empirical densities corresponding
to two Gaussian mixtures with two components each. Standard
deviation of each component is σ = 0.4.

The evaluation will be extended to higher dimensions in
a follow-up paper. When noisy samples are given, the
reduction method in [18] can be used to calculate cleaner
sample sets then used for fusion. This is similar to the
idea in [21].
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